1
|
Müller MC, Lemaire ON, Kurth JM, Welte CU, Wagner T. Differences in regulation mechanisms of glutamine synthetases from methanogenic archaea unveiled by structural investigations. Commun Biol 2024; 7:111. [PMID: 38243071 PMCID: PMC10799026 DOI: 10.1038/s42003-023-05726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/19/2023] [Indexed: 01/21/2024] Open
Abstract
Glutamine synthetases (GS) catalyze the ATP-dependent ammonium assimilation, the initial step of nitrogen acquisition that must be under tight control to fit cellular needs. While their catalytic mechanisms and regulations are well-characterized in bacteria and eukaryotes, only limited knowledge exists in archaea. Here, we solved two archaeal GS structures and unveiled unexpected differences in their regulatory mechanisms. GS from Methanothermococcus thermolithotrophicus is inactive in its resting state and switched on by 2-oxoglutarate, a sensor of cellular nitrogen deficiency. The enzyme activation overlays remarkably well with the reported cellular concentration for 2-oxoglutarate. Its binding to an allosteric pocket reconfigures the active site through long-range conformational changes. The homolog from Methermicoccus shengliensis does not harbor the 2-oxoglutarate binding motif and, consequently, is 2-oxoglutarate insensitive. Instead, it is directly feedback-inhibited through glutamine recognition by the catalytic Asp50'-loop, a mechanism common to bacterial homologs, but absent in M. thermolithotrophicus due to residue substitution. Analyses of residue conservation in archaeal GS suggest that both regulations are widespread and not mutually exclusive. While the effectors and their binding sites are surprisingly different, the molecular mechanisms underlying their mode of action on GS activity operate on the same molecular determinants in the active site.
Collapse
Affiliation(s)
- Marie-Caroline Müller
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Olivier N Lemaire
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Julia M Kurth
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Microcosm Earth Center, Philipps-University Marburg and Max Planck Institute for Terrestrial Microbiology, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.
| |
Collapse
|
2
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
3
|
|
4
|
Palaniappan C, Gunasekaran M. Purification and properties of glutamine synthetase from Nocardia asteroides. Curr Microbiol 1995; 31:193-8. [PMID: 7663309 DOI: 10.1007/bf00293553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glutamine synthetase (GS, EC 6.3.1.2) from Nocardia asteroides was purified to homogeneity by ammonium sulfate precipitation, Sephadex G-150, and DEAE-Sepharose chromatography. The native molecular weight of the purified enzyme was determined to be 720 kDa. SDS-PAGE analysis of the purified preparation revealed a single band corresponding to 59 kDa, indicating the possible presence of 12 identical subunits. The divalent cations Mn2+ and Mg2+ were found to be essential for optimal transferase and biosynthetic activity, respectively. The optimal pH and temperature for both activities of the enzyme were found to be 7.2 and 50 degrees C. Amino acids such as L-alanine, glycine, and aspartate inhibited the GS activity. The Km values for the substrates of the biosynthetic reaction ATP, glutamate, and ammonium chloride were found to be 400 microM, 7.7 mM, and 200 microM, respectively. Addition of ammonium chloride to the nitrogen-limited culture resulted in a decrease of GS transferase and biosynthetic activities. Phosphodiesterase treatment of the extract from ammonia-shocked cultures showed an increase in GS transferase activity. The results indicate the possible regulation of GS by covalent modification.
Collapse
Affiliation(s)
- C Palaniappan
- Department of Biology, Fisk University, Nashville, TN 37208, USA
| | | |
Collapse
|
5
|
Ammonia assimilation enzymes in a thermophilicBacillus sp. of marine origin. Curr Microbiol 1993. [DOI: 10.1007/bf01575996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Woods DR, Reid SJ. Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. FEMS Microbiol Rev 1993; 11:273-83. [PMID: 7691113 DOI: 10.1111/j.1574-6976.1993.tb00001.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The structure of glutamine synthetase (GS) enzymes from diverse bacterial groups fall into three distinct classes. GSI is the typical bacterial GS, GSII is similar to the eukaryotic GS and is found together with GSI in plant symbionts and Streptomyces, while GSIII has been found in two unrelated anaerobic rumen bacteria. In most cases, the structural gene for GS enzyme is regulated in response to nitrogen. However, different regulatory mechanisms, to ensure optimal utilization of nitrogen substrates, control the GS enzyme in each class.
