1
|
Polo Rivera C, Deegan TD, Labib KPM. CMG helicase disassembly is essential and driven by two pathways in budding yeast. EMBO J 2024; 43:3818-3845. [PMID: 39039287 PMCID: PMC11405719 DOI: 10.1038/s44318-024-00161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
The CMG helicase is the stable core of the eukaryotic replisome and is ubiquitylated and disassembled during DNA replication termination. Fungi and animals use different enzymes to ubiquitylate the Mcm7 subunit of CMG, suggesting that CMG ubiquitylation arose repeatedly during eukaryotic evolution. Until now, it was unclear whether cells also have ubiquitin-independent pathways for helicase disassembly and whether CMG disassembly is essential for cell viability. Using reconstituted assays with budding yeast CMG, we generated the mcm7-10R allele that compromises ubiquitylation by SCFDia2. mcm7-10R delays helicase disassembly in vivo, driving genome instability in the next cell cycle. These data indicate that defective CMG ubiquitylation explains the major phenotypes of cells lacking Dia2. Notably, the viability of mcm7-10R and dia2∆ is dependent upon the related Rrm3 and Pif1 DNA helicases that have orthologues in all eukaryotes. We show that Rrm3 acts during S-phase to disassemble old CMG complexes from the previous cell cycle. These findings indicate that CMG disassembly is essential in yeast cells and suggest that Pif1-family helicases might have mediated CMG disassembly in ancestral eukaryotes.
Collapse
Affiliation(s)
- Cristian Polo Rivera
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Tom D Deegan
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Karim P M Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
2
|
Hong Z, Byrd AK, Gao J, Das P, Tan VQ, Malone EG, Osei B, Marecki JC, Protacio RU, Wahls WP, Raney KD, Song H. Eukaryotic Pif1 helicase unwinds G-quadruplex and dsDNA using a conserved wedge. Nat Commun 2024; 15:6104. [PMID: 39030241 PMCID: PMC11275212 DOI: 10.1038/s41467-024-50575-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/16/2024] [Indexed: 07/21/2024] Open
Abstract
G-quadruplexes (G4s) formed by guanine-rich nucleic acids induce genome instability through impeding DNA replication fork progression. G4s are stable DNA structures, the unfolding of which require the functions of DNA helicases. Pif1 helicase binds preferentially to G4 DNA and plays multiple roles in maintaining genome stability, but the mechanism by which Pif1 unfolds G4s is poorly understood. Here we report the co-crystal structure of Saccharomyces cerevisiae Pif1 (ScPif1) bound to a G4 DNA with a 5' single-stranded DNA (ssDNA) segment. Unlike the Thermus oshimai Pif1-G4 structure, in which the 1B and 2B domains confer G4 recognition, ScPif1 recognizes G4 mainly through the wedge region in the 1A domain that contacts the 5' most G-tetrad directly. A conserved Arg residue in the wedge is required for Okazaki fragment processing but not for mitochondrial function or for suppression of gross chromosomal rearrangements. Multiple substitutions at this position have similar effects on resolution of DNA duplexes and G4s, suggesting that ScPif1 may use the same wedge to unwind G4 and dsDNA. Our results reveal the mechanism governing dsDNA unwinding and G4 unfolding by ScPif1 helicase that can potentially be generalized to other eukaryotic Pif1 helicases and beyond.
Collapse
Affiliation(s)
- Zebin Hong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Poulomi Das
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Vanessa Qianmin Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore
| | - Emory G Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bertha Osei
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Haiwei Song
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Republic of Singapore.
| |
Collapse
|
3
|
Lama-Diaz T, Blanco MG. Alternative translation initiation by ribosomal leaky scanning produces multiple isoforms of the Pif1 helicase. Nucleic Acids Res 2024; 52:6928-6944. [PMID: 38783074 PMCID: PMC11229318 DOI: 10.1093/nar/gkae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In budding yeast, the integrity of both the nuclear and mitochondrial genomes relies on dual-targeted isoforms of the conserved Pif1 helicase, generated by alternative translation initiation (ATI) of PIF1 mRNA from two consecutive AUG codons flanking a mitochondrial targeting signal. Here, we demonstrate that ribosomal leaky scanning is the specific ATI mechanism that produces not only these, but also novel, previously uncharacterized Pif1 isoforms. Both in-frame, downstream AUGs as well as near-cognate start codons contribute to the generation of these alternative isoforms. This has crucial implications for the rational design of genuine separation-of-function alleles and provides an explanation for the suboptimal behaviour of the widely employed mitochondrial- (pif1-m1) and nuclear-deficient (pif1-m2) alleles, with mutations in the first or second AUG codon, respectively. We have taken advantage of this refined model to develop improved versions of these alleles, which will serve as valuable tools to elucidate novel functions of this helicase and to disambiguate previously described genetic interactions of PIF1 in the context of nuclear and mitochondrial genome stability.
Collapse
Affiliation(s)
- Tomas Lama-Diaz
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| | - Miguel G Blanco
- Department of Biochemistry and Molecular Biology, CIMUS, Universidade de Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, A Coruña 15782, Spain
| |
Collapse
|
4
|
Mustafi M, Kwon Y, Sung P, Greene EC. Single-molecule visualization of Pif1 helicase translocation on single-stranded DNA. J Biol Chem 2023; 299:104817. [PMID: 37178921 PMCID: PMC10279920 DOI: 10.1016/j.jbc.2023.104817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Pif1 is a broadly conserved helicase that is essential for genome integrity and participates in numerous aspects of DNA metabolism, including telomere length regulation, Okazaki fragment maturation, replication fork progression through difficult-to-replicate sites, replication fork convergence, and break-induced replication. However, details of its translocation properties and the importance of amino acids residues implicated in DNA binding remain unclear. Here, we use total internal reflection fluorescence microscopy with single-molecule DNA curtain assays to directly observe the movement of fluorescently tagged Saccharomyces cerevisiae Pif1 on single-stranded DNA (ssDNA) substrates. We find that Pif1 binds tightly to ssDNA and translocates very rapidly (∼350 nucleotides per second) in the 5'→3' direction over relatively long distances (∼29,500 nucleotides). Surprisingly, we show the ssDNA-binding protein replication protein A inhibits Pif1 activity in both bulk biochemical and single-molecule measurements. However, we demonstrate Pif1 can strip replication protein A from ssDNA, allowing subsequent molecules of Pif1 to translocate unimpeded. We also assess the functional attributes of several Pif1 mutations predicted to impair contact with the ssDNA substrate. Taken together, our findings highlight the functional importance of these amino acid residues in coordinating the movement of Pif1 along ssDNA.
Collapse
Affiliation(s)
- Mainak Mustafi
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
5
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
6
|
Li J, Ma J, Kumar V, Fu H, Xu C, Wang S, Jia Q, Fan Q, Xi X, Li M, Liu H, Lu Y. Identification of flexible Pif1-DNA interactions and their impacts on enzymatic activities. Nucleic Acids Res 2022; 50:7002-7012. [PMID: 35748877 PMCID: PMC9262596 DOI: 10.1093/nar/gkac529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Flexible regions in biomolecular complexes, although crucial to understanding structure-function relationships, are often unclear in high-resolution crystal structures. In this study, we showed that single-molecule techniques, in combination with computational modeling, can characterize dynamic conformations not resolved by high-resolution structure determination methods. Taking two Pif1 helicases (ScPif1 and BsPif1) as model systems, we found that, besides a few tightly bound nucleotides, adjacent solvent-exposed nucleotides interact dynamically with the helicase surfaces. The whole nucleotide segment possessed curved conformations and covered the two RecA-like domains of the helicases, which are essential for the inch-worm mechanism. The synergetic approach reveals that the interactions between the exposed nucleotides and the helicases could be reduced by large stretching forces or electrostatically shielded with high-concentration salt, subsequently resulting in reduced translocation rates of the helicases. The dynamic interactions between the exposed nucleotides and the helicases underlay the force- and salt-dependences of their enzymatic activities. The present single-molecule based approach complements high-resolution structural methods in deciphering the molecular mechanisms of the helicases.
Collapse
Affiliation(s)
| | | | | | - Hang Fu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhua Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Jia
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qinkai Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuguang Xi
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette F-91190, France
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiguang Liu
- Correspondence may also be addressed to Haiguang Liu. Tel: +86 10 56981816;
| | - Ying Lu
- To whom correspondence should be addressed. Tel: +86 10 82648122;
| |
Collapse
|
7
|
Thompson MD, Malone EG, Byrd AK. Monitoring helicase-catalyzed unwinding of multiple duplexes simultaneously. Methods Enzymol 2022; 672:1-27. [PMID: 35934470 PMCID: PMC9397138 DOI: 10.1016/bs.mie.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Helicases catalyze the unwinding of duplex nucleic acids to aid a variety of cellular processes. Although helicases unwind duplex DNA in the same direction that they translocate on single-stranded DNA, forked duplexes provide opportunities to monitor unwinding by helicase monomers bound to each arm of the fork. The activity of the helicase bound to the displaced strand can be discerned alongside the helicase bound to the translocase strand using a forked substrate with accessible duplexes on both strands labeled with different fluorophores. In order to quantify the effect of protein-protein interactions on the activity of multiple monomers of the Bacteroides fragilis Pif1 helicase bound to separate strands of a forked DNA junction, an ensemble gel-based assay for monitoring simultaneous duplex unwinding was developed (Su et al., 2019). Here, the use of that assay is described for measuring the total product formation and rate constants of product formation of multiple duplexes on a single nucleic acid substrate. Use of this assay may aid characterization of protein-protein interactions between multiple helicase monomers at forked nucleic acid junctions and can assist with the characterization of helicase action on the displaced strand of forked duplexes.
