1
|
Mangkalee M, Oonanant W, Aonbangkhen C, Pimviriyakul P, Tinikul R, Chaiyen P, Insin N, Sucharitakul J. Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: Using hydrogen peroxide for monooxygenation and substrate cleavage. FEBS J 2023; 290:5171-5195. [PMID: 37522421 DOI: 10.1111/febs.16916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
The dimethyl sulfone monooxygenase system is a two-component flavoprotein, catalyzing the monooxygenation of dimethyl sulfone (DMSO2 ) by oxidative cleavage producing methanesulfinate and formaldehyde. The reductase component (DMSR) is a flavoprotein with FMN as a cofactor, catalyzing flavin reduction using NADH. The monooxygenase (DMSMO) uses reduced flavin from the reductase and oxygen for substrate monooxygenation. DMSMO can bind to FMN and FMNH- with a Kd of 17.4 ± 0.9 μm and 4.08 ± 0.8 μm, respectively. The binding of FMN to DMSMO is required prior to binding DMSO2 . This also applies to the fast binding of reduced FMN to DMSMO followed by DMSO2 . Substituting reduced DMSR with FMNH- demonstrated the same oxidation kinetics, indicating that FMNH- from DMSR was transferred to DMSMO. The oxidation of FMNH- :DMSMO, with and without DMSO2 did not generate any flavin adducts for monooxygenation. Therefore, H2 O2 is likely to be the reactive agent to attack the substrate. The H2 O2 assay results demonstrated production of H2 O2 from the oxidation of FMNH- :DMSMO, whereas H2 O2 was not detected in the presence of DMSO2 , confirming H2 O2 utilization. The rate constant for methanesulfinate formation determined from rapid quenched flow and the rate constant for flavin oxidation were similar, indicating that H2 O2 rapidly reacts with DMSO2 , with flavin oxidation as the rate-limiting step. This is the first report of the kinetic mechanisms of both components using rapid kinetics and of a method for methanesulfinate detection using LC-MS.
Collapse
Affiliation(s)
- Montisa Mangkalee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Worrapoj Oonanant
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Chanat Aonbangkhen
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Numpon Insin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeerus Sucharitakul
- Department of Biochemistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Insights into the unique carboxylation reactions in the metabolism of propylene and acetone. Biochem J 2020; 477:2027-2038. [PMID: 32497192 DOI: 10.1042/bcj20200174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023]
Abstract
Alkenes and ketones are two classes of ubiquitous, toxic organic compounds in natural environments produced in several biological and anthropogenic processes. In spite of their toxicity, these compounds are utilized as primary carbon and energy sources or are generated as intermediate metabolites in the metabolism of other compounds by many diverse bacteria. The aerobic metabolism of some of the smallest and most volatile of these compounds (propylene, acetone, isopropanol) involves novel carboxylation reactions resulting in a common product acetoacetate. Propylene is metabolized in a four-step pathway involving five enzymes where the penultimate step is a carboxylation reaction catalyzed by a unique disulfide oxidoreductase that couples reductive cleavage of a thioether linkage with carboxylation to produce acetoacetate. The carboxylation of isopropanol begins with conversion to acetone via an alcohol dehydrogenase. Acetone is converted to acetoacetate in a single step by an acetone carboxylase which couples the hydrolysis of MgATP to the activation of both acetone and bicarbonate, generating highly reactive intermediates that are condensed into acetoacetate at a Mn2+ containing the active site. Acetoacetate is then utilized in central metabolism where it is readily converted to acetyl-coenzyme A and subsequently converted into biomass or utilized in energy metabolism via the tricarboxylic acid cycle. This review summarizes recent structural and biochemical findings that have contributed significant insights into the mechanism of these two unique carboxylating enzymes.
Collapse
|
3
|
Kim SU, Kim KR, Kim JW, Kim S, Kwon YU, Oh DK, Park JB. Microbial synthesis of plant oxylipins from γ-linolenic acid through designed biotransformation pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2773-2781. [PMID: 25715320 DOI: 10.1021/jf5058843] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Secondary metabolites of plants are often difficult to synthesize in high yields because of the large complexity of the biosynthetic pathways and challenges encountered in the functional expression of the required biosynthetic enzymes in microbial cells. In this study, the biosynthesis of plant oxylipins--a family of oxygenated unsaturated carboxylic acids--was explored to enable a high-yield production through a designed microbial synthetic system harboring a set of microbial enzymes (i.e., fatty acid double-bond hydratases, alcohol dehydrogenases, Baeyer-Villiger monooxygenases, and esterases) to produce a variety of unsaturated carboxylic acids from γ-linolenic acid. The whole cell system of the recombinant Escherichia coli efficiently produced (6Z,9Z)-12-hydroxydodeca-6,9-dienoic acid (7), (Z)-9-hydroxynon-6-enoic acid (15), (Z)-dec-4-enedioic acid (17), and (6Z,9Z)-13-hydroxyoctadeca-6,9-dienoic acid (2). This study demonstrated that various secondary metabolites of plants can be produced by implementing artificial biosynthetic pathways into whole-cell biocatalysis.
