1
|
Yuan B, Yang Y, Yan Z, He C, Sun YH, Wang F, Wang B, Shi J, Xiao S, Wang F, Fang Q, Li F, Ye X, Ye G. A rapidly evolving single copy histone H1 variant is associated with male fertility in a parasitoid wasp. Front Cell Dev Biol 2023; 11:1166517. [PMID: 37325562 PMCID: PMC10264595 DOI: 10.3389/fcell.2023.1166517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The linker histone H1 binds to the nucleosome core particle at the site where DNA enters and exits, and facilitates folding of the nucleosomes into a higher-order chromatin structure in eukaryotes. Additionally, some variant H1s promote specialized chromatin functions in cellular processes. Germline-specific H1 variants have been reported in some model species with diverse roles in chromatin structure changes during gametogenesis. In insects, the current understanding of germline-specific H1 variants comes mainly from the studies in Drosophila melanogaster, and the information on this set of genes in other non-model insects remains largely unknown. Here, we identify two H1 variants (PpH1V1 and PpH1V2) that are specifically predominantly expressed in the testis of the parasitoid wasp Pteromalus puparum. Evolutionary analyses suggest that these H1 variant genes evolve rapidly, and are generally maintained as a single copy in Hymenoptera. Disruption of PpH1V1 function in the late larval stage male by RNA interference experiments has no phenotype on spermatogenesis in the pupal testis, but results in abnormal chromatin structure and low sperm fertility in the adult seminal vesicle. In addition, PpH1V2 knockdown has no detectable effect on spermatogenesis or male fertility. Collectively, our discovery indicates distinct functions of male germline-enriched H1 variants between parasitoid wasp Pteromalus and Drosophila, providing new insights into the role of insect H1 variants in gametogenesis. This study also highlights the functional complexity of germline-specific H1s in animals.
Collapse
Affiliation(s)
- Bo Yuan
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chun He
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yu H. Sun
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Fei Wang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Beibei Wang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiamin Shi
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Climent-Cantó P, Carbonell A, Tamirisa S, Henn L, Pérez-Montero S, Boros IM, Azorín F. The tumour suppressor brain tumour (Brat) regulates linker histone dBigH1 expression in the Drosophila female germline and the early embryo. Open Biol 2021; 11:200408. [PMID: 33947246 PMCID: PMC8097206 DOI: 10.1098/rsob.200408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Linker histones H1 are essential chromatin components that exist as multiple developmentally regulated variants. In metazoans, specific H1s are expressed during germline development in a tightly regulated manner. However, the mechanisms governing their stage-dependent expression are poorly understood. Here, we address this question in Drosophila, which encodes for a single germline-specific dBigH1 linker histone. We show that during female germline lineage differentiation, dBigH1 is expressed in germ stem cells and cystoblasts, becomes silenced during transit-amplifying (TA) cystocytes divisions to resume expression after proliferation stops and differentiation starts, when it progressively accumulates in the oocyte. We find that dBigH1 silencing during TA divisions is post-transcriptional and depends on the tumour suppressor Brain tumour (Brat), an essential RNA-binding protein that regulates mRNA translation and stability. Like other oocyte-specific variants, dBigH1 is maternally expressed during early embryogenesis until it is replaced by somatic dH1 at the maternal-to-zygotic transition (MZT). Brat also mediates dBigH1 silencing at MZT. Finally, we discuss the situation in testes, where Brat is not expressed, but dBigH1 is translationally silenced too.
Collapse
Affiliation(s)
- Paula Climent-Cantó
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Srividya Tamirisa
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Laszlo Henn
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged 6726, Hungary
| | - Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Imre M Boros
- Institute of Biochemistry, Biological Research Centre of Szeged, Szeged 6726, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Barcelona 08028, Spain.,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| |
Collapse
|
3
|
Lipschutz E, Dasgupta A, Guan Y, Kistler WS, Wang PJ. A rat H1t-GFP transgene recapitulates endogenous H1t expression pattern in mouse. Genesis 2020; 58:e23355. [PMID: 31990142 DOI: 10.1002/dvg.23355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/06/2022]
Abstract
H1 histones bind to linker DNA. H1t (H1f6), a testis-specific linker histone variant, is present in pachytene spermatocytes and spermatids. The expression of H1t histone coincides with the acquisition of metaphase I competence in pachytene spermatocytes. Here we report the generation of H1t-GFP transgenic mice. The H1t-GFP (H1 histone testis-green fluorescence protein) fusion protein expression recapitulates the endogenous H1t expression pattern. This protein appears first in mid pachytene spermatocytes in stage V seminiferous tubules, persists in round spermatids and elongating spermatids, but is absent in elongated spermatids. The strong green fluorescence signal, due to the high abundance of H1t-GFP, is maintained in spermatocytes after induction towards metaphase I through treatment with okadaic acid. Therefore, H1t-GFP can be used as a visual marker for monitoring the progression of meiosis in vitro and in vivo, as well as fluorescence-activated cell sorting (FACS) sorting of germ cells.
Collapse
Affiliation(s)
- Emma Lipschutz
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Anindya Dasgupta
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - W Stephen Kistler
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Pan C, Fan Y. Role of H1 linker histones in mammalian development and stem cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:496-509. [PMID: 26689747 DOI: 10.1016/j.bbagrm.2015.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/09/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022]
Abstract
H1 linker histones are key chromatin architectural proteins facilitating the formation of higher order chromatin structures. The H1 family constitutes the most heterogeneous group of histone proteins, with eleven non-allelic H1 variants in mammals. H1 variants differ in their biochemical properties and exhibit significant sequence divergence from one another, yet most of them are highly conserved during evolution from mouse to human. H1 variants are differentially regulated during development and their cellular compositions undergo dramatic changes in embryogenesis, gametogenesis, tissue maturation and cellular differentiation. As a group, H1 histones are essential for mouse development and proper stem cell differentiation. Here we summarize our current knowledge on the expression and functions of H1 variants in mammalian development and stem cell differentiation. Their diversity, sequence conservation, complex expression and distinct functions suggest that H1s mediate chromatin reprogramming and contribute to the large variations and complexity of chromatin structure and gene expression in the mammalian genome.
Collapse
Affiliation(s)
- Chenyi Pan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhong Fan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Pérez-Montero S, Carbonell A, Azorín F. Germline-specific H1 variants: the "sexy" linker histones. Chromosoma 2015; 125:1-13. [PMID: 25921218 DOI: 10.1007/s00412-015-0517-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/07/2023]
Abstract
The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.