Collapse
Affiliation(s)
- D R Woods
- Department of Microbiology, University of Cape Town, Rondebosch, South Africa
| | | |
Collapse
|
7
|
Abstract
The synthesis of glutamine synthetase (GS), a key enzyme in ammonium (NH4+) assimilation, is regulated by nitrogen availability in several Streptomyces strains. In addition, the enzymatic activity of the GS enzyme is post-translationally regulated by adenylylation. Nitrogen regulation of GS synthesis is mediated at the transcriptional level in S. coelicolor, and transcription of the GS structural gene (glnA) requires a positive regulatory protein, GlnR. The amino acid sequence of the GlnR protein is similar to that of the Escherichia coli positive regulatory proteins, OmpR and PhoB, which belong to the family of bacterial two-component regulatory systems. DNA encoding a GSII-like enzyme has been cloned from S. viridochromogenes and S. hygroscopicus, but the role of this GS isoenzyme in NH4+ assimilation in Streptomyces is unclear.
Collapse
Affiliation(s)
- S H Fisher
- Department of Microbiology, Boston University School of Medicine, MA 02118
| |
Collapse
|
8
|
Wedler FC, McLean MA. Intermediates in guanidine-HC1 unfolding of glutamine synthetase from the extreme thermophile, Bacillus caldolyticus. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1076:161-3. [PMID: 1670923 DOI: 10.1016/0167-4838(91)90235-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glutamine synthetase is expressed in Bacillus caldolyticus as two isoforms that differ in physico-chemical and regulatory properties. Biphasic kinetics of thermal denaturation of E-I and E-II (Merkler, D.J., et al (1987) Biochemistry 26, 7805), suggested the formation of intermediates. CD spectral changes of E-II induced by guanidine-HC1 clearly indicate a three-state pathway for unfolding (N----I----D). Refolding of E-II from 6 M GuHCl led to only 15% recovery of activity, compared to greater than or equal to 90% with E-I.
Collapse
Affiliation(s)
- F C Wedler
- Department of Molecular and Cell Biology, Althouse Laboratory, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
9
|
Molecular cloning, sequencing, and expression of the glutamine synthetase II (glnII) gene from the actinomycete root nodule symbiont Frankia sp. strain CpI1. J Bacteriol 1990; 172:5335-42. [PMID: 1975584 PMCID: PMC213197 DOI: 10.1128/jb.172.9.5335-5342.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In common with other plant symbionts, Frankia spp., the actinomycete N2-fixing symbionts of certain nonleguminous woody plants, synthesize two glutamine synthetases, GSI and GSII. DNA encoding the Bradyrhizobium japonicum gene for GSII (glnII) hybridized to DNA from three Frankia strains. B. japonicum glnII was used as a probe to clone the glnII gene from a size-selected KpnI library of Frankia strain CpI1 DNA. The region corresponding to the Frankia sp. strain CpI1 glnII gene was sequenced, and the amino acid sequence was compared with that of the GS gene from the pea and glnII from B. japonicum. The Frankia glnII gene product has a high degree of similarity with both GSII from B. japonicum and GS from pea, although the sequence was about equally similar to both the bacterial and eucaryotic proteins. The Frankia glnII gene was also capable of complementing an Escherichia coli delta glnA mutant when transcribed from the vector lac promoter, but not when transcribed from the Frankia promoter. GSII produced in E. coli was heat labile, like the enzyme produced in Frankia sp. strain CpI1 but unlike the wild-type E. coli enzyme.