Collapse
Affiliation(s)
| | - Kyoung-Rok Kim
- §Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | - Deok-Kun Oh
- §Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
4
|
Tang MC, He HY, Zhang F, Tang GL. Baeyer–Villiger Oxidation of Acyl Carrier Protein-Tethered Thioester to Acyl Carrier Protein-Linked Thiocarbonate Catalyzed by a Monooxygenase Domain in FR901464 Biosynthesis. ACS Catal 2013. [DOI: 10.1021/cs300819e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Man-Cheng Tang
- State Key
Laboratory of Bioorganic and Natural Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032,
China
| | - Hai-Yan He
- State Key
Laboratory of Bioorganic and Natural Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032,
China
| | - Feng Zhang
- State Key
Laboratory of Bioorganic and Natural Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032,
China
| | - Gong-Li Tang
- State Key
Laboratory of Bioorganic and Natural Products
Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032,
China
| |
Collapse
|
5
|
Leisch H, Morley K, Lau PCK. Baeyer−Villiger Monooxygenases: More Than Just Green Chemistry. Chem Rev 2011; 111:4165-222. [DOI: 10.1021/cr1003437] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hannes Leisch
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
6
|
de Gonzalo G, Mihovilovic MD, Fraaije MW. Recent developments in the application of Baeyer-Villiger monooxygenases as biocatalysts. Chembiochem 2011; 11:2208-31. [PMID: 20936617 DOI: 10.1002/cbic.201000395] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) represent a specific class of monooxygenases that are capable of catalyzing a variety of oxidation reactions, including Baeyer-Villiger oxidations. The recently elucidated BVMO crystal structures have provided a more detailed insight into the complex mechanism of these flavin-containing enzymes. Biocatalytic studies on a number of newly discovered BVMOs have shown that they are very potent oxidative biocatalysts. In addition to catalyzing the regio- and enantioselective Baeyer-Villiger oxidations of a wide range of carbonylic compounds, epoxidations, and enantioselective sulfoxidations have also been shown to be part of their catalytic repertoire. This review provides an overview on the recent developments in BVMO-mediated biocatalytic processes, identification of the catalytic role of these enzymes in metabolic routes and prodrug activation, as well as the efforts in developing effective biocatalytic methodologies to apply BVMOs for the synthesis of high added value compounds.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Laboratory of Biochemistry, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
7
|
Geitner K, Rehdorf J, Snajdrova R, Bornscheuer UT. Scale-up of Baeyer-Villiger monooxygenase-catalyzed synthesis of enantiopure compounds. Appl Microbiol Biotechnol 2010; 88:1087-93. [PMID: 20689951 DOI: 10.1007/s00253-010-2724-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 11/29/2022]
Abstract
Several Baeyer-Villiger monooxygenases converting a wide spectrum of substrates have been discovered, cloned, and characterized throughout the last few years. Still, only a few of them are applicable for large-scale conversion predominantly due to their sensitivity towards high substrate and/or product concentrations. The recently cloned and characterized 4-hydroxyacetophenone monooxygenase from Pseudomonas putida JD1 shows excellent enantioselectivity towards 3-phenyl-2-butanone with E > 100 but is inhibited by concentrations >10 mM of both substrate and product. This obstacle could be circumvented by in situ substrate feed and product removal using a hydrophobic Lewatit® adsorbent resin. Thus, the concentration of 3-phenyl-2-butanone could be increased from 1.4 to >26 mM without significant reduction in conversion.