Collapse
Affiliation(s)
- Salvador Pérez-Montero
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain. .,Institute for Research in Biomedicine, IRB Barcelona, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| |
Collapse
|
6
|
Johnson GD, Lalancette C, Linnemann AK, Leduc F, Boissonneault G, Krawetz SA. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 2011; 141:21-36. [PMID: 20876223 PMCID: PMC5358669 DOI: 10.1530/rep-10-0322] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Within the sperm nucleus, the paternal genome remains functionally inert and protected following protamination. This is marked by a structural morphogenesis that is heralded by a striking reduction in nuclear volume. Despite these changes, both human and mouse spermatozoa maintain low levels of nucleosomes that appear non-randomly distributed throughout the genome. These regions may be necessary for organizing higher order genomic structure through interactions with the nuclear matrix. The promoters of this transcriptionally quiescent genome are differentially marked by modified histones that may poise downstream epigenetic effects. This notion is supported by increasing evidence that the embryo inherits these differing levels of chromatin organization. In concert with the suite of RNAs retained in the mature sperm, they may synergistically interact to direct early embryonic gene expression. Irrespective, these features reflect the transcriptional history of spermatogenic differentiation. As such, they may soon be utilized as clinical markers of male fertility. In this review, we explore and discuss how this may be orchestrated.
Collapse
Affiliation(s)
- Graham D. Johnson
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Claudia Lalancette
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Amelia K. Linnemann
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| | - Frédéric Leduc
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Guylain Boissonneault
- Department of Biochemistry, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Stephen A. Krawetz
- The Center for Molecular Medicine and Genetics, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
- Institute for Scientific Computing, Wayne State University of Medicine, C.S. Mott Center, 275 E. Hancock, Detroit, MI 48201
| |
Collapse
|
7
|
Piscopo M, Conte M, Di Paola F, Conforti S, Rana G, De Petrocellis L, Fucci L, Geraci G. Relevance of arginines in the mode of binding of H1 histones to DNA. DNA Cell Biol 2010; 29:339-47. [PMID: 20438368 DOI: 10.1089/dna.2009.0993] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mode of binding of sperm and somatic H1 histones to DNA has been investigated by analyzing the effect of their addition on the electrophoretic mobility of linear and circular plasmid molecules. Low concentrations of sperm histones do not appear to alter the electrophoretic mobility of DNA, whereas at increasing concentrations, an additional DNA band is observed near the migration origin. This band then becomes the only component at higher values. In contrast, somatic histones cause a gradual retardation in the mobility of the DNA band at low concentrations and aggregated structures are observed only at higher values. Experiments on the H1 globular domain obtained by limited proteolysis indicate that the mode of binding to DNA depends on the H1 globular domain. The arginine residues appear to be relevant for the different effects as indicated by experiments on sperm histone and on protamine with arginines deguanidinated to ornithines. The modified molecules influence DNA mobility like somatic H1s, indicating that the positive guanidino groups of arginines cannot be substituted by the positive amino groups of ornithines. Modifications of the amino groups of lysines show that these residues are necessary for the binding of H1 histones to DNA but they have no influence on the binding mode.
Collapse
Affiliation(s)
- Marina Piscopo
- Department of Structural and Functional Biology, University of Naples Federico II, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cavalcanti M, Rizgalla M, Geyer J, Failing K, Litzke LF, Bergmann M. Expression of histone 1 (H1) and testis-specific histone 1 (H1t) genes during stallion spermatogenesis. Anim Reprod Sci 2009; 111:220-34. [DOI: 10.1016/j.anireprosci.2008.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2007] [Revised: 03/02/2008] [Accepted: 03/13/2008] [Indexed: 11/16/2022]
|
9
|
Rose KL, Li A, Zalenskaya I, Zhang Y, Unni E, Hodgson KC, Yu Y, Shabanowitz J, Meistrich ML, Hunt DF, Ausió J. C-terminal phosphorylation of murine testis-specific histone H1t in elongating spermatids. J Proteome Res 2008; 7:4070-8. [PMID: 18698803 DOI: 10.1021/pr8003908] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous studies gave differing results as to whether the testis-specific histone H1t was phosphorylated during rodent spermatogenesis. We show here that histones extracted from germ cell populations enriched with spermatids at different stages of development in rat testes reveal an electrophoretic shift in the position of H1t to slower mobilities in elongating spermatids as compared to that from preceding stages. Alkaline phosphatase treatment and radioactive labeling with (32)P demonstrated that the electrophoretic shift is due to phosphorylation. Mass spectrometric analysis of histone H1t purified from sexually mature mice and rat testes confirmed the occurrence of singly, doubly, and triply phosphorylated species, with phosphorylation sites predominantly found at the C-terminal end of the molecule. Furthermore, using collision-activated dissociation (CAD) and electron transfer dissociation (ETD), we have been able to identify the major phosphorylation sites. These include a new, previously unidentified putative H1t-specific cdc2 phosphorylation site in linker histones. The presence of phosphorylation at the C-terminal end of H1t and the timing of its appearance suggest that this post-translational modification is involved in the reduction of H1t binding strength to DNA. It is proposed that this could participate in the opening of the chromatin fiber in preparation for histone displacement by transition proteins in the next phase of spermiogenesis.
Collapse
Affiliation(s)
- Kristie L Rose
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Eirín-López JM, Frehlick LJ, Ausió J. Protamines, in the Footsteps of Linker Histone Evolution. J Biol Chem 2006; 281:1-4. [PMID: 16243843 DOI: 10.1074/jbc.r500018200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- José María Eirín-López
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | | |
Collapse
|
11
|
Horvath GC, Kistler WS, Kistler MK. RFX2 is a potential transcriptional regulatory factor for histone H1t and other genes expressed during the meiotic phase of spermatogenesis. Biol Reprod 2004; 71:1551-9. [PMID: 15229132 DOI: 10.1095/biolreprod.104.032268] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
H1t is a novel linker histone variant synthesized in mid- to late pachytene spermatocytes. Its regulatory region is of interest because developmentally specific expression has been impressed on an otherwise ubiquitously expressed promoter. Using competitive band-shift assays and specific antisera, we have now shown that the H1t-60 CCTAGG palindrome motif region binds members of the RFX family of transcriptional regulators. The testis-specific binding complex contains RFX2, probably as a homodimer. Other DNA-protein complexes obtained from testis as well as somatic organs contain RFX1, primarily as a heterodimer. Western blots confirmed that RFX2 expression is greatly enhanced in adult testis and that RFX2 is equally prominent in highly enriched populations of late pachytene spermatocytes and round spermatids. Immunohistochemistry carried out on mouse testis showed that RFX2 is strongly expressed in pachytene spermatocytes, remains high in early round spermatids, and declines only in advance of nuclear condensation. Maximum expression correlates well with the appearance of H1t. In contrast, RFX1 immunoreactivity in germ cells was only detected in late round spermatids. RFX-specific band complexes were also identified for both the mouse lamin C2 and Sgy promoters, using either testis nuclear extracts or in vitro-synthesized RFX2. These results call attention to RFX2 as a transcription factor with obvious potential for the regulation of gene expression during meiosis and the early development of spermatids.