Collapse
Affiliation(s)
- Matthew D Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Emory G Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
8
|
Abstract
The gene encoding the Pif1 helicase was first discovered in a Saccharomyces cerevisiae genetic screen as a mutant that reduces recombination between mitochondrial respiratory mutants and was subsequently rediscovered in a screen for genes affecting the telomere length in the nucleus. It is now known that Pif1 is involved in numerous aspects of DNA metabolism. All known functions of Pif1 rely on binding to DNA substrates followed by ATP hydrolysis, coupling the energy released to translocation along DNA to unwind duplex DNA or alternative DNA secondary structures. The interaction of Pif1 with higher-order DNA structures, like G-quadruplex DNA, as well as the length of single-stranded (ss)DNA necessary for Pif1 loading have been widely studied. Here, to test the effects of ssDNA length, sequence, and structure on Pif1's biochemical activities in vitro, we used a suite of oligonucleotide-based substrates to perform a basic characterization of Pif1 ssDNA binding, ATPase activity, and helicase activity. Using recombinant, untagged S. cerevisiae Pif1, we found that Pif1 preferentially binds to structured G-rich ssDNA, but the preferred binding substrates failed to maximally stimulate ATPase activity. In helicase assays, significant DNA unwinding activity was detected at Pif1 concentrations as low as 250 pM. Helicase assays also demonstrated that Pif1 most efficiently unwinds DNA fork substrates with unstructured ssDNA tails. As the chemical step size of Pif1 has been determined to be 1 ATP per translocation or unwinding event, this implies that the highly structured DNA inhibits conformational changes in Pif1 that couple ATP hydrolysis to DNA translocation and unwinding.
Collapse
Affiliation(s)
- David G Nickens
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Matthew L Bochman
- Molecular & Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Meir A, Greene EC. Srs2 and Pif1 as Model Systems for Understanding Sf1a and Sf1b Helicase Structure and Function. Genes (Basel) 2021; 12:1319. [PMID: 34573298 PMCID: PMC8469786 DOI: 10.3390/genes12091319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Helicases are enzymes that convert the chemical energy stored in ATP into mechanical work, allowing them to move along and manipulate nucleic acids. The helicase superfamily 1 (Sf1) is one of the largest subgroups of helicases and they are required for a range of cellular activities across all domains of life. Sf1 helicases can be further subdivided into two classes called the Sf1a and Sf1b helicases, which move in opposite directions on nucleic acids. The results of this movement can range from the separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. Here, we describe the characteristics of the Sf1a helicase Srs2 and the Sf1b helicase Pif1, both from the model organism Saccharomyces cerevisiae, focusing on the roles that they play in homologous recombination, a DNA repair pathway that is necessary for maintaining genome integrity.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
10
|
Dai YX, Chen WF, Liu NN, Teng FY, Guo HL, Hou XM, Dou SX, Rety S, Xi XG. Structural and functional studies of SF1B Pif1 from Thermus oshimai reveal dimerization-induced helicase inhibition. Nucleic Acids Res 2021; 49:4129-4143. [PMID: 33784404 PMCID: PMC8053095 DOI: 10.1093/nar/gkab188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/06/2023] Open
Abstract
Pif1 is an SF1B helicase that is evolutionarily conserved from bacteria to humans and plays multiple roles in maintaining genome stability in both nucleus and mitochondria. Though highly conserved, Pif1 family harbors a large mechanistic diversity. Here, we report crystal structures of Thermus oshimai Pif1 (ToPif1) alone and complexed with partial duplex or single-stranded DNA. In the apo state and in complex with a partial duplex DNA, ToPif1 is monomeric with its domain 2B/loop3 adopting a closed and an open conformation, respectively. When complexed with a single-stranded DNA, ToPif1 forms a stable dimer with domain 2B/loop3 shifting to a more open conformation. Single-molecule and biochemical assays show that domain 2B/loop3 switches repetitively between the closed and open conformations when a ToPif1 monomer unwinds DNA and, in contrast with other typical dimeric SF1A helicases, dimerization has an inhibitory effect on its helicase activity. This mechanism is not general for all Pif1 helicases but illustrates the diversity of regulation mechanisms among different helicases. It also raises the possibility that although dimerization results in activation for SF1A helicases, it may lead to inhibition for some of the other uncharacterized SF1B helicases, an interesting subject warranting further studies.
Collapse
Affiliation(s)
- Yang-Xue Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang-Yuan Teng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Lei Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xi-Miao Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007, Lyon, France
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D'Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France
| |
Collapse
|
11
|
Ononye OE, Sausen CW, Bochman ML, Balakrishnan L. Dynamic regulation of Pif1 acetylation is crucial to the maintenance of genome stability. Curr Genet 2020; 67:85-92. [PMID: 33079209 DOI: 10.1007/s00294-020-01116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/21/2023]
Abstract
PIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth. This suggests that PIF1 family helicases must be subject to tight regulation in vivo to direct their activities to where and when they are needed, as well as to maintain those activities at proper homeostatic levels. Previous work shows that C-terminal phosphorylation of S. cerevisiae Pif1 regulates its telomere maintenance activity, and we recently identified that Pif1 is also regulated by lysine acetylation. The over-expression toxicity of Pif1 was exacerbated in cells lacking the Rpd3 lysine deacetylase, but mutation of the NuA4 lysine acetyltransferase subunit Esa1 ameliorated this toxicity. Using recombinant proteins, we found that acetylation stimulated the DNA binding affinity, ATPase activity, and DNA unwinding activities of Pif1. All three domains of the helicase were targets of acetylation in vitro, and multiple lines of evidence suggest that acetylation drives a conformational change in the N-terminal domain of Pif1 that impacts this stimulation. It is currently unclear what triggers lysine acetylation of Pif1 and how this modification impacts the many in vivo functions of the helicase, but future work promises to shed light on how this protein is tightly regulated within the cell.
Collapse
Affiliation(s)
- Onyekachi E Ononye
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA
| | - Christopher W Sausen
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA.
| | - Lata Balakrishnan
- Department of Biology, School of Science, Indiana University Purdue University Indianapolis, Indianapolis, USA.
| |
Collapse
|
12
|
Wang J, Zhu X, Ying P, Zhu Y. PIF1 Affects the Proliferation and Apoptosis of Cervical Cancer Cells by Influencing TERT. Cancer Manag Res 2020; 12:7827-7835. [PMID: 32943924 PMCID: PMC7468502 DOI: 10.2147/cmar.s265336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction Cervical cancer is a common malignancy in female and it is a serious disease threatening women’s lives. We aimed to explore whether PIF1 helicase expression could affect cell proliferation and apoptosis, and whether its mechanisms were related to the expression and activity of TERT. Methods Western blot analysis was used to detect the expressions of PIF1 and TERT in End1/E6E7, Hela, SiHa, Ca-Ski and C-33A cells and apoptosis-related proteins (Bax, Bcl-2 and Caspase-3). RT-qPCR and Western blot analysis determined the expressions of PIF1 and TERT after transfection. After transfection or cycloastragenol (CAG) treatment, the proliferation, apoptosis, cell cycle and telomerase TERT activity were analyzed by CCK-8 assay, flow cytometry analysis and ELISA assay. Co-immunoprecipitation assay was used to verify the interactions between PIF1 and TERT. Results The expressions of PIF1 and TERT in End1/E6E7, Hela, SiHa, Ca-Ski and C-33A cells were increased. As PIF1 and TERT expressions in C-33A cells showed the minimum increase, C-33A cells were chosen for the next study. PIF1 interference inhibited the proliferation, decreased the ratio of G2/M phase and promoted apoptosis of transfected cells, and PIF1 interference promoted the expressions of Bax and Caspase-3 and suppressed the Bcl-2 expression. Furthermore, PIF1 interference down-regulated the telomerase activity. The effect of PIF1 overexpression was opposite to that of PIF1 interference. Co-immunoprecipitation assay demonstrated that PIF1 could combine with TERT. CAG treatment effectively reversed the effect of PIF1 interference on proliferation, cycle and apoptosis of C-33A cells transfected with shRNA-PIF1. Moreover, CAG treatment increased the expressions of PIF1 and TERT. Discussion PIF1 helicase could promote the proliferation and suppress the apoptosis of cervical cancer cells by down-regulating the activity of telomerase TERT.