Collapse
Affiliation(s)
- Kristian Geitner
- Department of Biotechnology and Enzyme Catalysis, Institute for Biochemistry, Greifswald University, Germany
| | | | | | | |
Collapse
|
8
|
Rehdorf J, Mihovilovic M, Fraaije M, Bornscheuer U. Enzymatic Synthesis of Enantiomerically Pure β-Amino Ketones, β-Amino Esters, and β-Amino Alcohols with Baeyer-Villiger Monooxygenases. Chemistry 2010; 16:9525-35. [DOI: 10.1002/chem.201001480] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Kayser MM. ‘Designer reagents’ recombinant microorganisms: new and powerful tools for organic synthesis. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.10.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Rehdorf J, Kirschner A, Bornscheuer UT. Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnol Lett 2007; 29:1393-8. [PMID: 17530181 DOI: 10.1007/s10529-007-9401-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 04/03/2007] [Accepted: 04/04/2007] [Indexed: 11/26/2022]
Abstract
The gene encoding a Baeyer-Villiger monooxygenase and identified in Pseudomonas putida KT2440 was cloned and functionally expressed in Escherichia coli. The highest yield of soluble protein could be achieved by co-expression of molecular chaperones. In order to determine the substrate specificity, biocatalyses were performed using crude cell extract, growing and resting cells. Examination of aromatic, cyclic and aliphatic ketones revealed a high specificity towards short-chain aliphatic ketones. Interestingly, some open-chain ketones were converted to the alkylacetates, while for others formation of the ester products with oxygen on the other side of the keto group could also be detected yielding the corresponding methyl or ethyl esters.
Collapse
Affiliation(s)
- Jessica Rehdorf
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | | | | |
Collapse
|
11
|
Kotani T, Yurimoto H, Kato N, Sakai Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol 2007; 189:886-93. [PMID: 17071761 PMCID: PMC1797311 DOI: 10.1128/jb.01054-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/16/2006] [Indexed: 11/20/2022] Open
Abstract
In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane --> 2-propanol --> acetone --> methyl acetate --> acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism.
Collapse
Affiliation(s)
- Tetsuya Kotani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
12
|
Kirschner A, Altenbuchner J, Bornscheuer UT. Cloning, expression, and characterization of a Baeyer–Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli. Appl Microbiol Biotechnol 2007; 73:1065-72. [PMID: 16944127 DOI: 10.1007/s00253-006-0556-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 06/23/2006] [Accepted: 06/26/2006] [Indexed: 11/25/2022]
Abstract
A gene encoding a Baeyer-Villiger monooxygenase (BVMO) identified in Pseudomonas fluorescens DSM 50106 was cloned and functionally expressed in Escherichia coli JM109. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis showed an estimated 56 kDa-size protein band corresponding to the recombinant enzyme. Expression in BL21 (DE3) resulted mainly in the formation of inclusion bodies. This could be overcome by coexpression of molecular chaperones, especially the DnaK/DnaJ/GrpE complex, leading to increased production of soluble BVMO enzyme in recombinant E. coli. Examination of the substrate spectra using whole-cell biocatalysis revealed a high specificity of the BVMO for aliphatic open-chain ketones. Thus, octyl acetate, heptyl propionate, and hexyl butyrate were quantitatively formed from the corresponding ketone substrates. Several other esters were obtained in conversion >68%. Selected esters were also produced on preparative scale.
Collapse
Affiliation(s)
- Anett Kirschner
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Friedrich-Ludwig-Jahn-Str. 18c, 17487, Greifswald, Germany
| | | | | |
Collapse
|
13
|
Izumi A, Obora Y, Sakaguchi S, Ishii Y. Oxidative dimerization of primary alcohols to esters catalyzed by iridium complexes. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.10.144] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
|
15
|
Fraaije MW, Kamerbeek NM, Heidekamp AJ, Fortin R, Janssen DB. The Prodrug Activator EtaA from Mycobacterium tuberculosis Is a Baeyer-Villiger Monooxygenase. J Biol Chem 2004; 279:3354-60. [PMID: 14610090 DOI: 10.1074/jbc.m307770200] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EtaA is a newly identified FAD-containing monooxygenase that is responsible for activation of several thioamide prodrugs in Mycobacterium tuberculosis. It was found that purified EtaA displays a remarkably low activity with the antitubercular prodrug ethionamide. Hinted by the presence of a Baeyer-Villiger monooxygenase sequence motif in the EtaA sequence, we have been able to identify a large number of novel EtaA substrates. It was discovered that the enzyme converts a wide range of ketones to the corresponding esters or lactones via a Baeyer-Villiger reaction, indicating that EtaA represents a Baeyer-Villiger monooxygenase. With the exception of aromatic ketones (phenylacetone and benzylacetone), long-chain ketones (e.g. 2-hexanone and 2-dodecanone) also are converted. EtaA is also able to catalyze enantioselective sulfoxidation of methyl-p-tolylsulfide. Conversion of all of the identified substrates is relatively slow with typical k(cat) values of around 0.02 s(-1). The best substrate identified so far is phenylacetone (K(m) = 61 microM, k(cat) = 0.017 s(-1)). Redox monitoring of the flavin cofactor during turnover of phenylacetone indicates that a step in the reductive half-reaction is limiting the rate of catalysis. Intriguingly, EtaA activity could be increased by one order of magnitude by adding bovine serum albumin. This reactivity and substrate acceptance-profiling study provides valuable information concerning this newly identified prodrug activator from M. tuberculosis.