Collapse
Affiliation(s)
- Gary C Horvath
- Department of Chemistry and Biochemistry and The School of Medicine, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
12
|
Lewis JD, Ausió J. Protamine-like proteins: evidence for a novel chromatin structure. Biochem Cell Biol 2003; 80:353-61. [PMID: 12123288 DOI: 10.1139/o02-083] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protamine-like (PL) proteins are DNA-condensing proteins that replace somatic-type histones during spermatogenesis. Their composition suggests a function intermediate to that of histones and protamines. Although these proteins have been well characterized at the chemical level in a large number of species, particularly in marine invertebrates, little is known about the specific structures arising from their interaction with DNA. Speculation concerning chromatin structure is complicated by the high degree of heterogeneity in both the number and size of these proteins, which can vary considerably even between closely related species. After careful examination and comparison of the protein sequences available to date for the PL proteins, we propose a model for a novel chromatin structure in the sperm of these organisms that is mediated by somatic-type histones, which are frequently found associated with these proteins. This structure supports the concept that the PL proteins may represent various evolutionary steps between a sperm-specific histone H1 precursor and true protamines. Potential post-translational modifications and the control of PL protein expression and deposition are also discussed.
Collapse
Affiliation(s)
- John D Lewis
- Department of Biochemistry and Microbiology, University of Victoria, BC, Canada
| | | |
Collapse
|
13
|
Ausió J, Abbott DW, Wang X, Moore SC. Histone variants and histone modifications: A structural perspective. Biochem Cell Biol 2001. [DOI: 10.1139/o01-147] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review, we briefly analyze the current state of knowledge on histone variants and their posttranslational modifications. We place special emphasis on the description of the structural component(s) defining and determining their functional role. The information available indicates that this histone "variability" may operate at different levels: short-range "local" or long-range "global", with different functional implications. Recent work on this topic emphasizes an earlier notion that suggests that, in many instances, the functional response to histone variability is possibly the result of a synergistic structural effect.Key words: histone variants, posttranslational modifications, chromatin.
Collapse
|
14
|
Horvath GC, Clare SE, Kistler MK, Kistler WS. Characterization of the H1t promoter: role of conserved histone 1 AC and TG elements and dominance of the cap-proximal silencer. Biol Reprod 2001; 65:1074-81. [PMID: 11566728 DOI: 10.1095/biolreprod65.4.1074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
H1t is a testis-specific variant histone 1 gene transcribed in pachytene spermatocytes. As part of a program to understand its transcriptional control, we have investigated the effect of the cap-proximal, GC-rich silencer element in the context of various lengths of upstream sequence. By transient transfection of NIH 3T3 cells, we showed that a targeted mutation in the silencer has a large (>10-fold) effect on reporter gene expression, regardless of the length of upstream sequence present. No other discrete silencing activity was observed in the upstream region extending to nucleotide -1842. Similarly, when the silencer mutation was introduced into the natural gene, H1t expression was readily detected in permanently transfected cells by both RNase protection and Western blot analysis, regardless of the extent of 5' or 3' flanking genomic DNA. In constructs with the mutated silencer, we showed interdependence of the characteristic H1 AC and TG box regulatory elements. Promoter up-regulation occurred only when both were intact, and possibly identical binding factors were demonstrated for each by electrophoretic mobility shift assays. In view of its precisely regulated but limited expression, it is interesting that H1t retains all the promoter elements known to activate standard H1 genes, including the TG/AC unit, SP1 site, and CCAAT element. Their presence emphasizes the apparent dominance of the silencer element in most cells.
Collapse
Affiliation(s)
- G C Horvath
- Department of Chemistry and Biochemistry and the School of Medicine, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
15
|
Fantz DA, Hatfield WR, Horvath G, Kistler MK, Kistler WS. Mice with a targeted disruption of the H1t gene are fertile and undergo normal changes in structural chromosomal proteins during spermiogenesis. Biol Reprod 2001; 64:425-31. [PMID: 11159343 DOI: 10.1095/biolreprod64.2.425] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
H1t is an H1 histone variant unique to late spermatocytes and early spermatids. Using gene targeting and embryonic stem cell technologies, we have produced mice with a disrupted H1t gene. Homozygous H1t-null mice have normal fertility and show no obvious phenotypic consequence due to the lack of this histone. Biochemical and immunohistochemical approaches were used to show that normal changes in chromosomal proteins occurred during spermatid development, including the appearance and disappearance of transition proteins 1 and 2. Both protamines 1 and 2 are present in normal amounts in sonication-resistant spermatid nuclei from H1t-null mice. Analysis of H1 histones by quantitative gel electrophoresis in enriched populations of pachytene spermatocytes and round spermatids showed that the lack of H1t is only partially compensated for by somatic H1s, so that the chromatin of these cells is H1 deficient. Because H1t is thought to create a less tightly compacted chromatin environment, it may be that H1-deficient chromatin is functionally similar to chromatin with H1t present, at least with respect to permitting spermatogenesis to proceed.
Collapse
Affiliation(s)
- D A Fantz
- Department of Chemistry & Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
In the multicelled filamentous ascomycete Ascolobus immersus, the single copy gene for histone H1 can be silenced by methylation in the process known as methylation-induced premeiotically (MIP). The results of a recent paper using this unique system(1) have shown that histone H1 silencing results in an enhanced DNA accessibility to nucleases and an increase in the overall extent of DNA methylation. Interestingly, while none of these effects appear to decrease the immediate viability of this fungus, silencing of histone H1 results in a significant decrease in its overall life span. These results suggest that while linker histones may be dispensable for the relatively short life span of an individual cell, they are most likely indispensable for survival of higher eukaryote organisms.
Collapse
Affiliation(s)
- J Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building 220, Victoria, British Columbia, Canada V8W 3P6.
| |
Collapse
|
17
|
Bartell JG, Fantz DA, Davis T, Dewey MJ, Kistler MK, Kistler WS. Elimination of male germ cells in transgenic mice by the diphtheria toxin A chain gene directed by the histone H1t promoter. Biol Reprod 2000; 63:409-16. [PMID: 10906044 DOI: 10.1095/biolreprod63.2.409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Expression of the diphtheria toxin A-chain gene was directed to the male germ line by fusion to 1 kilobase of the 5'-flanking DNA of the rat histone H1t gene. Two independent lines of mice were established that expressed the toxic transgene. Female carriers were fertile; males were sterile although otherwise apparently normal. Adult transgenic males had very small testes that were virtually devoid of germ cells. A developmental study showed that germ cells survived until late fetal life but that testes of 3-day-old transgenic mice were severely depleted of prospermatogonia. During postnatal development of transgenic animals, remaining germ cells progressed to the pachytene stage of meiosis in 10% to 30% of tubular cross sections but degenerated before the completion of meiosis. By 3 mo of age the residual germ cells had almost completely disappeared. These transgenic lines demonstrate the complete tissue specificity of the H1t promoter and reveal a period of its activity just prior to formation of the definitive adult spermatogonial stem cell population. Whereas full expression of H1t occurs only in mid to late pachytene spermatocytes, one or more of the factors that impart tissue specificity to its expression must be transiently activated in the neonatal germ line. This report discusses the possibility that this genetic technique for eliminating germ cells may have practical application in making recipients for spermatogonial stem cell transplantation.