Collapse
Affiliation(s)
- Jiancai Wang
- Department of Gynaecology and Obstetrics, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, People's Republic of China
| | - Xiaoyan Zhu
- Department of Gynaecology and Obstetrics, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, People's Republic of China
| | - Pian Ying
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, People's Republic of China
| | - Yingping Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, People's Republic of China
| |
Collapse
|
13
|
Zacheja T, Toth A, Harami GM, Yang Q, Schwindt E, Kovács M, Paeschke K, Burkovics P. Mgs1 protein supports genome stability via recognition of G-quadruplex DNA structures. FASEB J 2020; 34:12646-12662. [PMID: 32748509 DOI: 10.1096/fj.202000886r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/19/2020] [Accepted: 07/10/2020] [Indexed: 01/02/2023]
Abstract
The integrity of the genetic material is crucial for every organism. One intrinsic attack to genome stability is stalling of the replication fork which can result in DNA breakage. Several factors, such as DNA lesions or the formation of stable secondary structures (eg, G-quadruplexes) can lead to replication fork stalling. G-quadruplexes (G4s) are well-characterized stable secondary DNA structures that can form within specific single-stranded DNA sequence motifs and have been shown to block/pause the replication machinery. In most genomes several helicases have been described to regulate G4 unfolding to preserve genome integrity, however, different experiments raise the hypothesis that processing of G4s during DNA replication is more complex and requires additional, so far unknown, proteins. Here, we show that the Saccharomyces cerevisiae Mgs1 protein robustly binds to G4 structures in vitro and preferentially acts at regions with a strong potential to form G4 structures in vivo. Our results suggest that Mgs1 binds to G4-forming sites and has a role in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Theresa Zacheja
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Agnes Toth
- Biological Research Centre, Institute of Genetics, Szeged, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gabor M Harami
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Qianlu Yang
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Eike Schwindt
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Mihály Kovács
- ELTE-MTA Momentum Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Katrin Paeschke
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany.,Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Peter Burkovics
- Biological Research Centre, Institute of Genetics, Szeged, Hungary
| |
Collapse
|
14
|
Xue ZY, Wu WQ, Zhao XC, Kumar A, Ran X, Zhang XH, Zhang Y, Guo LJ. Single-molecule probing the duplex and G4 unwinding patterns of a RecD family helicase. Int J Biol Macromol 2020; 164:902-910. [PMID: 32693146 DOI: 10.1016/j.ijbiomac.2020.07.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
RecD family helicases play an important role in prokaryotic genome stability and serve as the structural models for studying superfamily 1B (SF1B) helicases. However, RecD-catalyzed duplex DNA unwinding behavior and the underlying mechanism are still elusive. RecD family helicases share a common proto-helicase with eukaryotic Pif1 family helicases, which are well known for their outstanding G-quadruplex (G4) unwinding ability. However, there are still controversial points as to whether and how RecD helicases unfold G4 structures. Here, single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) were used to study Deinococcus radiodurans RecD2 (DrRecD2)-mediated duplex DNA unwinding and resolution of G4 structures. A symmetric, repetitive unwinding phenomenon was observed on duplex DNA, revealed from the strand switch and translocation of one monomer. Furthermore, we found that DrRecD2 was able to unwind both parallel and antiparallel G4 structures without obvious topological preferences. Surprisingly, the unwinding properties of RecD on duplex and G4 DNA are different from those of Pif1. The findings provide an example, in which the patterns of two molecules derived from a common ancestor deviate during evolution, and they are of significance for understanding the unwinding mechanism and function of SF1B helicases.
Collapse
Affiliation(s)
- Zhen-Yong Xue
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Wen-Qiang Wu
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China.
| | - Xiao-Cong Zhao
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Arvind Kumar
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Xia Ran
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Xing-Hua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, China
| | - Yu Zhang
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Li-Jun Guo
- School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475001, China.
| |
Collapse
|
15
|
Lu C, Le S, Chen J, Byrd AK, Rhodes D, Raney KD, Yan J. Direct quantification of the translocation activities of Saccharomyces cerevisiae Pif1 helicase. Nucleic Acids Res 2019; 47:7494-7501. [PMID: 31216020 PMCID: PMC6698741 DOI: 10.1093/nar/gkz541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/10/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
Saccharomyces cerevisiae Pif1 (ScPif1) is known as an ATP-dependent DNA helicase that plays critical roles in a number of important biological processes such as DNA replication, telomere maintenance and genome stability maintenance. Besides its DNA helicase activity, ScPif1 is also known as a single-stranded DNA (ssDNA) translocase, while how ScPif1 translocates on ssDNA is unclear. Here, by measuring the translocation activity of individual ScPif1 molecules on ssDNA extended by mechanical force, we identified two distinct types of ssDNA translocation. In one type, ScPif1 moves along the ssDNA track with a rate of ∼140 nt/s in 100 μM ATP, whereas in the other type, ScPif1 is immobilized to a fixed location of ssDNA and generates ssDNA loops against force. Between the two, the mobile translocation is the major form at nanomolar ScPif1 concentrations although patrolling becomes more frequent at micromolar concentrations. Together, our results suggest that ScPif1 translocates on extended ssDNA in two distinct modes, primarily in a ‘mobile’ manner.
Collapse
Affiliation(s)
- Chen Lu
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542
| | - Jin Chen
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Science, Arkansas 72205, USA
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, Singapore 637551
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Science, Arkansas 72205, USA
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557.,Department of Physics, National University of Singapore, Singapore 117542
| |
Collapse
|
16
|
Sparks MA, Singh SP, Burgers PM, Galletto R. Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes. Nucleic Acids Res 2019; 47:8595-8605. [PMID: 31340040 PMCID: PMC7145523 DOI: 10.1093/nar/gkz608] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023] Open
Abstract
G-quadruplexes (G4s) are stable secondary structures that can lead to the stalling of replication forks and cause genomic instability. Pif1 is a 5′ to 3′ helicase, localized to both the mitochondria and nucleus that can unwind G4s in vitro and prevent fork stalling at G4 forming sequences in vivo. Using in vitro primer extension assays, we show that both G4s and stable hairpins form barriers to nuclear and mitochondrial DNA polymerases δ and γ, respectively. However, while single-stranded DNA binding proteins (SSBs) readily promote replication through hairpins, SSBs are only effective in promoting replication through weak G4s. Using a series of G4s with increasing stabilities, we reveal a threshold above which G4 through-replication is inhibited even with SSBs present, and Pif1 helicase is required. Because Pif1 moves along the template strand with a 5′-3′-directionality, head-on collisions between Pif1 and polymerase δ or γ result in the stimulation of their 3′-exonuclease activity. Both nuclear RPA and mitochondrial SSB play a protective role during DNA replication by preventing excessive DNA degradation caused by the helicase-polymerase conflict.
Collapse
Affiliation(s)
- Melanie A Sparks
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
17
|
Su N, Byrd AK, Bharath SR, Yang O, Jia Y, Tang X, Ha T, Raney KD, Song H. Structural basis for DNA unwinding at forked dsDNA by two coordinating Pif1 helicases. Nat Commun 2019; 10:5375. [PMID: 31772234 PMCID: PMC6879534 DOI: 10.1038/s41467-019-13414-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022] Open
Abstract
Pif1 plays multiple roles in maintaining genome stability and preferentially unwinds forked dsDNA, but the mechanism by which Pif1 unwinds forked dsDNA remains elusive. Here we report the structure of Bacteroides sp Pif1 (BaPif1) in complex with a symmetrical double forked dsDNA. Two interacting BaPif1 molecules are bound to each fork of the partially unwound dsDNA, and interact with the 5′ arm and 3′ ss/dsDNA respectively. Each of the two BaPif1 molecules is an active helicase and their interaction may regulate their helicase activities. The binding of BaPif1 to the 5′ arm causes a sharp bend in the 5′ ss/dsDNA junction, consequently breaking the first base-pair. BaPif1 bound to the 3′ ss/dsDNA junction impacts duplex unwinding by stabilizing the unpaired first base-pair and engaging the second base-pair poised for breaking. Our results provide an unprecedented insight into how two BaPif1 coordinate with each other to unwind the forked dsDNA. Pif1 plays multiple roles in maintaining genome stability and preferentially unwinds forked dsDNA. Here the authors solve the structure of Bacteroides sp Pif1 (BaPif1) in complex with a symmetrical double forked dsDNA and provide unprecedented insights into forked dsDNA unwinding by BaPif1.
Collapse
Affiliation(s)
- Nannan Su
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, 725N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Yu Jia
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, 725N. Wolfe Street, Baltimore, MD, 21205, USA.
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| | - Haiwei Song
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China. .,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
18
|
Lu KY, Chen WF, Rety S, Liu NN, Wu WQ, Dai YX, Li D, Ma HY, Dou SX, Xi XG. Insights into the structural and mechanistic basis of multifunctional S. cerevisiae Pif1p helicase. Nucleic Acids Res 2019; 46:1486-1500. [PMID: 29202194 PMCID: PMC5814829 DOI: 10.1093/nar/gkx1217] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/23/2017] [Indexed: 12/23/2022] Open
Abstract
The Saccharomyces cerevisiae Pif1 protein (ScPif1p) is the prototypical member of the Pif1 family of DNA helicases. ScPif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and suppresses genome instability at G-quadruplex motifs. Here, we report the crystal structures of a truncated ScPif1p (ScPif1p237−780) in complex with different ssDNAs. Our results have revealed that a yeast-specific insertion domain protruding from the 2B domain folds as a bundle bearing an α-helix, α16. The α16 helix regulates the helicase activities of ScPif1p through interactions with the previously identified loop3. Furthermore, a biologically relevant dimeric structure has been identified, which can be further specifically stabilized by G-quadruplex DNA. Basing on structural analyses and mutational studies with DNA binding and unwinding assays, a potential G-quadruplex DNA binding site in ScPif1p monomers is suggested. Our results also show that ScPif1p uses the Q-motif to preferentially hydrolyze ATP, and a G-rich tract is preferentially recognized by more residues, consistent with previous biochemical observations. These findings provide a structural and mechanistic basis for understanding the multifunctional ScPif1p.