Collapse
Affiliation(s)
- Marco W Fraaije
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Yabe K, Chihaya N, Hamamatsu S, Sakuno E, Hamasaki T, Nakajima H, Bennett JW. Enzymatic conversion of averufin to hydroxyversicolorone and elucidation of a novel metabolic grid involved in aflatoxin biosynthesis. Appl Environ Microbiol 2003; 69:66-73. [PMID: 12513978 PMCID: PMC152417 DOI: 10.1128/aem.69.1.66-73.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathway from averufin (AVR) to versiconal hemiacetal acetate (VHA) in aflatoxin biosynthesis was investigated by using cell-free enzyme systems prepared from Aspergillus parasiticus. When (1'S,5'S)-AVR was incubated with a cell extract of this fungus in the presence of NADPH, versicolorin A and versicolorin B (VB), as well as other aflatoxin pathway intermediates, were formed. When the same substrate was incubated with the microsome fraction and NADPH, hydroxyversicolorone (HVN) and VHA were formed. However, (1'R,5'R)-AVR did not serve as the substrate. In cell-free experiments performed with the cytosol fraction and NADPH, VHA, versicolorone (VONE), and versiconol acetate (VOAc) were transiently produced from HVN in the early phase, and then VB and versiconol (VOH) accumulated later. Addition of dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the same reaction mixture caused transient formation of VHA and VONE, followed by accumulation of VOAc, but neither VB nor VOH was formed. When VONE was incubated with the cytosol fraction in the presence of NADPH, VOAc and VOH were newly formed, whereas the conversion of VOAc to VOH was inhibited by dichlorvos. The purified VHA reductase, which was previously reported to catalyze the reaction from VHA to VOAc, also catalyzed conversion of HVN to VONE. Separate feeding experiments performed with A. parasiticus NIAH-26 along with HVN, VONE, and versicolorol (VOROL) demonstrated that each of these substances could serve as a precursor of aflatoxins. Remarkably, we found that VONE and VOROL had ring-opened structures. Their molecular masses were 386 and 388 Da, respectively, which were 18 Da greater than the molecular masses previously reported. These data demonstrated that two kinds of reactions are involved in the pathway from AVR to VHA in aflatoxin biosynthesis: (i) a reaction from (1'S,5'S)-AVR to HVN, catalyzed by the microsomal enzyme, and (ii) a new metabolic grid, catalyzed by a new cytosol monooxygenase enzyme and the previously reported VHA reductase enzyme, composed of HVN, VONE, VOAc, and VHA. A novel hydrogenation-dehydrogenation reaction between VONE and VOROL was also discovered.
Collapse
Affiliation(s)
- Kimiko Yabe
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Kamerbeek NM, Olsthoorn AJJ, Fraaije MW, Janssen DB. Substrate specificity and enantioselectivity of 4-hydroxyacetophenone monooxygenase. Appl Environ Microbiol 2003; 69:419-26. [PMID: 12514023 PMCID: PMC152415 DOI: 10.1128/aem.69.1.419-426.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee > 99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.