Collapse
Affiliation(s)
- J G Bartell
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | | | | | |
Collapse
|
18
|
Rabini S, Franke K, Saftig P, Bode C, Doenecke D, Drabent B. Spermatogenesis in mice is not affected by histone H1.1 deficiency. Exp Cell Res 2000; 255:114-24. [PMID: 10666340 DOI: 10.1006/excr.1999.4767] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The linker histone subtype H1.1 belongs to the group of main-type histones and is synthesized in somatic tissues as well as in germ cells during the S phase of the cell cycle. In adult mice the histone gene H1.1 is expressed mainly in thymus, spleen, and testis. The single-copy gene coding for the H1.1 protein was eliminated by homologous recombination in mouse embryonic stem cells. Mice homozygous for the deficient H1.1 gene developed normally until the adult stage without H1.1 mRNA and H1.1 protein. No anatomic abnormalities could be detected. In addition, mice lacking the H1.1 gene were fertile and they showed normal spermatogenesis and testicular morphology.
Collapse
Affiliation(s)
- S Rabini
- Abt. Molekularbiologie, Zentrum Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, Göttingen, 37073, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Histone H1 proteins bind to DNA and are important in formation and maintenance of chromatin structure. Little is known about differences among variant H1 histones in their interactions with DNA. We examined the effects of histones H1(0) and H1t on thermal denaturation of several DNA species. One of the DNA molecules was a 214-base-pair fragment from the plasmid pBR322, which contains an AT-rich and a GC-rich region. Both H1(0) and H1t bound preferentially to one region of the DNA fragment, a region that is relatively GC-rich. This result indicates that histones H1(0) and H1t are not totally nonspecific but rather bind with some sequence preference to DNA. This conclusion was supported by studies of other DNA species, including two 92-base-pair fragments derived from the two regions of the 214-mer, and several synthetic homocopolymers of DNA. Data obtained with the homocopolymers suggested that the binding preference was not simple preference for GC base pairs. The binding of the two H1 variants was not identical: there appear to be differences in binding site sizes, affinities, and sequence selectivities between H1t and H1(0).
Collapse
Affiliation(s)
- S E Wellman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson 39216-4505, USA.
| | | | | |
Collapse
|
20
|
Kido T, Namiki H. Evidence that the PERF 15 Germ Cell Specific Protein Associates with DNA in the Presence of Ca2+. Zoolog Sci 1999. [DOI: 10.2108/zsj.16.497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Bharath MM, Khadake JR, Rao MR. Expression of rat histone H1d in Escherichia coli and its purification. Protein Expr Purif 1998; 12:38-44. [PMID: 9473455 DOI: 10.1006/prep.1997.0804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histone H1 is involved in the folding of linear polynucleosomal filament into a 30-nm fiber. In an effort to understand the role of different domains of histone H1 in chromatin folding, we have now expressed rat histone H1d in Escherichia coli using pTrc99A expression vector by providing a 6-His tag at the C-terminus to facilitate its purification. The expressed protein histone H1d was purified from the soluble extract of E. coli by employing Ni2+ NTA-agarose and heparin-agarose chromatography. The recombinant histone H1d was shown to be authentic by its N-terminal amino acid analysis, its secondary structural characteristics, and its ability to (a) condense DNA and (b) bind specifically to synthetic four-way junction DNA.
Collapse
Affiliation(s)
- M M Bharath
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | | | |
Collapse
|
22
|
Drabent B, Bode C, Bramlage B, Doenecke D. Expression of the mouse testicular histone gene H1t during spermatogenesis. Histochem Cell Biol 1996; 106:247-51. [PMID: 8877387 DOI: 10.1007/bf02484408] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The testicular H1 histone variant, H1t, is synthesized during spermatogenesis in mammalian male germ cells. In situ hybridization and immunohistochemical techniques were used to assign the expression of either the H1t mRNA or the H1t protein to specific cell stages of spermatogenesis. Our results show the presence of the H1t mRNA only in the late and mid-pachytene stages, whereas the protein occurs first in pachytene spermatocytes, and persists until later stages from round up to elongated spermatids.
Collapse
Affiliation(s)
- B Drabent
- Abteilung Molekularbiologie, Universität Göttingen, Germany
| | | | | | | |
Collapse
|
23
|
Bartell JG, Davis T, Kremer EJ, Dewey MJ, Kistler WS. Expression of the rat testis-specific histone H1t gene in transgenic mice. One kilobase of 5'-flanking sequence mediates correct expression of a lacZ fusion gene. J Biol Chem 1996; 271:4046-54. [PMID: 8626738 DOI: 10.1074/jbc.271.8.4046] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
H1t is synthesized in mid to late pachytene spermatocytes of the male germ line and is the only tissue-specific member of the mammalian H1 histone family. As a step toward identifying DNA sequences that confer its tissue-specific expression, we have produced transgenic mice containing the intact rat H1t gene as well as a H1t-lacZ fusion gene. Transgenic mice carrying a 6.8-kilobase fragment of rat genomic DNA encompassing the H1t gene expressed rat H1t at high levels in the testis and in no other organ examined. H1t fragments truncated to within 141 base pairs (bp) of the gene in the 5' direction or within 837 bp in the 3' direction retained testis specificity. Expression of rat H1t protein was also evident in the testes of the transgenic mice, and in some lines the level of rat H1t exceeded that of the mouse protein. The stage of spermatogenesis of transgene expression was assessed by following appearance of transgenic mRNA in developing mice and by immunohistochemistry using an antiserum to rat H1t. In lines from three different constructs, expression was restricted to germinal cells, although in two strongly expressing lines the transgenes were expressed somewhat prematurely in preleptotene spermatocytes. An H1t(-948/+71)-lacZ fusion was also expressed specifically in the spermatocytes and round spermatids of a transgenic line, confirming that sequences sufficient for correct tissue and developmental expression lie within this 1,019-bp segment of the gene.
Collapse
Affiliation(s)
- J G Bartell
- Department of Chemistry and Biochemistry, School of Medicine Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | | | | | | | | |
Collapse
|
24
|
Zlatanova J, van Holde K. The linker histones and chromatin structure: new twists. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 52:217-59. [PMID: 8821262 DOI: 10.1016/s0079-6603(08)60968-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Zlatanova
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331, USA
| | | |
Collapse
|
25
|
Martínez P, Vidal JM, Monsalves C, Pérez M, Pucket C, Ponte I, Suau P. Cloning and analysis of the coding region of the histone H1(0)-encoding gene from rat PC12 cells. Gene 1995; 166:313-6. [PMID: 8543182 DOI: 10.1016/0378-1119(95)00594-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have determined the complete coding sequence of the histone-encoding H1(0) gene from rat PC12 cells. Southern and Northern analyses suggest that rat H1(0) is encoded by a single-copy gene which generates an mRNA of about 2.2 kb. Comparison of the rat, mouse and human amino-acid sequences shows that the C-terminal domain of the protein is much more variable than the N-terminal and central domains. Rates of non-synonymous and synonymous nucleotide substitution have been calculated. The rate of non-synonymous substitution is about 2.5-times higher in the rodent lineage than in the human lineage.