Collapse
Affiliation(s)
- Ke-Yu Lu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Stephane Rety
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 allée d'Italie Site Jacques Monod, F-69007 Lyon, France
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wen-Qiang Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hai-Yun Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Université Paris-Saclay, Centre National de la Recherche Scientifique, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|
19
|
García-Rodríguez N, Wong RP, Ulrich HD. The helicase Pif1 functions in the template switching pathway of DNA damage bypass. Nucleic Acids Res 2019; 46:8347-8356. [PMID: 30107417 PMCID: PMC6144865 DOI: 10.1093/nar/gky648] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Replication of damaged DNA is challenging because lesions in the replication template frequently interfere with an orderly progression of the replisome. In this situation, complete duplication of the genome is ensured by the action of DNA damage bypass pathways effecting either translesion synthesis by specialized, damage-tolerant DNA polymerases or a recombination-like mechanism called template switching (TS). Here we report that budding yeast Pif1, a helicase known to be involved in the resolution of complex DNA structures as well as the maturation of Okazaki fragments during replication, contributes to DNA damage bypass. We show that Pif1 expands regions of single-stranded DNA, so-called daughter-strand gaps, left behind the replication fork as a consequence of replisome re-priming. This function requires interaction with the replication clamp, proliferating cell nuclear antigen, facilitating its recruitment to damage sites, and complements the activity of an exonuclease, Exo1, in the processing of post-replicative daughter-strand gaps in preparation for TS. Our results thus reveal a novel function of a conserved DNA helicase that is known as a key player in genome maintenance.
Collapse
Affiliation(s)
| | - Ronald P Wong
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
20
|
Pohl TJ, Zakian VA. Pif1 family DNA helicases: A helpmate to RNase H? DNA Repair (Amst) 2019; 84:102633. [PMID: 31231063 DOI: 10.1016/j.dnarep.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 01/21/2023]
Abstract
An R-loop is a structure that forms when an RNA transcript stays bound to the DNA strand that encodes it and leaves the complementary strand exposed as a loop of single stranded DNA. R-loops accumulate when the processing of RNA transcripts is impaired. The failure to remove these RNA-DNA hybrids can lead to replication fork stalling and genome instability. Resolution of R-loops is thought to be mediated mainly by RNase H enzymes through the removal and degradation of the RNA in the hybrid. However, DNA helicases can also dismantle R-loops by displacing the bound RNA. In particular, the Pif1 family DNA helicases have been shown to regulate R-loop formation at specific genomic loci, such as tRNA genes and centromeres. Here we review the roles of Pif1 family helicases in vivo and in vitro and discuss evidence that Pif1 family helicases act on RNA-DNA hybrids and highlight their potential roles in complementing RNase H for R-loop resolution.
Collapse
Affiliation(s)
- Thomas J Pohl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
21
|
Dehghani-Tafti S, Levdikov V, Antson AA, Bax B, Sanders CM. Structural and functional analysis of the nucleotide and DNA binding activities of the human PIF1 helicase. Nucleic Acids Res 2019; 47:3208-3222. [PMID: 30698796 PMCID: PMC6451128 DOI: 10.1093/nar/gkz028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 01/06/2023] Open
Abstract
Pif1 is a multifunctional helicase and DNA processing enzyme that has roles in genome stability. The enzyme is conserved in eukaryotes and also found in some prokaryotes. The functions of human PIF1 (hPIF1) are also critical for survival of certain tumour cell lines during replication stress, making it an important target for cancer therapy. Crystal structures of hPIF1 presented here explore structural events along the chemical reaction coordinate of ATP hydrolysis at an unprecedented level of detail. The structures for the apo as well as the ground and transition states reveal conformational adjustments in defined protein segments that can trigger larger domain movements required for helicase action. Comparisons with the structures of yeast and bacterial Pif1 reveal a conserved ssDNA binding channel in hPIF1 that we show is critical for single-stranded DNA binding during unwinding, but not the binding of G quadruplex DNA. Mutational analysis suggests that while the ssDNA-binding channel is important for helicase activity, it is not used in DNA annealing. Structural differences, in particular in the DNA strand separation wedge region, highlight significant evolutionary divergence of the human PIF1 protein from bacterial and yeast orthologues.
Collapse
Affiliation(s)
- Saba Dehghani-Tafti
- Department of Oncology and Metabolism, Academic Unit of Molecular Oncology, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, UK
| | - Vladimir Levdikov
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Ben Bax
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
- Medicines Discovery Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Cyril M Sanders
- Department of Oncology and Metabolism, Academic Unit of Molecular Oncology, University of Sheffield, Beech Hill Rd., Sheffield S10 2RX, UK
| |
Collapse
|
22
|
Byrd AK, Bell MR, Raney KD. Pif1 helicase unfolding of G-quadruplex DNA is highly dependent on sequence and reaction conditions. J Biol Chem 2018; 293:17792-17802. [PMID: 30257865 DOI: 10.1074/jbc.ra118.004499] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
In addition to unwinding double-stranded nucleic acids, helicase activity can also unfold noncanonical structures such as G-quadruplexes. We previously characterized Pif1 helicase catalyzed unfolding of parallel G-quadruplex DNA. Here we characterized unfolding of the telomeric G-quadruplex, which can fold into antiparallel and mixed hybrid structures and found significant differences. Telomeric DNA sequences are unfolded more readily than the parallel quadruplex formed by the c-MYC promoter in K+ Furthermore, we found that under conditions in which the telomeric quadruplex is less stable, such as in Na+, Pif1 traps thermally melted quadruplexes in the absence of ATP, leading to the appearance of increased product formation under conditions in which the enzyme is preincubated with the substrate. Stable telomeric G-quadruplex structures were unfolded in a stepwise manner at a rate slower than that of duplex DNA unwinding; however, the slower dissociation from G-quadruplexes compared with duplexes allowed the helicase to traverse more nucleotides than on duplexes. Consistent with this, the rate of ATP hydrolysis on the telomeric quadruplex DNA was reduced relative to that on single-stranded DNA (ssDNA), but less quadruplex DNA was needed to saturate ATPase activity. Under single-cycle conditions, telomeric quadruplex was unfolded by Pif1, but for the c-MYC quadruplex, unfolding required multiple helicase molecules loaded onto the adjacent ssDNA. Our findings illustrate that Pif1-catalyzed unfolding of G-quadruplex DNA is highly dependent on the specific sequence and the conditions of the reaction, including both the monovalent cation and the order of addition.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Matthew R Bell
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
23
|
Geronimo CL, Singh SP, Galletto R, Zakian VA. The signature motif of the Saccharomyces cerevisiae Pif1 DNA helicase is essential in vivo for mitochondrial and nuclear functions and in vitro for ATPase activity. Nucleic Acids Res 2018; 46:8357-8370. [PMID: 30239884 PMCID: PMC6144861 DOI: 10.1093/nar/gky655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Pif1 family DNA helicases are conserved from bacteria to humans and have critical and diverse functions in vivo that promote genome integrity. Pif1 family helicases share a 23 amino acid region, called the Pif1 signature motif (SM) that is unique to this family. To determine the importance of the SM, we did mutational and functional analysis of the SM from the Saccharomyces cerevisiae Pif1 (ScPif1). The mutations deleted portions of the SM, made one or multiple single amino acid changes in the SM, replaced the SM with its counterpart from a bacterial Pif1 family helicase and substituted an α-helical domain from another helicase for the part of the SM that forms an α helix. Mutants were tested for maintenance of mitochondrial DNA, inhibition of telomerase at telomeres and double strand breaks, and promotion of Okazaki fragment maturation. Although certain single amino acid changes in the SM can be tolerated, the presence and sequence of the ScPif1 SM were essential for all tested in vivo functions. Consistent with the in vivo analyses, in vitro studies showed that the presence and sequence of the ScPif1 SM were critical for ATPase activity but not substrate binding.
Collapse
Affiliation(s)
- Carly L Geronimo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| |
Collapse
|
24
|
Mohammad JB, Wallgren M, Sabouri N. The Pif1 signature motif of Pfh1 is necessary for both protein displacement and helicase unwinding activities, but is dispensable for strand-annealing activity. Nucleic Acids Res 2018; 46:8516-8531. [PMID: 30053106 PMCID: PMC6144812 DOI: 10.1093/nar/gky654] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 01/14/2023] Open
Abstract
Pfh1, the sole member of the Pif1 helicases in Schizosaccharomyces pombe, is multifunctional and essential for maintenance of both the nuclear and mitochondrial genomes. However, we lack mechanistic insights into the functions of Pfh1 and its different motifs. This paper is specifically concerned with the importance of the Pif1 signature motif (SM), a 23 amino acids motif unique to Pif1 helicases, because a single amino acid substitution in this motif is associated with increased risk of breast cancer in humans and inviability in S. pombe. Here we show that the nuclear isoform of Pfh1 (nPfh1) unwound RNA/DNA hybrids more efficiently than DNA/DNA, suggesting that Pfh1 resolves RNA/DNA structures like R-loops in vivo. In addition, nPfh1 displaced proteins from DNA and possessed strand-annealing activity. The unwinding and protein displacement activities were dependent on the SM because nPfh1 without a large portion of this motif (nPfh1-Δ21) or with the disease/inviability-linked mutation (nPfh1-L430P) lost these properties. Unexpectedly, both nPfh1-L430P and nPfh1-Δ21 still displayed binding to G-quadruplex DNA and demonstrated strand-annealing activity. Misregulated strand annealing and binding of nPfh1-L430P without unwinding are perhaps the reasons that cells expressing this allele are inviable.