Collapse
|
10
|
|
11
|
Merkler DJ, Srikumar K, Marchese-Ragona SP, Wedler FC. Aggregation and thermo-inactivation of glutamine synthetase from an extreme thermophile, Bacillus caldolyticus. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 952:101-14. [PMID: 2891380 DOI: 10.1016/0167-4838(88)90106-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The extreme thermophile, Bacillus caldolyticus, contains two regulatory isoforms of glutamine synthetase (glutamate-ammonia ligase, EC 6.3.1.2), E-I and E-II, produced as separate gene products. Light scattering and electron microscopy data indicate that these thermophilic enzymes aggregate to higher molecular weight species in two stages: initial polymerization of native dodecamers, followed by 'melting' of the aggregated species to produce amorphous denatured protein. The initial stages of the aggregation occurred at temperatures below those for time-dependent denaturation, especially for E-II. In contrast, mesophilic (B. subtilis) enzyme showed no evidence of temperature-dependent aggregation. Thus, aggregation may be a stabilizing mechanism for the thermophilic systems. Bound metal ions and substrates caused dramatic increases in the temperatures at which aggregation and loss of activity occurred for thermophilic enzymes. Certain combinations of ligands (e.g., MnATP + L-glutamate) acted synergistically, so that these complexes denatured only above 90 degrees C. Various models were considered for heat-driven aggregation followed by denaturation, plus ligand stabilization. Taken together, the data are most consistent with unfolding of subunits within the dodecameric unit, rather than unfolding to monomers prior to aggregation.
Collapse
Affiliation(s)
- D J Merkler
- Department of Molecular and Cell Biology, P.M. Althouse Laboratory, Pennsylvania State University, University Park 16802
| | | | | | | |
Collapse
|
12
|
Kim KH, Rhee SG. Sequence of peptides from Saccharomyces cerevisiae glutamine synthetase. N-terminal peptide and ATP-binding domain. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)35430-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Subunit interaction elicited by partial inactivation with L-methionine sulfoximine and ATP differently affects the biosynthetic and gamma-glutamyltransferase reactions catalyzed by yeast glutamine synthetase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45165-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Usdin KP, Zappe H, Jones DT, Woods DR. Cloning, Expression, and Purification of Glutamine Synthetase from
Clostridium acetobutylicum. Appl Environ Microbiol 1986; 52:413-9. [PMID: 16347143 PMCID: PMC203548 DOI: 10.1128/aem.52.3.413-419.1986] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A glutamine synthetase (GS) gene,
glnA
, from the gram-positive obligate anaerobe
Clostridium acetobutylicum
was cloned on recombinant plasmid pHZ200 and enabled
Escherichia coli glnA
deletion mutants to utilize (NH
4
)
2
SO
4
as a sole source of nitrogen. The cloned
C. acetobutylicum
gene was expressed from a regulatory region contained within the cloned DNA fragment.
glnA
expression was subject to nitrogen regulation in
E. coli
. This cloned
glnA
DNA did not enable an
E. coli glnA ntrB ntrC
deletion mutant to utilize arginine or low levels of glutamine as sole nitrogen sources, and failed to activate histidase activity in this strain which contained the
Klebsiella aerogenes hut
operon. The GS produced by pHZ200 was purified and had an apparent subunit molecular weight of approximately 59,000. There was no DNA or protein homology between the cloned
C. acetobutylicum glnA
gene and GS and the corresponding gene and GS from
E. coli
. The
C. acetobutylicum
GS was inhibited by Mg
2+
in the γ-glutamyl transferase assay, but there was no evidence that the GS was adenylylated.