Collapse
Affiliation(s)
- P Martínez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autonóma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The chromatin conformation of somatic and meiotic chromosomes is, at least in part, a function of electrostatic nucleosome interactions that are mediated by transient acetylation of the histone H4 N-terminal domain and phosphorylation of histone H1. The distribution of those histones in the chromatin of meiotic chromosomes is reported here. Antibodies to testis-specific histone 1, H1t, detect H1t in the chromatin of mouse meiotic prophase chromosomes only after synapsis and synaptonemal complex (SC) assembly is completed and before core separation is initiated. The H1t protein is evenly distributed over euchromatin, heterochromatin and the SC. Antibodies to acetylated lysine residues 5, 12 or 16 of histone H4, indicate that the euchromatin is more acetylated than the centromeric heterochromatin. The pattern is most pronounced for acetylated residue 5 and least for 16. Antibodies to phosphorylated H1 epitopes do not react with chromatin but, instead, recognize the chromosome cores and SCs. Possibly these are not phosphorylated histone H1 epitopes, but SC proteins with similar potentially phosphorylatable sequences such as KTPTK of the synaptic protein Syn1.
Collapse
Affiliation(s)
- P B Moens
- Department of Biology, York University, Downsview, Ontario, M3J 1P3, Canada
| |
Collapse
|
27
|
Parseghian MH, Henschen AH, Krieglstein KG, Hamkalo BA. A proposal for a coherent mammalian histone H1 nomenclature correlated with amino acid sequences. Protein Sci 1994; 3:575-87. [PMID: 8003976 PMCID: PMC2142865 DOI: 10.1002/pro.5560030406] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bio-Rex 70 chromatography was combined with reverse-phase (RP) HPLC to fractionate histone H1 zero and 4 histone H1 subtypes from human placental nuclei as previously described (Parseghian MH et al., 1993, Chromosome Res 1:127-139). After proteolytic digestion of the subtypes with Staphylococcus aureus V8 protease, peptides were fractionated by RP-HPLC and partially sequenced by Edman degradation in order to correlate them with human spleen subtypes (Ohe Y, Hayashi H, Iwai K, 1986, J Biochem (Tokyo) 100:359-368; 1989, J Biochem (Tokyo) 106:844-857). Based on comparisons with the sequence data available from other mammalian species, subtypes were grouped. These groupings were used to construct a coherent nomenclature for mammalian somatic H1s. Homologous subtypes possess characteristic patterns of growth-related and cAMP-dependent phosphorylation sites. The groupings defined by amino acid sequence also were used to correlate the elution profiles and electrophoretic mobilities of subtypes derived from different species. Previous attempts at establishing an H1 nomenclature by chromatographic or electrophoretic fractionations has resulted in several misidentifications. We present here, for the first time, a nomenclature for somatic H1s based on amino acid sequences that are analogous to those for H1 zero and H1t. The groupings defined should be useful in correlating the many observations regarding H1 subtypes in the literature.
Collapse
Affiliation(s)
- M H Parseghian
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | | | | | |
Collapse
|
28
|
Bouterfa HL, Triebe SM, Doenecke DR. Differential regulation of the human H1 zero-histone-gene transcription in human tumor-cell lines. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:353-60. [PMID: 8223573 DOI: 10.1111/j.1432-1033.1993.tb18253.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cloning and sequence analysis of about 2 kb of the 5' flanking region of the human H1 zero histone gene reveals several potential regulatory elements upstream of the transcribed portion of this gene. Transfection studies using the chloramphenicol acetyl transferase (CAT) gene as a reporter gene with a series of promoter deletions revealed that the expression of the H1 zero gene may depend on a complex interplay of several transcription factors, including members of the retinoic acid and/or thyroid-hormone-receptor superfamily, at the 5' flanking region of the H1 zero gene. CAT assays demonstrate varied patterns of expression and regulation in different human tumor-cell lines. The leukemia cell line HL60 does not express H1 zero mRNA and shows no CAT activity. HeLa cells strongly express the CAT gene under the control of the H1 zero promoter. Under the same conditions, HepG2 cells also transcribe the CAT gene, although at a lower rate than HeLa cells. Using different promoter-deletion clones, the CAT activity differs in HepG2 and HeLa cells in the very distal promoter region. In both cell lines, the CAT activity decreases several fold when the region between nucleotides -450 and -600 upstream of the mRNA start site is deleted. It also decreases when just the proximal portion but not the distal promoter region is deleted. In summary, the regulatory patterns of these three cell lines differ, indicating a cell-type-specific regulation of the human H1 zero-histone-gene expression.
Collapse
Affiliation(s)
- H L Bouterfa
- Department of Molecular Biology, University of Göttingen, Germany
| | | | | |
Collapse
|
29
|
Giancotti V, Bandiera A, Ciani L, Santoro D, Crane-Robinson C, Goodwin GH, Boiocchi M, Dolcetti R, Casetta B. High-mobility-group (HMG) proteins and histone H1 subtypes expression in normal and tumor tissues of mouse. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:825-32. [PMID: 8477752 DOI: 10.1111/j.1432-1033.1993.tb17825.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exhaustive extraction of mouse tissues with perchloric acid has been used together with reverse-phase HPLC and electrophoresis to quantify the amounts of chromosomal proteins HMG17, HMG14 and HMGI, relative to histone H1. Normal lung and thymus contain approximately 3% HMG17/HMG14 but only approximately 2% HMGI. In tumor tissues (Lewis lung carcinoma and lymphoma NQ35), the amount of HMG17/HMG14 is not greatly altered but HMGI levels rise considerably, reaching 10% in Lewis lung carcinoma. HMGI synthesis does not replace HMG17/HMG14 proteins, suggesting that HMGI proteins contribute to the structure of chromatin regions in a manner distinct from those of HMG17/HMG14. Ion-spray mass spectrometry has been used to determine the molecular masses of H1 subtypes from the same four mouse tissues. In addition to the six known species H1 zero, H1a, H1b, H1c, H1d and H1e, a newly defined subtype of mass 21,756 Da from Lewis lung carcinoma, named H1L was identified. Several phosphorylated H1 subtypes have also been defined by mass spectrometry. The combined use of reverse-phase HPLC and electrophoresis permitted quantification of these seven histone H1 subtypes in the four mouse tissues. Increased phosphorylation of H1 subtypes in tumors parallels the phosphorylation of HMGI proteins which are present in great amounts, showing that both are involved as post-translational-modified forms in the structure of the chromatin of neoplastic systems.