Collapse
Affiliation(s)
- Jani B Mohammad
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Marcus Wallgren
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
25
|
Structure and function of Pif1 helicase. Biochem Soc Trans 2017; 45:1159-1171. [PMID: 28900015 DOI: 10.1042/bst20170096] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Abstract
Pif1 family helicases have multiple roles in the maintenance of nuclear and mitochondrial DNA in eukaryotes. Saccharomyces cerevisiae Pif1 is involved in replication through barriers to replication, such as G-quadruplexes and protein blocks, and reduces genetic instability at these sites. Another Pif1 family helicase in S. cerevisiae, Rrm3, assists in fork progression through replication fork barriers at the rDNA locus and tRNA genes. ScPif1 (Saccharomyces cerevisiae Pif1) also negatively regulates telomerase, facilitates Okazaki fragment processing, and acts with polymerase δ in break-induced repair. Recent crystal structures of bacterial Pif1 helicases and the helicase domain of human PIF1 combined with several biochemical and biological studies on the activities of Pif1 helicases have increased our understanding of the function of these proteins. This review article focuses on these structures and the mechanism(s) proposed for Pif1's various activities on DNA.
Collapse
|
26
|
Li JH, Lin WX, Zhang B, Nong DG, Ju HP, Ma JB, Xu CH, Ye FF, Xi XG, Li M, Lu Y, Dou SX. Pif1 is a force-regulated helicase. Nucleic Acids Res 2016; 44:4330-9. [PMID: 27098034 PMCID: PMC4872122 DOI: 10.1093/nar/gkw295] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
Pif1 is a prototypical member of the 5′ to 3′ DNA helicase family conserved from bacteria to human. It has a high binding affinity for DNA, but unwinds double-stranded DNA (dsDNA) with a low processivity. Efficient DNA unwinding has been observed only at high protein concentrations that favor dimerization of Pif1. In this research, we used single-molecule fluorescence resonance energy transfer (smFRET) and magnetic tweezers (MT) to study the DNA unwinding activity of Saccharomyces cerevisiae Pif1 (Pif1) under different forces exerted on the tails of a forked dsDNA. We found that Pif1 can unwind the forked DNA repetitively for many unwinding-rezipping cycles at zero force. However, Pif1 was found to have a very limited processivity in each cycle because it loosened its strong association with the tracking strand readily, which explains why Pif1 cannot be observed to unwind DNA efficiently in bulk assays at low protein concentrations. The force enhanced the unwinding rate and the total unwinding length of Pif1 significantly. With a force of 9 pN, the rate and length were enhanced by more than 3- and 20-fold, respectively. Our results imply that the DNA unwinding activity of Pif1 can be regulated by force. The relevance of this characteristic of Pif1 to its cellular functions is discussed.
Collapse
Affiliation(s)
- Jing-Hua Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xia Lin
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Zhang
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Da-Guan Nong
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hai-Peng Ju
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Bing Ma
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chun-Hua Xu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fang-Fu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Guang Xi
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, F-94235 Cachan, France
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Bannwarth S, Berg-Alonso L, Augé G, Fragaki K, Kolesar JE, Lespinasse F, Lacas-Gervais S, Burel-Vandenbos F, Villa E, Belmonte F, Michiels JF, Ricci JE, Gherardi R, Harrington L, Kaufman BA, Paquis-Flucklinger V. Inactivation of Pif1 helicase causes a mitochondrial myopathy in mice. Mitochondrion 2016; 30:126-37. [PMID: 26923168 DOI: 10.1016/j.mito.2016.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
Abstract
Mutations in genes coding for mitochondrial helicases such as TWINKLE and DNA2 are involved in mitochondrial myopathies with mtDNA instability in both human and mouse. We show that inactivation of Pif1, a third member of the mitochondrial helicase family, causes a similar phenotype in mouse. pif1-/- animals develop a mitochondrial myopathy with respiratory chain deficiency. Pif1 inactivation is responsible for a deficiency to repair oxidative stress-induced mtDNA damage in mouse embryonic fibroblasts that is improved by complementation with mitochondrial isoform mPif1(67). These results open new perspectives for the exploration of patients with mtDNA instability disorders.
Collapse
Affiliation(s)
- Sylvie Bannwarth
- IRCAN, CNRS UMR 7284/INSERM U1081/UNS, Faculté de Médecine, Nice, France; Service de Génétique Médicale, Hôpital Archet 2, CHU de Nice, Nice, France
| | | | - Gaëlle Augé
- IRCAN, CNRS UMR 7284/INSERM U1081/UNS, Faculté de Médecine, Nice, France; Service de Génétique Médicale, Hôpital Archet 2, CHU de Nice, Nice, France
| | - Konstantina Fragaki
- IRCAN, CNRS UMR 7284/INSERM U1081/UNS, Faculté de Médecine, Nice, France; Service de Génétique Médicale, Hôpital Archet 2, CHU de Nice, Nice, France
| | - Jill E Kolesar
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, USA
| | | | - Sandra Lacas-Gervais
- Centre Commun de Microscopie Electronique Appliquée, Faculté des Sciences, Université de Nice Sophia Antipolis, Nice, France
| | | | - Elodie Villa
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe "contrôle métabolique des morts cellulaires", Nice Sophia-Antipolis University, France
| | - Frances Belmonte
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, USA
| | | | - Jean-Ehrland Ricci
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe "contrôle métabolique des morts cellulaires", Nice Sophia-Antipolis University, France
| | | | - Lea Harrington
- Université de Montréal, Institut de Recherche en Immunologie et en Cancérologie, 2950 chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Brett A Kaufman
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Véronique Paquis-Flucklinger
- IRCAN, CNRS UMR 7284/INSERM U1081/UNS, Faculté de Médecine, Nice, France; Service de Génétique Médicale, Hôpital Archet 2, CHU de Nice, Nice, France.
| |
Collapse
|
28
|
Singh SP, Koc KN, Stodola JL, Galletto R. A Monomer of Pif1 Unwinds Double-Stranded DNA and It Is Regulated by the Nature of the Non-Translocating Strand at the 3'-End. J Mol Biol 2016; 428:1053-1067. [PMID: 26908222 DOI: 10.1016/j.jmb.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 11/17/2022]
Abstract
Using a DNA polymerase coupled assay and FRET (Förster resonance energy transfer)-based helicase assays, in this work, we show that a monomer of Saccharomyces cerevisiae Pif1 can unwind dsDNA (double-stranded DNA). The helicase activity of a Pif1 monomer is modulated by the nature of the 3'-ssDNA (single-stranded DNA) tail of the substrate and its effect on a Pif1-dependent re-winding activity that is coupled to the opening of dsDNA. We propose that, in addition to the ssDNA site on the protein that interacts with the translocating strand, Pif1 has a second site that binds the 3'-ssDNA of the substrate. Interaction of DNA with this site modulates the degree to which re-winding counteracts unwinding. Depending on the nature of the 3'-tail and the length of the duplex DNA to be unwound, this activity is sufficiently strong to mask the helicase activity of a monomer. In excess Pif1 over the DNA, the Pif1-dependent re-winding of the opened DNA strongly limits unwinding, independent of the 3'-tail. We propose that, in this case, binding of DNA to the second site is precluded and modulation of the Pif1-dependent re-winding activity is largely lost.
Collapse
Affiliation(s)
- Saurabh P Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Katrina N Koc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph L Stodola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
29
|
Zhou X, Ren W, Bharath SR, Tang X, He Y, Chen C, Liu Z, Li D, Song H. Structural and Functional Insights into the Unwinding Mechanism of Bacteroides sp Pif1. Cell Rep 2016; 14:2030-9. [PMID: 26904952 DOI: 10.1016/j.celrep.2016.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 11/27/2022] Open
Abstract
Pif1 is a conserved SF1B DNA helicase involved in maintaining genome stability through unwinding double-stranded DNAs (dsDNAs), DNA/RNA hybrids, and G quadruplex (G4) structures. Here, we report the structures of the helicase domain of human Pif1 and Bacteroides sp Pif1 (BaPif1) in complex with ADP-AlF4(-) and two different single-stranded DNAs (ssDNAs). The wedge region equivalent to the β hairpin in other SF1B DNA helicases folds into an extended loop followed by an α helix. The Pif1 signature motif of BaPif1 interacts with the wedge region and a short helix in order to stabilize these ssDNA binding elements, therefore indirectly exerting its functional role. Domain 2B of BaPif1 undergoes a large conformational change upon concomitant binding of ATP and ssDNA, which is critical for Pif1's activities. BaPif1 cocrystallized with a tailed dsDNA and ADP-AlF4(-), resulting in a bound ssDNA bent nearly 90° at the ssDNA/dsDNA junction. The conformational snapshots of BaPif1 provide insights into the mechanism governing the helicase activity of Pif1.
Collapse
Affiliation(s)
- Xianglian Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Wendan Ren
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Xuhua Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Yang He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Chen Chen
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Zhou Liu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Dewang Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China
| | - Haiwei Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, China; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore; Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore.
| |
Collapse
|
30
|
Chen WF, Dai YX, Duan XL, Liu NN, Shi W, Li N, Li M, Dou SX, Dong YH, Rety S, Xi XG. Crystal structures of the BsPif1 helicase reveal that a major movement of the 2B SH3 domain is required for DNA unwinding. Nucleic Acids Res 2016; 44:2949-61. [PMID: 26809678 PMCID: PMC4824106 DOI: 10.1093/nar/gkw033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/11/2016] [Indexed: 11/14/2022] Open
Abstract
Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity.