Collapse
Affiliation(s)
- K P Usdin
- Department of Microbiology, University of Cape Town, Rondebosch 7700, South Africa
| | | | | | | |
Collapse
|
15
|
Krishnan IS, Singhal RK, Dua RD. Purification and characterization of glutamine synthetase from Clostridium pasteurianum. Biochemistry 1986; 25:1589-99. [PMID: 2871863 DOI: 10.1021/bi00355a021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glutamine synthetase from Clostridium pasteurianum grown on molasses as the sole carbon source and ammonium chloride as the nitrogen source has been purified to homogeneity (45-fold) with 32% recovery. The procedure involves ammonium sulfate precipitation and chromatography on a combined Sepharose 4B/DEAE-Sephadex A-50 column. The purified enzyme being very unstable was stabilized by the addition of 25% (v/v) glycerol. The enzyme has an unusually high molecular weight of 1 X 10(6) and 20 subunits of Mr 50 000 each, as determined by gel filtration and sodium dodecyl sulfate gel electrophoresis, respectively. It has an absorption maximum at 280 nm and a fluorescence emission maximum at 380 nm when excited at 280 nm. Its substrate binding pattern as studied by fluorescence quenching studies is different from that of the Escherichia coli enzyme. Both the gamma-glutamyltransferase and synthetase activities reside in the same protein as the ratio of the two activities at each step of purification remains constant and the enzyme exhibits optimal transferase and synthetase activities at the same pH (7.2) and temperature (50 degrees C). The thermal stabilities of both activities were also similar, and decay of both the activities at 50 degrees C ran parallel. The enzyme shows stabilization by substrates, as L-glutamate, Mg2+, and ATP + Mg2+ protected both the synthetase and gamma-glutamyltransferase activities against thermal inactivation. Storage in 25% (v/v) glycerol enhanced the thermal stability of glutamine synthetase. Metal ion requirement and substrate specificity of the enzyme have been examined. Maximum synthetase activity occurs when [Mg2+]: [ATP] = 2. The Km app values are as follows (in parentheses): ATP (0.34 mM), NH2OH (0.4 mM in the synthetase reaction and 4.1 mM in the transferase reaction), glutamine (14.7 mM), ADP (3.8 X 10(-4) mM), arsenate (2.5 mM), and L-glutamate (3.4 mM, 22.2 mM). The enzyme exhibits negative cooperativity in the binding of glutamate. Amino acids such as L-serine, glycine, L-alanine, and L-aspartic acid inhibit the enzyme.
Collapse
|
16
|
Bodasing SJ, Brandt PW, Robb FT, Woods DR. Purification and regulation of glutamine synthetase in a collagenolytic Vibrio alginolyticus strain. Arch Microbiol 1985; 140:369-74. [PMID: 2859007 DOI: 10.1007/bf00446980] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Glutamine synthetase (EC 6.3.1.2) has been purified from a collagenolytic Vibrio alginolyticus strain. The apparent molecular weight of the glutamine synthetase subunit was approximately 62,000. This indicates a particle weight for the undissociated enzyme of 744,000, assuming the enzyme is the typical dodecamer. The glutamine synthetase enzyme had a sedimentation coefficient of 25.9 S and seems to be regulated by adenylylation and deadenylylation. The pH profiles assayed by the gamma-glutamyltransferase method were similar for NH4-shocked and unshocked cell extracts and isoactivity point was not obtained from these curves. The optimum pH for purified and crude cell extracts was 7.9. Cell-free glutamine synthetase was inhibited by some amino acids and AMP. The transferase activity of glutamine synthetase from mid-exponential phase cells varied greatly depending on the sources of nitrogen or carbon in the growth medium. Glutamine synthetase level was regulated by nitrogen catabolite repression by (NH4)2SO4 and glutamine, but cells grown in the presence of proline, leucine, isoleucine, tryptophan, histidine, glutamic acid, glycine and arginine had enhanced levels of transferase activity. Glutamine synthetase was not subject to glucose, sucrose, fructose, glycerol or maltose catabolite repression and these sugars had the opposite effect and markedly enhanced glutamine synthetase activity.