Collapse
Affiliation(s)
- V Giancotti
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università di Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Morales M, Oñate E, Imschenetzky M, Galanti N. HMG-like chromosomal proteins in Trypanosoma cruzi. J Cell Biochem 1992; 50:279-84. [PMID: 1469064 DOI: 10.1002/jcb.240500308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HMG-like chromosomal proteins from Trypanosoma cruzi were studied. Four HMG-like proteins, designated HMG A, HMG-B, HMG-C, and HMG-E, were isolated and found to have molecular weights of 35.5 kd, 27.5 kd, 21.8 kd and 10.4 kd, respectively. Immunological relatedness was demonstrated between the mammalian HMG 1,2 and the HMG-A and HMG-B from T. cruzi. The relative amounts of HMG-C and HMG-E proteins vary in T. cruzi depending to the proliferative stage of the cells. HMG-E protein is increased in proliferating cells when compared to its level in non-proliferating cells. HMG-C is increased in the non-proliferating cells. Probably, the shifts observed in the relative amounts of HMG-like proteins are related to the proliferating cells of this flagellate. The results are consistent with those described for other lower eukaryotes where the HMG-like proteins isolated are similar but not identical to HMG proteins from vertebrates.
Collapse
Affiliation(s)
- M Morales
- Department of Cell Biology and Genetics, School of Medicine, University of Chile, Santiago
| | | | | | | |
Collapse
|
32
|
Baubichon-Cortay H, Mallet L, Denoroy L, Roux B. Histone H1a subtype presents structural differences compared to other histone H1 subtypes. Evidence for a specific motif in the C-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1122:167-77. [PMID: 1643090 DOI: 10.1016/0167-4838(92)90320-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Following a previous isolation by reverse-phase HPLC of five histone H1 subtypes from adult rat liver, purity of three of them, H1a, H1b and H1d (according to Lennox's nomenclature), was achieved. Structural features of these three subtypes were investigated. Partial cleavage of these subtypes by endoproteinase Glu-C showed a different behavior of the H1a subtype when compared to the H1b and H1d subtypes. Under the conditions used in this work, the H1b and H1d subtypes present three major sites accessible to the endoproteinase Glu-C, while the H1a subtype presents only one major site accessible to the proteinase. Partial N-terminal sequence of the different fragments obtained after proteolysis indicated that the two H1b and H1d subtypes were cleaved inside the globular domain (Glu-54,-75) and between the globular domain and the C-terminal one (Glu-116). The H1a subtype was only cleaved between the globular domain and the C-terminal tail (Glu-116), though Glu-54 and Glu-75 sites were present. These results would suggest some differences in the conformation of these proteins. Furthermore, the partial determined sequences of H1b and H1d showed 85% similarity to each other (the main differences were threonine residues instead of alanine residues in the C-terminal domain) while H1a was only 60% similar to H1b and H1d, for the sequences which aligned. The strongest differences between the H1a subtype and the two other subtypes were observed in the first amino acid residues of the C-terminal domain. The 117-126 amino acid residues (SKASTTKVTV) of H1a were quite different from those of H1b and H1d. This sequence, which showed a number of serine and threonine residues, was not found in any other histone sequence, after consultation with data bases. This H1a subtype was a minor component in adult liver (2.4%). As it was described in testis as a major component, testis histone H1 proteins were fractionated onto reverse-phase HPLC under the same conditions as those used for histone H1 proteins from liver. The pure testis H1a fraction was submitted to the endoproteinase Glu-C digestion. The pattern digestion was the same as that observed for liver H1a. The two 44-76 and 117-126 determined amino acid residues of H1a from testis were strictly identical to those of liver H1a. We demonstrate that H1a is the same protein in liver and testis and we give evidence for a specific motif SKASTTKVTV (117-126 residues) in the sequence of the C-terminal domain.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H Baubichon-Cortay
- Laboratoire de Physico-Chimie Biologique, LBTM CNRS, Université Claude Bernard Lyon I, France
| | | | | | | |
Collapse
|
33
|
Kremer EJ, Kistler WS. Analysis of the promoter for the gene encoding the testis-specific histone H1t in a somatic cell line: evidence for cell-cycle regulation and modulation by distant upstream sequences. Gene 1992; 110:167-73. [PMID: 1537553 DOI: 10.1016/0378-1119(92)90644-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gene H1t encodes a testis-specific variant of the H1 histone family expressed in pachytene spermatocytes during the meiotic phase of spermatogenesis. Fusions between various upstream fragments of the H1t gene and the chloramphenicol acetyltransferase-encoding reporter gene were analyzed in mouse L cells by both transient and permanent transfection. Expression of the minimal promoter [174 nucleotides (nt) upstream from the transcription start point] was enhanced by sequences extending to nt -693, but was reduced in constructs with kb of upstream sequence. Using synchronized cells, expression was at least twofold higher in growing than in inhibited cells. Thus, the H1t promoter is modulated both positively and negatively by distant upstream sequences, and it displays some of the S-phase-dependent character of a replication-dependent histone.
Collapse
Affiliation(s)
- E J Kremer
- Department of Chemistry, University of South Carolina, Columbia 29208
| | | |
Collapse
|
34
|
Smith FF, Tres LL, Kierszenbaum AL. Expression of testis-specific histone genes during the development of rat spermatogenic cells in vitro. Dev Dyn 1992; 193:49-57. [PMID: 1540705 DOI: 10.1002/aja.1001930108] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have used two radiolabeled oligonucleotide probes (TH2B and H1t), Northern blotting, two-dimensional gel electrophoresis, and autoradiography to study the temporal expression of TH2B and H1t testis-specific histone genes during the development of rat spermatogenic cells in vitro. These studies were carried out to determine whether meiotic prophase spermatocytes, known to synthesize in vivo TH2B and H1t histones among other histones, are capable of expressing these testis-specific genes in vitro during an extended period of time. We have found abundant TH2B and H1t mRNA steady state levels as well as newly-synthesized TH2B and H1t histones after 5 days of coculture. Northern blots reprobed with H1t-specific oligonucleotide showed that H1t mRNA remained prominent when TH2B mRNA started to decline after 8-12 days of coculture. Phase-contrast and transmission electron microscopy studies carried out throughout the course of the experiments demonstrated that the number of viable spermatogonia and meiotic prophase spermatocytes was relatively constant during 12 days of coculture. Spermatocytes, in a clone-like arrangement, remained attached to Sertoli cell surfaces and displayed subcellular features consistent with those observed in the intact seminiferous epithelium. Spermatogonia formed long, branching chains of interconnected cells. Results of this study indicate that spermatogenic cells in coculture with Sertoli cells express testis-specific histone genes for an extended period of time. Testis-specific histone gene expression in vitro should facilitate further studies for understanding the role of these histones in chromatin structure, transcription, and genetic recombination during male meiotic prophase.