Collapse
Affiliation(s)
- Wei-Fei Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang-Xue Dai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Lei Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Li
- National Center for Protein Science Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shou-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Hui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Stephane Rety
- Institut de Biochimie et Chimie des Protéines, CNRS UMR 5086, 7 passage du Vercors, 69367 Lyon, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China LBPA, Institut d'Alembert, ENS de Cachan, Université Paris-Saclay, CNRS, 61, avenue du Président Wilson, F-94235 Cachan, France
| |
Collapse
|
31
|
Chib S, Byrd AK, Raney KD. Yeast Helicase Pif1 Unwinds RNA:DNA Hybrids with Higher Processivity than DNA:DNA Duplexes. J Biol Chem 2016; 291:5889-5901. [PMID: 26733194 DOI: 10.1074/jbc.m115.688648] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 01/14/2023] Open
Abstract
Saccharomyces cerevisiae Pif1, an SF1B helicase, has been implicated in both mitochondrial and nuclear functions. Here we have characterized the preference of Pif1 for RNA:DNA heteroduplexes in vitro by investigating several kinetic parameters associated with unwinding. We show that the preferential unwinding of RNA:DNA hybrids is due to neither specific binding nor differences in the rate of strand separation. Instead, Pif1 is capable of unwinding RNA:DNA heteroduplexes with moderately greater processivity compared with its duplex DNA:DNA counterparts. This higher processivity of Pif1 is attributed to slower dissociation from RNA:DNA hybrids. Biologically, this preferential role of the helicase may contribute to its functions at both telomeric and nontelomeric sites.
Collapse
Affiliation(s)
- Shubeena Chib
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
32
|
Liu NN, Duan XL, Ai X, Yang YT, Li M, Dou SX, Rety S, Deprez E, Xi XG. The Bacteroides sp. 3_1_23 Pif1 protein is a multifunctional helicase. Nucleic Acids Res 2015; 43:8942-54. [PMID: 26384418 PMCID: PMC4605326 DOI: 10.1093/nar/gkv916] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022] Open
Abstract
ScPif1 DNA helicase is the prototypical member of a 5′-to-3′ helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5′-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA–RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.
Collapse
Affiliation(s)
- Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Lei Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-Tao Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Li
- CAS Key Laboratory of Soft Matter Physics, International Associated Laboratory of CNRS-Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- CAS Key Laboratory of Soft Matter Physics, International Associated Laboratory of CNRS-Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Stephane Rety
- Institut de Biochimie et Chimie des protéines, CNRS UMR5086, 7 passage du Vercors, 69367 Lyon Cedex 07, France
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS UMR8113, IDA FR3242, F-94235 Cachan, France
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China Laboratoire de Biologie et Pharmacologie Appliquée, ENS Cachan, CNRS UMR8113, IDA FR3242, F-94235 Cachan, France
| |
Collapse
|
33
|
Byrd AK, Raney KD. A parallel quadruplex DNA is bound tightly but unfolded slowly by pif1 helicase. J Biol Chem 2015; 290:6482-94. [PMID: 25589786 DOI: 10.1074/jbc.m114.630749] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA sequences that can form intramolecular quadruplex structures are found in promoters of proto-oncogenes. Many of these sequences readily fold into parallel quadruplexes. Here we characterize the ability of yeast Pif1 to bind and unfold a parallel quadruplex DNA substrate. We found that Pif1 binds more tightly to the parallel quadruplex DNA than single-stranded DNA or tailed duplexes. However, Pif1 unwinding of duplexes occurs at a much faster rate than unfolding of a parallel intramolecular quadruplex. Pif1 readily unfolds a parallel quadruplex DNA substrate in a multiturnover reaction and also generates some product under single cycle conditions. The rate of ATP hydrolysis by Pif1 is reduced when bound to a parallel quadruplex compared with single-stranded DNA. ATP hydrolysis occurs at a faster rate than quadruplex unfolding, indicating that some ATP hydrolysis events are non-productive during unfolding of intramolecular parallel quadruplex DNA. However, product eventually accumulates at a slow rate.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
34
|
Lehmann KC, Snijder EJ, Posthuma CC, Gorbalenya AE. What we know but do not understand about nidovirus helicases. Virus Res 2014; 202:12-32. [PMID: 25497126 PMCID: PMC7114383 DOI: 10.1016/j.virusres.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/24/2023]
Abstract
The ubiquitous nidovirus helicase is a multi-functional enzyme of superfamily 1. Its unique N-terminal domain is most similar to the Upf1 multinuclear zinc-binding domain. It has been implicated in replication, transcription, virion biogenesis, translation and post-transcriptional viral RNA processing. Four different classes of antiviral compounds targeting the helicase have been identified.
Helicases are versatile NTP-dependent motor proteins of monophyletic origin that are found in all kingdoms of life. Their functions range from nucleic acid duplex unwinding to protein displacement and double-strand translocation. This explains their participation in virtually every metabolic process that involves nucleic acids, including DNA replication, recombination and repair, transcription, translation, as well as RNA processing. Helicases are encoded by all plant and animal viruses with a positive-sense RNA genome that is larger than 7 kb, indicating a link to genome size evolution in this virus class. Viral helicases belong to three out of the six currently recognized superfamilies, SF1, SF2, and SF3. Despite being omnipresent, highly conserved and essential, only a few viral helicases, mostly from SF2, have been studied extensively. In general, their specific roles in the viral replication cycle remain poorly understood at present. The SF1 helicase protein of viruses classified in the order Nidovirales is encoded in replicase open reading frame 1b (ORF1b), which is translated to give rise to a large polyprotein following a ribosomal frameshift from the upstream ORF1a. Proteolytic processing of the replicase polyprotein yields a dozen or so mature proteins, one of which includes a helicase. Its hallmark is the presence of an N-terminal multi-nuclear zinc-binding domain, the nidoviral genetic marker and one of the most conserved domains across members of the order. This review summarizes biochemical, structural, and genetic data, including drug development studies, obtained using helicases originating from several mammalian nidoviruses, along with the results of the genomics characterization of a much larger number of (putative) helicases of vertebrate and invertebrate nidoviruses. In the context of our knowledge of related helicases of cellular and viral origin, it discusses the implications of these results for the protein's emerging critical function(s) in nidovirus evolution, genome replication and expression, virion biogenesis, and possibly also post-transcriptional processing of viral RNAs. Using our accumulated knowledge and highlighting gaps in our data, concepts and approaches, it concludes with a perspective on future research aimed at elucidating the role of helicases in the nidovirus replication cycle.
Collapse
Affiliation(s)
- Kathleen C Lehmann
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia.
| |
Collapse
|
35
|
Ramanagoudr-Bhojappa R, Byrd AK, Dahl C, Raney KD. Yeast Pif1 accelerates annealing of complementary DNA strands. Biochemistry 2014; 53:7659-69. [PMID: 25393406 PMCID: PMC4263423 DOI: 10.1021/bi500746v] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pif1 is a helicase involved in the maintenance of nuclear and mitochondrial genomes in eukaryotes. Here we report a new activity of Saccharomyces cerevisiae Pif1, annealing of complementary DNA strands. We identified preferred substrates for annealing as those that generate a duplex product with a single-stranded overhang relative to a blunt end duplex. Importantly, we show that Pif1 can anneal DNA in the presence of ATP and Mg(2+). Pif1-mediated annealing also occurs in the presence of single-stranded DNA binding proteins. Additionally, we show that partial duplex substrates with 3'-single-stranded overhangs such as those generated during double-strand break repair can be annealed by Pif1.
Collapse
Affiliation(s)
- Ramanagouda Ramanagoudr-Bhojappa
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205, United States
| | | | | | | |
Collapse
|
36
|
León-Ortiz AM, Svendsen J, Boulton SJ. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst) 2014; 19:152-62. [PMID: 24815912 DOI: 10.1016/j.dnarep.2014.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
DNA secondary structures are largely advantageous for numerous cellular processes but can pose specific threats to the progression of the replication machinery and therefore genome duplication and cell division. A number of specialized enzymes dismantle these structures to allow replication fork progression to proceed faithfully. In this review, we discuss the in vitro and in vivo data that has lead to the identification of these enzymes in eukaryotes, and the evidence that suggests that they act specifically at replication forks to resolve secondary structures. We focus on the role of helicases, which catalyze the dissociation of nucleotide complexes, and on the role of nucleases, which cleave secondary structures to allow replication fork progression at the expense of local rearrangements. Finally, we discuss outstanding questions in terms of dismantling DNA secondary structures, as well as the interplay between diverse enzymes that act upon specific types of structures.
Collapse
Affiliation(s)
- Ana María León-Ortiz
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Jennifer Svendsen
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, Clare Hall, South Mimms EN6 3LD, UK.
| |
Collapse
|
37
|
Li JR, Yu TY, Chien IC, Lu CY, Lin JJ, Li HW. Pif1 regulates telomere length by preferentially removing telomerase from long telomere ends. Nucleic Acids Res 2014; 42:8527-36. [PMID: 24981509 PMCID: PMC4117769 DOI: 10.1093/nar/gku541] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomerase, a ribonucleoprotein complex, is responsible for maintaining the telomere length at chromosome ends. Using its RNA component as a template, telomerase uses its reverse transcriptase activity to extend the 3'-end single-stranded, repetitive telomeric DNA sequence. Pif1, a 5'-to-3' helicase, has been suggested to regulate telomerase activity. We used single-molecule experiments to directly show that Pif1 helicase regulates telomerase activity by removing telomerase from telomere ends, allowing the cycling of the telomerase for additional extension processes. This telomerase removal efficiency increases at longer ssDNA gaps and at higher Pif1 concentrations. The enhanced telomerase removal efficiency by Pif1 at the longer single-stranded telomeric DNA suggests a way of how Pif1 regulates telomerase activity and maintains telomere length.