Collapse
|
17
|
Wedler FC, Merkler DJ. Thermostabilization of Bacillus caldolyticus glutamine synthetase by intrinsic and extrinsic factors. CURRENT TOPICS IN CELLULAR REGULATION 1985; 26:263-80. [PMID: 2866936 DOI: 10.1016/b978-0-12-152826-3.50027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Wedler FC, Shreve DS, Fisher KE, Merkler DJ. Complementarity of regulation for the two glutamine synthetases from Bacillus caldolyticus, an extreme thermophile. Arch Biochem Biophys 1981; 211:276-87. [PMID: 6118092 DOI: 10.1016/0003-9861(81)90455-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Donohue TJ, Bernlohr RW. Regulation of the activity of the Bacillus licheniformis A5 glutamine synthetase. J Bacteriol 1981; 148:174-82. [PMID: 6169702 PMCID: PMC216179 DOI: 10.1128/jb.148.1.174-182.1981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The regulation of glutamine synthetase activity by positive and negative effectors of enzyme activity singularly and in combinations was studied by using a homogeneous enzyme preparation from Bacillus licheniformis A5. Phosphorylribosyl pyrophosphate at concentrations greater than 2mM stimulated glutamine synthetase activity by approximately 70%. The concentration of phosphorylribosyl pyrophosphate required for half-maximal stimulation of enzyme activity was 0.4 mM. Results obtained from studies of fractional inhibition of glutamine synthetase activity were consistent with the presence of one allosteric site for glutamine binding (apparent I0.5, 2.2mM) per active enzyme unit at a glutamate concentration of 50 mM. At a glutamate concentration of 30 mM or less, the data were consistent with the enzyme containing two binding sites for glutamine (one of which was an allosteric site with an apparent I0.5 of 0.4 mM). Bases on an analysis of the response of glutamine synthetase activity to positive and negative effectors in vitro and to the intracellular concentration of these effectors in vivo, the primary modulators of glutamine synthetase activity in B. licheniformis A5 appear to be glutamine and alanine (apparent I0.5, 5.2mM).
Collapse
|
20
|
Donohue TJ, Bernlohr RW. Properties of the Bacillus licheniformis A5 glutamine synthetase purified from cells grown in the presence of ammonia or nitrate. J Bacteriol 1981; 147:589-601. [PMID: 6114947 PMCID: PMC216080 DOI: 10.1128/jb.147.2.589-601.1981] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The glutamine synthetase from Bacillus licheniformis A5 was purified by using a combination of polyethylene glycol precipitation and chromatography on Bio-Gel A 1.5m. The resulting preparation was judged to be homogeneous by the criteria of polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, equilibrium analytical ultracentrifugation, and electron microscopic analysis. The enzyme is a dodecamer with a molecular weight of approximately 616,000, and its subunit molecular weight is 51,000. Under optimal assay conditions (pH 6.6, 37 degrees C) apparent Km values for glutamate, ammonia, and manganese.adenosine 5'-triphosphate (1:1 ratio) were 3.6, 0.4, and 0.9 mM, respectively. Glutamine synthetase activity was inhibited approximately 50% by the addition of 5 mM glutamine, alanine, glycine, serine, alpha-ketoglutarate, carbamyl phosphate, adenosine 5'-diphosphate, or inosine 5'-triphosphate to the standard glutamine synthetase assay system, whereas 5 mM adenosine 5'-monophosphate or pyrophosphate caused approximately 90% inhibition of enzyme activity. Phosphorylribosyl pyrophosphate at 5 mM enhanced activity approximately 60%. We were unable to detect any physical or kinetic differences in the properties of the enzyme when it was purified from cells grown in the presence of ammonia or nitrate as sole nitrogen source. The data indicate that B. licheniformis A5 contains one species of glutamine synthetase whose catalytic activity is not regulated by a covalent modification system.
Collapse
|