Collapse
Affiliation(s)
- F F Smith
- Department of Cell Biology and Anatomical Sciences, City University of New York Medical School, New York 10031
| | | | | |
Collapse
|
35
|
Abstract
H1t is a testis-specific H1 histone variant that appears in germ cells during the meiotic prophase of mammalian spermatogenesis. Using a tritiated antisense RNA probe, H1t mRNA was identified by in situ hybridization in the mid and late pachytene spermatocytes found in seminiferous tubules of approximately stages VII to XIII.
Collapse
Affiliation(s)
- E J Kremer
- Department of Chemistry, University of South Carolina, Columbia 29208
| | | |
Collapse
|
36
|
Abstract
Histone H1 from erythrocytes of Japanese quail was resolved in a sodium dodecyl sulfate (SDS)-polyacrylamide gel into five fractions differing in apparent molecular weights. A polymorphism of histone H1.1, H1.2, and H1.3 bands was detected among quail individuals. While some birds possessed either a high (phenotype .3+) or a low (phenotype .3+/.3-) level of H1.3, at least half of the quail population lacked this H1 band (phenotype .3-). Appropriate genetic crosses demonstrated that H1.3 behaved as though it was coded by a gene with two codominant alleles at an autosomal locus. Using two-dimensional polyacrylamide gel electrophoresis (acid-urea followed by SDS gels), it was found that birds .3+ contained polypeptides H1.b1 and H1.b'1; birds .3-, polypeptides H1.b2 and H1.b'2 with lower apparent molecular weights; and birds .3+/.3-, both types of polypeptides in equal proportions. The H1.b2 + H1.b'2 complement was not discernible in SDS gels, for it migrated together with H1.c' within band H1.4. It was found that a small number of birds lacking the H1.2 band in SDS gels failed to express histone H1.a. Since birds with phenotype .2- with a defective allele of the gene H1.a were simultaneously lacking the H1.3 band, it seems that the imperfect allele of the H1.a gene might be closely linked to the alleles producing H1.b2 + H1.b'2.
Collapse
Affiliation(s)
- J Pałyga
- Department of Genetics, Educational University of Kielce, Poland
| |
Collapse
|
37
|
Grimes SR, Wolfe SA, Anderson JV, Stein GS, Stein JL. Structural and functional analysis of the rat testis-specific histone H1t gene. J Cell Biochem 1990; 44:1-17. [PMID: 2135396 DOI: 10.1002/jcb.240440102] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 6.86 kb rat genomic DNA fragment containing the testis-specific histone H1t gene and the histone H4t gene has been sequenced. S1-nuclease protection analyses of total cellular RNA from rat liver and testis showed that histone H1t mRNA was present only in testis. Examination of various highly enriched populations of rat testis cell types revealed that H1t mRNA was found exclusively in a fraction enriched in pachytene spermatocytes. When protein, DNA interactions within the proximal promoter region of the histone H1t gene were examined by electrophoretic mobility shift assays, only minor differences were found in mobility shift patterns of the H1t promoter in assays comparing binding of nuclear proteins from pachytene spermatocytes and early spermatids. However, major differences in binding were observed upon comparing nuclear proteins from rat pachytene spermatocytes to liver. Comparison of binding patterns of rat testis, rat hepatoma H4 cells, HeLa cells, and COS-1 cells also revealed dramatic differences. Transcriptional activity of the histone H1t promoter was examined by measuring H1t promoted chloramphenicol acetyltransferase (CAT) mRNA levels in transient expression assays in transfected rat hepatoma H4 cells, HeLa cells, and COS-1 cells. These assays revealed that the histone H1t promoted CAT gene functioned poorly in HeLa cells and COS-1 cells compared to expression with the parent SV40 promoted vector pSV2CAT. The H1t promoted CAT gene apparently did not work at all in transfected rat hepatoma H4 cells, which is consistent with testis germinal cell specific expression of the histone H1t gene.
Collapse
Affiliation(s)
- S R Grimes
- Veterans Administration Medical Center, Shreveport, Louisiana 71101-4295
| | | | | | | | | |
Collapse
|
38
|
Hochhuth C, Doenecke D. The expression of the histone H1 (0) gene in the human hepatoma cell line HepG2 is independent of the state of cell proliferation. Differentiation 1990; 43:212-9. [PMID: 2167251 DOI: 10.1111/j.1432-0436.1990.tb00448.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The H1 histone subtype H1 (0) is a characteristic component of the chromatin of several mammalian tissues. Since H1 (0) is synthesized in nondividing cells upon terminal differentiation, it has been mostly considered either as a prerequisite for or as a consequence of an arrest of DNA replication during the process of differentiation. In several H1 (0)-expressing systems studied until now, inducers of differentiation or inhibitors of DNA synthesis cause an increase of the ratio between H1 (0) and the other H1 proteins. We have studied the steady-state levels of histone H1 (0) mRNA under varied growth conditions in the human hepatoma cell lines HepG2 and Hep3B, and we show in the HepG2 system that H1 (0) is not confined to resting cells, that the H1 (0) gene appears to be expressed throughout the cell cycle and that established inducers of de novo H1 (0) synthesis fail to cause a further increase of the high H1 (0) level. This constitutive expression of H1 (0) appears to reflect the chromatin structure of the liver cells, from which the HepG2 hepatoblastoma cells initially may have evolved. In contrast to the situation in nondividing adult liver cells, the H1 (0) gene is transcribed in HepG2 at a high level, and this expression is compatible with DNA replication.
Collapse
Affiliation(s)
- C Hochhuth
- Institute of Biochemistry, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | |
Collapse
|
39
|
Cole KD, Kandala JC, Kremer E, Kistler WS. Isolation of a genomic clone encoding the rat histone variant, H1d. Gene X 1990; 89:265-9. [PMID: 2373370 DOI: 10.1016/0378-1119(90)90015-j] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammals contain a family of five closely related H1 histone variants (H1a-e) as well as two less closely related forms, H10 and H1t. We have sequenced a rat genomic clone that encodes one of the standard H1 variants. An RNA transcript of the gene was made with bacteriophage SP6 RNA polymerase and translated in a cell-free system. The protein synthesized in vitro was identified as variant H1d by its electrophoretic mobility.
Collapse
Affiliation(s)
- K D Cole
- Department of Chemistry, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
40
|
|
41
|
Kremling H, Luerssen H, Adham IM, Klemm U, Tsaousidou S, Engel W. Nucleotide sequences and expression of cDNA clones for boar and bull transition protein 1 and its evolutionary conservation in mammals. Differentiation 1989; 40:184-90. [PMID: 2777004 DOI: 10.1111/j.1432-0436.1989.tb00597.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During spermatogenesis, the nucleoproteins undergo several dramatic changes as the germinal cells differentiate to produce the mature sperm. With nuclear elongation and condensation, the histones are replaced by basic spermatidal transition proteins, which are themselves subsequently replaced by protamines. We have isolated cDNA clones for one of the transition proteins, namely for TP1, of bull and boar. It turned out that TP1 is a small, but very basic protein with 54 amino acids (21% arginine, 19% lysine) and is highly conserved during mammalian evolution at the nucleotide as well as at the amino-acid level. Gene expression is restricted to the mammalian testis, and the message first appears in round spermatids. Thus production of TP1 is an example of haploid gene expression in mammals. The size of the mRNA for TP1 was found to be identical in 11 different mammalian species at around 600 bp. Hybridization experiments were done with cDNAs from boar and bull, respectively. The positive results in all mammalian species give further evidence for the conservation of the TP1 gene during mammalian evolution and its functional importance in spermatid differentiation.