Collapse
Affiliation(s)
- Jing-Ru Li
- Department of Chemistry, National Taiwan University, Taiwan
| | - Tai-Yuan Yu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan
| | - I-Chieh Chien
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan
| | - Chia-Ying Lu
- Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan
| | - Jing-Jer Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taiwan Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan Institute of Biochemistry and Molecular Biology, National Taiwan University, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taiwan
| |
Collapse
|
38
|
Zhou R, Zhang J, Bochman ML, Zakian VA, Ha T. Periodic DNA patrolling underlies diverse functions of Pif1 on R-loops and G-rich DNA. eLife 2014; 3:e02190. [PMID: 24843019 PMCID: PMC3999857 DOI: 10.7554/elife.02190] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pif1 family helicases are conserved from bacteria to humans. Here, we report a novel DNA patrolling activity which may underlie Pif1’s diverse functions: a Pif1 monomer preferentially anchors itself to a 3′-tailed DNA junction and periodically reel in the 3′ tail with a step size of one nucleotide, extruding a loop. This periodic patrolling activity is used to unfold an intramolecular G-quadruplex (G4) structure on every encounter, and is sufficient to unwind RNA-DNA heteroduplex but not duplex DNA. Instead of leaving after G4 unwinding, allowing it to refold, or going beyond to unwind duplex DNA, Pif1 repeatedly unwinds G4 DNA, keeping it unfolded. Pif1-induced unfolding of G4 occurs in three discrete steps, one strand at a time, and is powerful enough to overcome G4-stabilizing drugs. The periodic patrolling activity may keep Pif1 at its site of in vivo action in displacing telomerase, resolving R-loops, and keeping G4 unfolded during replication, recombination and repair. DOI:http://dx.doi.org/10.7554/eLife.02190.001 Helicases are enzymes that are best known for their ability to separate the two strands of DNA that make up the famous double-helix structure. Many important processes within cells—including the expression of genes as proteins, and the replication of DNA before cell division—rely on DNA molecules being separated in this way. However, these enzymes can perform many other roles that help maintain the integrity of a cell’s DNA. The genetic code is written using four DNA bases—called A, C, G and T—and if a stretch of DNA contains lots of G bases, then one of the strands can loop back upon itself three times to form a structure known as a ‘G-quadruplex’. These structures can prevent the expression of genes, and slow the replication of DNA. However, a helicase called Pif1 can unwind G-quadruplexes to allow these activities to continue. This helicase is found in many organisms, from bacteria to humans, and carries out multiple functions for a cell. However, the exact mechanisms underlying these activities are unknown. Now, Zhou et al. have used biophysical techniques to reveal that individual Pif1 proteins bind to single-stranded overhangs at one end of a DNA molecule. Pif1 also binds to forks in DNA where the double helix separates into two single strands. And once Pif1 has bound to the DNA, it works to ‘reel in’ the overhang or a single strand, one base at a time. This activity can unwind a G-quadruplex, and individual Pif1 proteins will patrol DNA to keep this structures unwound without unraveling the double helix itself. Separating the two strands of DNA actually needs multiple Pif1 proteins to join and work together. As it patrols, Pif1 also displaces other proteins from DNA and removes unusual, and potentially harmful, structures in DNA (such as RNA molecules that have displaced one of the strands of DNA double helix). The next challenge will be to address important questions that remain unanswered including: how does Pif1 recognize DNA structures and change its activity; and how does it coordinate with other proteins that target the same structures? DOI:http://dx.doi.org/10.7554/eLife.02190.002
Collapse
Affiliation(s)
- Ruobo Zhou
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Jichuan Zhang
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Matthew L Bochman
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Taekjip Ha
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
39
|
Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev 2014; 77:476-96. [PMID: 24006472 DOI: 10.1128/mmbr.00007-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination is a universal process, conserved from bacteriophage to human, which is important for the repair of double-strand DNA breaks. Recombination in mitochondrial DNA (mtDNA) was documented more than 4 decades ago, but the underlying molecular mechanism has remained elusive. Recent studies have revealed the presence of a Rad52-type recombination system of bacteriophage origin in mitochondria, which operates by a single-strand annealing mechanism independent of the canonical RecA/Rad51-type recombinases. Increasing evidence supports the notion that, like in bacteriophages, mtDNA inheritance is a coordinated interplay between recombination, repair, and replication. These findings could have profound implications for understanding the mechanism of mtDNA inheritance and the generation of mtDNA deletions in aging cells.
Collapse
|
40
|
Chung WH. To peep into Pif1 helicase: multifaceted all the way from genome stability to repair-associated DNA synthesis. J Microbiol 2014; 52:89-98. [PMID: 24500472 DOI: 10.1007/s12275-014-3524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 01/05/2023]
Abstract
Pif1 DNA helicase is the prototypical member of a 5' to 3' helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea,
| |
Collapse
|
41
|
Gu Y, Wang J, Li S, Kamiya K, Chen X, Zhou P. Determination of the biochemical properties of full-length human PIF1 ATPase. Prion 2013; 7:341-7. [PMID: 23924759 DOI: 10.4161/pri.26022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The PIF1 helicase family performs many cellular functions. To better understand the functions of the human PIF1 helicase, we characterized the biochemical properties of its ATPase. PIF1 is very sensitive to temperature, whereas it is not affected by pH, and the ATPase activity of human PIF1 is dependent on the divalent cations Mg (2+) and Mn (2+) but not Ca (2+) and Zn (2+). Inhibition was observed when single-stranded DNA was coated with RPA or SSB. Moreover, the ATPase activity of PIF1 proportionally decreased with decreasing oligonucleotide length due to a decreased binding ability. A minimum of 10 oligonucleotide bases are required for PIF1 binding and the hydrolysis of ATP. The analysis of the biochemical properties of PIF1 together with numerous genetic observations should aid in the understanding of its cellular functions.
Collapse
Affiliation(s)
- Yongqing Gu
- Department of Radiation Toxicology and Oncology; Beijing Institute of Radiation Medicine; Beijing, PR China; School of Medicine; Shihezi University; Shihezi, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Paeschke K, Bochman ML, Garcia PD, Cejka P, Friedman KL, Kowalczykowski SC, Zakian VA. Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 2013; 497:458-62. [PMID: 23657261 PMCID: PMC3680789 DOI: 10.1038/nature12149] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 04/05/2013] [Indexed: 01/24/2023]
Abstract
The Saccharomyces cerevisiae Pif1 helicase is the prototypical member of the Pif1 DNA helicase family, which is conserved from bacteria to humans. We show that exceptionally potent G-quadruplex unwinding is conserved amongst Pif1 helicases. Moreover, Pif1 helicases from organisms separated by >3 billion years of evolution suppressed DNA damage at G-quadruplex motifs in yeast. The G-quadruplex-induced damage generated in the absence of Pif1 helicases led to novel genetic and epigenetic changes. Further, when expressed in yeast, human Pif1 suppressed both G-quadruplex-associated DNA damage and telomere lengthening.
Collapse
Affiliation(s)
- Katrin Paeschke
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Ramanagoudr-Bhojappa R, Chib S, Byrd AK, Aarattuthodiyil S, Pandey M, Patel SS, Raney KD. Yeast Pif1 helicase exhibits a one-base-pair stepping mechanism for unwinding duplex DNA. J Biol Chem 2013; 288:16185-95. [PMID: 23596008 DOI: 10.1074/jbc.m113.470013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetic analysis of the DNA unwinding and translocation activities of helicases is necessary for characterization of the biochemical mechanism(s) for this class of enzymes. Saccharomyces cerevisiae Pif1 helicase was characterized using presteady state kinetics to determine rates of DNA unwinding, displacement of streptavidin from biotinylated DNA, translocation on single-stranded DNA (ssDNA), and ATP hydrolysis activities. Unwinding of substrates containing varying duplex lengths was fit globally to a model for stepwise unwinding and resulted in an unwinding rate of ∼75 bp/s and a kinetic step size of 1 base pair. Pif1 is capable of displacing streptavidin from biotinylated oligonucleotides with a linear increase in the rates as the length of the oligonucleotides increased. The rate of translocation on ssDNA was determined by measuring dissociation from varying lengths of ssDNA and is essentially the same as the rate of unwinding of dsDNA, making Pif1 an active helicase. The ATPase activity of Pif1 on ssDNA was determined using fluorescently labeled phosphate-binding protein to measure the rate of phosphate release. The quantity of phosphate released corresponds to a chemical efficiency of 0.84 ATP/nucleotides translocated. Hence, when all of the kinetic data are considered, Pif1 appears to move along DNA in single nucleotide or base pair steps, powered by hydrolysis of 1 molecule of ATP.
Collapse
|
44
|
Galletto R, Tomko EJ. Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA. Nucleic Acids Res 2013; 41:4613-27. [PMID: 23446274 PMCID: PMC3632115 DOI: 10.1093/nar/gkt117] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae Pif1 participates in a wide variety of DNA metabolic pathways both in the nucleus and in mitochondria. The ability of Pif1 to hydrolyse ATP and catalyse unwinding of duplex nucleic acid is proposed to be at the core of its functions. We recently showed that upon binding to DNA Pif1 dimerizes and we proposed that a dimer of Pif1 might be the species poised to catalysed DNA unwinding. In this work we show that monomers of Pif1 are able to translocate on single-stranded DNA with 5′ to 3′ directionality. We provide evidence that the translocation activity of Pif1 could be used in activities other than unwinding, possibly to displace proteins from ssDNA. Moreover, we show that monomers of Pif1 retain some unwinding activity although a dimer is clearly a better helicase, suggesting that regulation of the oligomeric state of Pif1 could play a role in its functioning as a helicase or a translocase. Finally, although we show that Pif1 can translocate on ssDNA, the translocation profiles suggest the presence on ssDNA of two populations of Pif1, both able to translocate with 5′ to 3′ directionality.
