1
|
Geukens N, De Buck E, Meyen E, Maes L, Vranckx L, Van Mellaert L, Anné J, Lammertyn E. The type II signal peptidase of Legionella pneumophila. Res Microbiol 2006; 157:836-41. [PMID: 17005379 DOI: 10.1016/j.resmic.2006.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/15/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
Legionella pneumophila is a facultative intracellular Gram-negative bacterium that has become an important cause of community-acquired and nosocomial pneumonia. Recent studies concerning the unravelling of bacterial virulence have suggested the involvement of protein secretion systems in bacterial pathogenicity. In this respect, the type II signal peptidase (LspA), which is specifically required for the maturation of lipoproteins, is of particular interest. This paper reports the cloning and functional characterization of the L. pneumophila lspA gene encoding the type II signal peptidase (SPase II). Activity of the L. pneumophila LspA was demonstrated using a globomycin sensitivity assay in Escherichia coli. In L. pneumophila, the lspA gene is flanked by the isoleucyl-tRNA synthetase (ileS) gene and the gene encoding a 2-hydroxy-3-deoxy-phosphogluconate aldolase. Although there is no apparent physiological connection, transcriptional analysis demonstrated that, as in some other Gram-negative bacteria, lspA is cotranscribed with ileS in L. pneumophila. Finally, in silico analysis revealed that several proteins known to be crucial for virulence and intracellular growth of L. pneumophila are predicted to be lipoproteins. These include, in particular, proteins involved in protein secretion and motility. Results obtained strongly suggest an important role for LspA in the pathogenicity of L. pneumophila, making it a promising new target for therapeutic intervention.
Collapse
Affiliation(s)
- Nick Geukens
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
3
|
Masuda Y, Tsuchimoto S, Nishimura A, Ohtsubo E. Isolation of temperature-sensitive aminoacyl-tRNA synthetase mutants from an Escherichia coli strain harboring the pemK plasmid. MOLECULAR & GENERAL GENETICS : MGG 1993; 238:169-76. [PMID: 8479423 DOI: 10.1007/bf00279544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pem locus, which is responsible for the stable maintenance of the low copy number plasmid R100, contains the pemK gene, whose product has been shown to be a growth inhibitor. Here, we attempted to isolate mutants which became tolerant to transient induction of the PemK protein. We obtained 20 mutants (here called pkt for PemK tolerance), of which 9 were temperature sensitive for growth. We analyzed the nine mutants genetically and found that they could be classified into three complementation groups, pktA, pktB and pktC, which corresponded to three genes, ileS, gltX and asnS, encoding isoleucyl-, glutamyl- and asparaginyl-tRNA synthetases, respectively. Since these amino-acyl-tRNA synthetase mutants did not produce the PemK protein upon induction at the restrictive temperature, these mutants could be isolated because they behaved as if they were tolerant to the PemK protein. The procedure is therefore useful for isolating temperature-sensitive mutants of aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Y Masuda
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | | | |
Collapse
|
4
|
Isaki L, Beers R, Wu HC. Nucleotide sequence of the Pseudomonas fluorescens signal peptidase II gene (lsp) and flanking genes. J Bacteriol 1990; 172:6512-7. [PMID: 2121716 PMCID: PMC526840 DOI: 10.1128/jb.172.11.6512-6517.1990] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The lsp gene encoding prolipoprotein signal peptidase (signal peptidase II) is organized into an operon consisting of ileS and three open reading frames, designated genes x, orf149, and orf316 in both Escherichia coli and Enterobacter aerogenes. A plasmid, pBROC128, containing a 5.8-kb fragment of Pseudomonas fluorescens DNA was found to confer pseudomonic acid resistance on E. coli host cells and to contain the structural gene of ileS from P. fluorescens. In addition, E. coli strains carrying pBROC128 exhibited increased globomycin resistance. This indicated that the P. fluorescens lsp gene was present on the plasmid. The nucleotide sequences of the P. fluorescens lsp gene and of its flanking regions were determined. Comparison of the nucleotide sequences of the lsp genes in E. coli and P. fluorescens revealed two highly conserved domains in this enzyme. Furthermore, the five genes which constitute an operon in E. coli and Enterobacter aerogenes were found in P. fluorescens in the same order as in the first two species.
Collapse
Affiliation(s)
- L Isaki
- Department of Microbiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889-4799
| | | | | |
Collapse
|
5
|
Abstract
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two from E. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the -3, -1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes in Escherichia coli that can degrade a signal peptide in vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degradation of an intact signal peptide in vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.