Collapse
Affiliation(s)
- Nanne M Kamerbeek
- Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Tanner A, Hopper DJ. Conversion of 4-hydroxyacetophenone into 4-phenyl acetate by a flavin adenine dinucleotide-containing Baeyer-Villiger-type monooxygenase. J Bacteriol 2000; 182:6565-9. [PMID: 11073896 PMCID: PMC111394 DOI: 10.1128/jb.182.23.6565-6569.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An arylketone monooxygenase was purified from Pseudomonas putida JD1 by ion exchange and affinity chromatography. It had the characteristics of a Baeyer-Villiger-type monooxygenase and converted its substrate, 4-hydroxyacetophenone, into 4-hydroxyphenyl acetate with the consumption of one molecule of oxygen and oxidation of one molecule of NADPH per molecule of substrate. The enzyme was a monomer with an M(r) of about 70,000 and contained one molecule of flavin adenine dinucleotide (FAD). The enzyme was specific for NADPH as the electron donor, and spectral studies showed rapid reduction of the FAD by NADPH but not by NADH. Other arylketones were substrates, including acetophenone and 4-hydroxypropiophenone, which were converted into phenyl acetate and 4-hydroxyphenyl propionate, respectively. The enzyme displayed Michaelis-Menten kinetics with apparent K(m) values of 47 microM for 4-hydroxyacetophenone, 384 microM for acetophenone, and 23 microM for 4-hydroxypropiophenone. The apparent K(m) value for NADPH with 4-hydroxyacetophenone as substrate was 17.5 microM. The N-terminal sequence did not show any similarity to other proteins, but an internal sequence was very similar to part of the proposed NADPH binding site in the Baeyer-Villiger monooxygenase cyclohexanone monooxygenase from an Acinetobacter sp.
Collapse
Affiliation(s)
- A Tanner
- Institute of Biological Sciences, University of Wales, Aberystwyth, Ceredigion SY23 3DD, United Kingdom
| | | |
Collapse
|
19
|
Miyamoto M, Matsumoto J, Iwaya T, Itagaki E. Bacterial steroid monooxygenase catalyzing the Baeyer-Villiger oxidation of C21-ketosteroids from Rhodococcus rhodochrous: the isolation and characterization. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1251:115-24. [PMID: 7669800 DOI: 10.1016/0167-4838(95)00090-h] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Steroid monooxygenase from Rhodococcus rhodochrous, isolated in homogeneity with a high yield, catalyzes Baeyer-Villiger oxidation of progesterone to produce testosterone acetate with the stoichiometric consumptions of NADPH and molecular oxygen. It is a flavoenzyme with the molecular size of 60 kDa in the monomeric form and the isoelectric point of 4.9. The absorption spectrum has the maxima at 278, 376, and 439 nm and the shoulders at 360 and 465 nm, indicating a strong hypsochromic shift (blue-shift) of the absorption peak in the visible wavelength region. The prosthetic group of the enzyme was identified to be FAD, and the Kd value was estimated to be 0.95 microM. The enzyme catalyzed only the oxidative esterification of progesterone, 11 alpha- and 11 beta-hydroxyprogesterone and not the oxidative lactonization of androstenedione. Km for progesterone was 100 microM, for NADPH was 3.3 microM, and the turnover number was 185 min-1. Kd values for progesterone, 11 alpha-hydroxyprogesterone, deoxycorticosterone, and androstenedione were 110, 130, 2000, and 450 microM, respectively. The optimum pH of the reaction was about 8.5. The reaction was inhibited competitively by 17 alpha-hydroxyprogesterone and androstenedione. Amino terminal sequences of the enzymes from the bacterium and also from fungus, Cylindrocarpon radiocicola were considerably different, and the potential flavin-binding site could be detected on the amino-terminal region of the fungus enzyme but not on that of the bacterial enzyme. Western blotting analyses of the two steroid monooxygenases resulted that mouse antiserum raised for each enzyme reacted only with the antigenic enzyme protein but did not show the cross-reactions. It is clarified that bacterial steroid monooxygenase is distinctly different from the fungal enzyme in the molecular and enzymic properties.
Collapse
Affiliation(s)
- M Miyamoto
- Department of Chemistry, Faculty of Science, Kanazawa University, Japan
| | | | | | | |
Collapse
|
20
|
|
21
|
|
22
|
Trower MK, Buckland RM, Griffin M. Characterization of an FMN-containing cyclohexanone monooxygenase from a cyclohexane-grown Xanthobacter sp. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:199-206. [PMID: 2540966 DOI: 10.1111/j.1432-1033.1989.tb14711.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A soluble cyclohexanone monooxygenase was purified 16.1-fold to homogeneity from a Xanthobacter sp. grown upon cyclohexane as sole source of carbon and energy. The native enzyme is a 50-kDa single polypeptide chain associated with FMN rather than FAD as flavin prosthetic group in a 1:1 stoichiometric relationship. The monooxygenase catalyses the transformation of cyclohexanone to the lactone 1-oxa-2-oxocycloheptane in an oxygen ring insertion reaction. Only related cycloalkanone substrates are accepted for oxygenation, no activity is shown towards straight-chain alkanones. Enzyme activity is strongly inhibited by sulphydryl-reactive agents, but is relatively insensitive to metal chelators, electron transport inhibitors and the metal ions Fe3+ and Cu2+. Cyclohexanone monooxygenase has Km values for cyclohexanone and NADPH of less than 0.5 microM and 12.5 microM respectively. Kinetic investigations under steady-state conditions demonstrate that the flavoprotein prosthetic group, FMN, is involved in the monooxygenase catalytic mechanism. The systematic name for the enzyme is cyclohexanone, NADPH:oxygen oxidoreductase (6-hydroxylating, 1,2-lactonizing) (EC 1.14.13.22).