Collapse
Affiliation(s)
- Roberto Galletto
- 252 McDonnell Science Building, Department of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, 660 South Euclid Avenue, MS8231, Saint Louis, MO 63110,
| | | |
Collapse
|
45
|
Ramanagoudr-Bhojappa R, Blair LP, Tackett AJ, Raney KD. Physical and functional interaction between yeast Pif1 helicase and Rim1 single-stranded DNA binding protein. Nucleic Acids Res 2012; 41:1029-46. [PMID: 23175612 PMCID: PMC3553982 DOI: 10.1093/nar/gks1088] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pif1 helicase plays various roles in the maintenance of nuclear and mitochondrial genome integrity in most eukaryotes. Here, we used a proteomics approach called isotopic differentiation of interactions as random or targeted to identify specific protein complexes of Saccharomyces cerevisiae Pif1. We identified a stable association between Pif1 and a mitochondrial SSB, Rim1. In vitro co-precipitation experiments using recombinant proteins indicated a direct interaction between Pif1 and Rim1. Fluorescently labeled Rim1 was titrated with Pif1 resulting in an increase in anisotropy and a Kd value of 0.69 µM. Deletion mutagenesis revealed that the OB-fold domain and the C-terminal tail of Rim1 are both involved in interaction with Pif1. However, a Rim1 C-terminal truncation (Rim1ΔC18) exhibited a nearly 4-fold higher Kd value. Rim1 stimulated Pif1 DNA helicase activity by 4- to 5-fold, whereas Rim1ΔC18 stimulated Pif1 by 2-fold. Hence, two regions of Rim1, the OB-fold domain and the C-terminal domain, interact with Pif1. One of these interactions occurs through the N-terminal domain of Pif1 because a deletion mutant of Pif1 (Pif1ΔN) retained interaction with Rim1 but did not exhibit stimulation of helicase activity. In light of our in vivo and in vitro data, and previous work, it is likely that the Rim1–Pif1 interaction plays a role in coordination of their functions in mtDNA metabolism.
Collapse
|
46
|
Abstract
The Saccharomyces cerevisiae gene PIF1 encodes a conserved eukaryotic DNA helicase required for both mitochondrial and nuclear DNA integrity. Our previous work revealed that a pif1Δ strain is tolerant to zinc overload. In the present study we demonstrate that this effect is independent of the Pif1 helicase activity and is only observed when the protein is absent from the mitochondria. pif1Δ cells accumulate abnormal amounts of mitochondrial zinc and iron. Transcriptional profiling reveals that pif1Δ cells under standard growth conditions overexpress aconitase-related genes. When exposed to zinc, pif1Δ cells show lower induction of genes encoding iron (siderophores) transporters and higher expression of genes related to oxidative stress responses than wild-type cells. Coincidently, pif1Δ mutants are less prone to zinc-induced oxidative stress and display a higher reduced/oxidized glutathione ratio. Strikingly, although pif1Δ cells contain normal amounts of the Aco1 (yeast aconitase) protein, they completely lack aconitase activity. Loss of Aco1 activity is also observed when the cell expresses a non-mitochondrially targeted form of Pif1. We postulate that lack of Pif1 forces aconitase to play its DNA protective role as a nucleoid protein and that this triggers a domino effect on iron homoeostasis resulting in increased zinc tolerance.
Collapse
|
47
|
Pike JE, Henry RA, Burgers PMJ, Campbell JL, Bambara RA. An alternative pathway for Okazaki fragment processing: resolution of fold-back flaps by Pif1 helicase. J Biol Chem 2010; 285:41712-23. [PMID: 20959454 DOI: 10.1074/jbc.m110.146894] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two pathways have been proposed for eukaryotic Okazaki fragment RNA primer removal. Results presented here provide evidence for an alternative pathway. Primer extension by DNA polymerase δ (pol δ) displaces the downstream fragment into an RNA-initiated flap. Most flaps are cleaved by flap endonuclease 1 (FEN1) while short, and the remaining nicks joined in the first pathway. A small fraction escapes immediate FEN1 cleavage and is further lengthened by Pif1 helicase. Long flaps are bound by replication protein A (RPA), which inhibits FEN1. In the second pathway, Dna2 nuclease cleaves an RPA-bound flap and displaces RPA, leaving a short flap for FEN1. Pif1 flap lengthening creates a requirement for Dna2. This relationship should not have evolved unless Pif1 had an important role in fragment processing. In this study, biochemical reconstitution experiments were used to gain insight into this role. Pif1 did not promote synthesis through GC-rich sequences, which impede strand displacement. Pif1 was also unable to open fold-back flaps that are immune to cleavage by either FEN1 or Dna2 and cannot be bound by RPA. However, Pif1 working with pol δ readily unwound a full-length Okazaki fragment initiated by a fold-back flap. Additionally, a fold-back in the template slowed pol δ synthesis, so that the fragment could be removed before ligation to the lagging strand. These results suggest an alternative pathway in which Pif1 removes Okazaki fragments initiated by fold-back flaps in vivo.
Collapse
Affiliation(s)
- Jason E Pike
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
48
|
Barranco-Medina S, Galletto R. DNA binding induces dimerization of Saccharomyces cerevisiae Pif1. Biochemistry 2010; 49:8445-54. [PMID: 20795654 DOI: 10.1021/bi100984j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Saccharomyces cerevisiae, Pif1 is involved in a wide range of DNA transactions. It operates both in mitochondria and in the nucleus, where it has telomeric and non-telomeric functions. All of the activities of Pif1 rely on its ability to bind to DNA. We have determined the mode of Pif1 binding to different DNA substrates. While Pif1 is a monomer in solution, we show that binding of ssDNA to Pif1 induces protein dimerization. DNA-induced dimerization of Pif1 is also observed on tailed- and forked-dsDNA substrates, suggesting that on the latter formation of a Pif1 dimer prevents binding of additional Pif1 molecules. A dimer of Pif1 also forms on ssDNA of random composition and in the presence of saturating concentrations of nonhydrolyzable ATP analogues. The observation that a Pif1 dimer is formed on unwinding substrates in the presence of ATP analogues suggests that a dimeric form of the enzyme might constitute the pre-initiation complex leading to its unwinding activity.
Collapse
Affiliation(s)
- Sergio Barranco-Medina
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
49
|
Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem J 2010; 430:119-28. [PMID: 20524933 DOI: 10.1042/bj20100612] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pif1 proteins are helicases that in yeast are implicated in the maintenance of genome stability. One activity of Saccharomyces cerevisiae Pif1 is to stabilize DNA sequences that could otherwise form deleterious G4 (G-quadruplex) structures by acting as a G4 resolvase. The present study shows that human Pif1 (hPif1, nuclear form) is a G4 DNA-binding and resolvase protein and that these activities are properties of the conserved helicase domain (amino acids 206-620 of 641, hPifHD). hPif1 preferentially bound synthetic G4 DNA relative to ssDNA (single-stranded DNA), dsDNA (double-stranded DNA) and a partially single-stranded duplex DNA helicase substrate. G4 DNA unwinding, but not binding, required an extended (>10 nucleotide) 5' ssDNA tail, and in competition assays, G4 DNA was an ineffective suppressor of helicase activity compared with ssDNA. These results suggest a distinction between the determinants of G4 DNA binding and the ssDNA interactions required for helicase action and that hPif1 may act on G4 substrates by binding alone or as a resolvase. Human Pif1 could therefore have a role in processing G4 structures that arise in the single-stranded nucleic acid intermediates formed during DNA replication and gene expression.
Collapse
|
50
|
Cheng X, Ivessa AS. Association of the yeast DNA helicase Pif1p with mitochondrial membranes and mitochondrial DNA. Eur J Cell Biol 2010; 89:742-7. [PMID: 20655619 DOI: 10.1016/j.ejcb.2010.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022] Open
Abstract
Previously we demonstrated that the mitochondrial form of the yeast Pif1p DNA helicase, which we found to be attached to mitochondrial DNA (mtDNA), is required for the maintenance of mtDNA under genotoxic stress conditions. Here, we demonstrated that mitochondrial Pif1p is exclusively bound to mitochondrial membranes and part of an about 900kDa protein complex. Pif1p might be incorporated into this complex immediately after its translocation from the cytoplasm into the mitochondrial matrix. Pif1p as well as the mitochondrial DNA polymerase Mip1p could not be released from the mitochondrial membranes by digesting mtDNA with restriction enzymes in permeabilized mitochondria. In contrast, restriction enzyme-digested mtDNA fragments that were covered by the histone-like protein Abf2p were efficiently released from the permeabilized mitochondria. We propose that Pif1p as well as Mip1p are not only bound to mtDNA but also to the inner mitochondrial membrane either directly or indirectly via a protein complex. We also found that in the absence of mtDNA the total amount of cellular Pif1p is highly reduced.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, Newark, NJ 07101-1709, United States
| | | |
Collapse
|