Collapse
Affiliation(s)
- H Kremling
- Institut für Humangenetik, Universität Göttingen, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
42
|
Quesada P, Farina B, Jones R. Poly(ADP-ribosylation) of nuclear proteins in rat testis correlates with active spermatogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1007:167-75. [PMID: 2493263 DOI: 10.1016/0167-4781(89)90035-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Poly(ADP-ribosylation) of nuclear proteins has been investigated in rat testis under different experimental conditions to determine whether it is associated with somatic or germinal cells. Isolated, intact nuclei were incubated with [14C]NAD and extracted sequentially with 5% HClO4 and 0.25 M HCl, and labelled soluble proteins were analysed by reverse-phase high-performance liquid chromatography and acetic acid-urea polyacrylamide gel electrophoresis (pH 2.9). Results show that in normal adult testis a major acceptor protein for poly(ADP-ribose) in HClO4 extracts is the tissue-specific histone, H1t. Core histones and three proteins (alpha, beta and gamma) with low mobility on acetic acid-urea gels were the major acceptors identified in HCl extracts. Poly(ADP-ribosylation) of all the aforementioned proteins is very low in isolated intact nuclei of testis from 8-day-old animals (only spermatogonia present in seminiferous tubules), increases significantly by 16-day (pachytene spermatocytes appear) and reaches adult proportions by 32 days (condensing spermatids present). In the nuclei from cryptorchid testes, poly(ADP-ribosylation) of nuclear proteins resembles 8-day-old testis. It is concluded that (a) poly(ADP-ribosylation) of nuclear proteins in rat testis is closely correlated with spermatogenesis and can be inferred that is particularly active in the early stages of meiosis; (b) testis-specific proteins (histone H1t and low mobility proteins, alpha, beta and gamma) are poly(ADP-ribosylated) to higher specific radioactivity than somatic histones.
Collapse
Affiliation(s)
- P Quesada
- Dipartimento di Chimica Organica e Biologica, Università di Napoli, Naples, Italy
| | | | | |
Collapse
|
43
|
Lennox RW, Cohen LH. Analysis of histone subtypes and their modified forms by polyacrylamide gel electrophoresis. Methods Enzymol 1989; 170:532-49. [PMID: 2770549 DOI: 10.1016/0076-6879(89)70063-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Kistler WS, Heidaran MA, Cole KD, Kandala JC, Showman RM. Genes for chromosomal proteins expressed before and after meiosis. Ann N Y Acad Sci 1987; 513:102-11. [PMID: 3445966 DOI: 10.1111/j.1749-6632.1987.tb25001.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cloned gene sequences have been isolated for two testis-specific chromosomal proteins, one of which, histone (H1t), appears during meiosis, whereas the other, transition protein 1 (TP1), appears only during the later steps of spermatid development. Aspects of the regulation of each gene have been examined. In the case of H1t, analysis of its promoter region shows that it contains excellent matches to each of the four sequence homologies identified for the usual somatic H1 variants, so that the factor(s) that restrict H1t expression to spermatocytes remain a mystery. In the case of TP1, a cDNA clone allowed identification of its message by Northern blots as well as by in situ hybridization. The message appears postmeiotically in late round spermatids but is translationally repressed until the spermatid nucleus begins to condense.
Collapse
Affiliation(s)
- W S Kistler
- Department of Chemistry, University of South Carolina, Columbia 29208
| | | | | | | | | |
Collapse
|
45
|
Heidaran MA, Kistler WS. Transcriptional and translational control of the message for transition protein 1, a major chromosomal protein of mammalian spermatids. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45202-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Rao B, Rao M. DNase I site mapping and micrococcal nuclease digestion of pachytene chromatin reveal novel structural features. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61216-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Abstract
We designed a strategy to select genomic clones of mouse replication-independent H3.3 histone genes. We obtained three clones which met our selection criteria for being H3.3 genes. Upon sequencing two of these clones we found that they were unlike previously isolated chicken H3.3 clones: they code for several unpredicted amino acid substitutions and contain no introns in the coding regions. We showed by S1 nuclease assays that these genes are protected by mRNAs that have expression characteristics of H3.3 mRNA. The protection data and nucleotide sequence analysis show that the H3.3 transcripts can be processed at one of four cleavage/polyadenylation sites. We show that these genes probably evolved through reverse transcription intermediates, and are processed pseudogenes which are no longer under selective pressure. The 5' and 3' transcribed, nontranslated sequences show extensive homology to those of a human cDNA clone, and we suggest that these sequences may be required for appropriate regulation of expression of H3.3 genes.
Collapse
Affiliation(s)
- S E Wellman
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216
| | | | | | | | | |
Collapse
|
48
|
Cole KD, Kandala JC, Kistler WS. Isolation of the gene for the testis-specific H1 histone variant H1t. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38371-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
49
|
Abstract
A 6-12S RNA fraction has been isolated following sucrose gradient fractionation of mouse testis RNA, and further resolved into poly A+ and poly A- RNA fractions by oligo-(dt)-cellulose chromatography. Polyacrylamide gel electrophoresis of products formed in a reticulocyte lysate-dependent cell-free translation system has enabled identification of histone variants, H1t, H2S, H2A . X, an H4-like protein and a low Mr protein (presumably TP and/or protamine). Cell-free synthesis of a number of these histone variants appears to be directed by poly A+ mRNAs.
Collapse
|
50
|
Cole KD, York RG, Kistler WS. Sequence of the amino terminal half of rat testis-specific histone variant H1t. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 869:223-9. [PMID: 3947637 DOI: 10.1016/0167-4838(86)90062-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
H1t is a testis-specific H1 histone variant that appears during the meiotic phase of spermatogenesis in mammals. The sequence of the first 108 residues of rat H1t have been determined and compared to boar H1t and also to a consensus sequence characteristic of standard somatic H1 variants. The two versions of H1t share a common pattern of divergence from the standard somatic consensus. For example, they both share many substitutions within the H1 globular region (residues 40-110), a portion of the molecule that is virtually invariant among the common somatic variants. Within the entire region sequenced, there are 28 shared locations where both forms of H1t differ from the somatic consensus. However, identical substitutions occur at only 15 of these sites, and each protein also differs from the consensus at five (boar) or ten (rat) additional locations that are not shared. These results establish that H1t from diverse sources shows a characteristic pattern of divergence from the sequence of standard somatic H1 proteins. However, it is also clear that there is great tolerance for species-specific variation within this H1 class.
Collapse
|