Collapse
Affiliation(s)
- M K Trower
- Department of Life Sciences, Trent Polytechnic, Nottingham, England
| | | | | |
Collapse
|
23
|
Abstract
Enzymatic systems employed by microorganisms for oxidative transformation of various organic molecules include laccases, ligninases, tyrosinases, monooxygenases, and dioxygenases. Reactions performed by these enzymes play a significant role in maintaining the global carbon cycle through either transformation or complete mineralization of organic molecules. Additionally, oxidative enzymes are instrumental in modification or degradation of the ever-increasing man-made chemicals constantly released into our environment. Due to their inherent stereo- and regioselectivity and high efficiency, oxidative enzymes have attracted attention as potential biocatalysts for various biotechnological processes. Successful commercial application of these enzymes will be possible through employing new methodologies, such as use of organic solvents in the reaction mixtures, immobilization of either the intact microorganisms or isolated enzyme preparations on various supports, and genetic engineering technology.
Collapse
Affiliation(s)
- F S Sariaslani
- Central Research and Development Department, E.I. Du Pont de Nemours and Company, Wilmington, Delaware
| |
Collapse
|
24
|
Alphand V, Archelas A, Furstoss R. Microbial Transformations 16. One-step synthesis of a pivotal prostaglandin chiral synthon via a highly enantioselective microbiological Baeyer-Villiger type reaction. Tetrahedron Lett 1989. [DOI: 10.1016/s0040-4039(01)80476-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Walsh CT, Chen YCJ. Enzymatische Baeyer-Villiger-Oxidationen durch flavinabhängige Monooxygenasen. Angew Chem Int Ed Engl 1988. [DOI: 10.1002/ange.19881000305] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Walsh CT, Chen YCJ. Enzymic Baeyer-Villiger Oxidations by Flavin-Dependent Monooxygenases. ACTA ACUST UNITED AC 1988. [DOI: 10.1002/anie.198803331] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Stephens GM, Dalton H. Is toxin production by coryneform bacteria linked to their ability to utilize hydrocarbons? Trends Biotechnol 1987. [DOI: 10.1016/0167-7799(87)90064-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Affiliation(s)
- Colin Ratledge
- ; Department of Biochemistry; University of Hull; HU6 7RX Hull UK
| |
Collapse
|
29
|
Incorporation of 18O into long-chain, secondary alcohols derived from ester mycolic acids in Mycobacterium phlei. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/0005-2760(82)90363-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
|
31
|
Abstract
Pseudomonas cepacia 4G9 utilizes 2-tridecanone as its sole carbon source and has been shown to be resistant to a variety of antibiotics. To ascertain whether any of these characteristics were plasmid mediated, Escherichia coli HB101 was transformed with plasmid DNA isolated from Pseudomonas cepacia 4G9. No 2-tridecanone-utilizing transformants were obtained. Tetracycline (Tc)- and ampicillin (Ap)- resistant transformants were obtained at a low frequency. Plasmid deoxyribonucleic acid from antibiotic-resistant E. coli HB101 transformants had molecular weights of 2.9 x 10(6) for pJW2 Tcr and 5.4 x 10(6) for pJW3 Apr as determined by electron microscopy. Electron microscopy of plasmid deoxyribonucleic acid from P. cepacia 4G9 revealed a single plasmid species, pJW1 of 1.78 x 10(6). Tetracycline resistance in both P. cepacia 4G9 and E. coli HB101(pJW2) was inducible, whereas ampicillin resistance in P. cepacia 4G9 was constitutive. The level of ampicillin resistance coded by pJW3 was lower in P. cepacia 4G9 than in the transformant E. coli HB101(pJW3).
Collapse
|
32
|
|
33
|
Markovetz AJ. Intermediates from the microbial oxidation of aliphatic hydrocarbons. J AM OIL CHEM SOC 1978. [DOI: 10.1007/bf02911907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A. J. Markovetz
- ; Department of Microbiology; University of Iowa; Iowa City 52242 Iowa
| |
Collapse
|