Collapse
Affiliation(s)
- I K Dev
- Division of Molecular Genetics and Microbiology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
6
|
Cloning and nucleotide sequence of the Enterobacter aerogenes signal peptidase II (lsp) gene. J Bacteriol 1990; 172:469-72. [PMID: 2403548 PMCID: PMC208454 DOI: 10.1128/jb.172.1.469-472.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Escherichia coli, prolipoprotein signal peptidase is encoded by the lsp gene, which is organized into an operon consisting of ileS, lsp, and three open reading frames, designated genes x, orf-149, and orf-316. The Enterobacter aerogenes lsp gene was cloned and expressed in E. coli. The nucleotide sequence of the Enterobacter aerogenes lsp gene and a part of its flanking sequences were determined. A high degree of homology was found between the E. coli ileS-lsp operon and the corresponding genes in Enterobacter aerogenes. Furthermore, the same five genes which constitute an operon in E. coli were found in Enterobacter aerogenes in the same order.
Collapse
|
7
|
Olins PO, Rangwala SH. A Novel Sequence Element Derived from Bacteriophage T7 mRNA Acts as an Enhancer of Translation of the lacZ Gene in Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71444-0] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
8
|
Jerlström PG, Bezjak DA, Jennings MP, Beacham IR. Structure and expression in Escherichia coli K-12 of the L-asparaginase I-encoding ansA gene and its flanking regions. Gene 1989; 78:37-46. [PMID: 2670682 DOI: 10.1016/0378-1119(89)90312-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Escherichia coli contains two L-asparaginase isozymes: a secreted high-affinity enzyme, L-asparaginase II (AnsII), and a low-affinity cytoplasmic enzyme, L-asparaginase I (AnsI), which is encoded by the ansA gene. The nucleotide sequence of ansA and flanking regions, comprising 2156 bp, has been determined. The ansA gene product has been identified and has a calculated Mr of 35,388; gel filtration of cell extracts indicates that the active form of the enzyme is a dimer. The deduced amino acid sequence of AnsI shows discernible similarity to AnsII in a region immediately adjacent to the proposed active-site peptide of asparaginase II as previously determined by substrate analogue binding experiments. A second open reading frame (ORF1), encoding a protein of Mr 23,336, is found 10 bp downstream from ansA; the ribosome-binding site of ORF1 overlaps the stop codon of ansA. Deletions within the 5' region of ansA abolish expression of ansA and also reduce expression of ORF1. Together, these observations suggest that ansA and ORF1 constitute an operon. A palindromic sequence exists in the 3' region of ORF1 which may function as a bidirectional transcription terminator both for the ansA-ORF1 operon and a second, convergent, ORF.
Collapse
Affiliation(s)
- P G Jerlström
- Division of Science and Technology, Griffith University, Nathan, Brisbane, Old, Australia
| | | | | | | |
Collapse
|
9
|
Margolin W, Rao G, Howe MM. Bacteriophage Mu late promoters: four late transcripts initiate near a conserved sequence. J Bacteriol 1989; 171:2003-18. [PMID: 2522923 PMCID: PMC209851 DOI: 10.1128/jb.171.4.2003-2018.1989] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Late transcription of bacteriophage Mu, which results in the expression of phage morphogenetic functions, is dependent on Mu C protein. Earlier experiments indicated that Mu late RNAs originate from four promoters, including the previously characterized mom promoter. S1 nuclease protection experiments were used to map RNA 5' ends in the three new regions. Transcripts were initiated at these points only in the presence of C and were synthesized in a rightward direction on the Mu genome. Amber mutant marker rescue analysis of plasmid clones and limited DNA sequencing demonstrated that these new promoters are located between C and lys, upstream of I, and upstream of P within the N gene. A comparison of the promoter sequences upstream from the four RNA 5' ends yielded two conserved sequences: the first (tA . . cT, where capital and lowercase letters indicate 100 and 75% base conservation, respectively), at approximately -10, shares some similarity with the consensus Escherichia coli sigma 70 -10 region, while the second (ccATAAc CcCPuG/Cac, where Pu indicates a purine), in the -35 region, bears no resemblance to the E. coli -35 consensus. We propose that these conserved Mu late promoter consensus sequences are important for C-dependent promoter activity. Plasmids containing transcription fusions of these late promoters to lacZ exhibited C-dependent beta-galactosidase synthesis in vivo, and C was the only Mu product needed for this transactivation. As expected, the late promoter-lacZ fusions were activated only at late times after induction of a Mu prophage. The C-dependent activation of lacZ fusions containing only a few bases of the 5' end of Mu late RNA and the presence of altered promoter sequences imply that C acts at the level of transcription initiation.
Collapse
Affiliation(s)
- W Margolin
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
10
|
Heck JD, Hatfield GW. Valyl-tRNA synthetase gene of Escherichia coli K12. Molecular genetic characterization. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)35433-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
11
|
Sakka K, Watanabe T, Beers R, Wu HC. Isolation and characterization of a new globomycin-resistant dnaE mutant of Escherichia coli. J Bacteriol 1987; 169:3400-8. [PMID: 3112119 PMCID: PMC212409 DOI: 10.1128/jb.169.8.3400-3408.1987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We isolated a globomycin-resistant, temperature-sensitive mutant of Escherichia coli K-12 strain AB1157. The mutation mapped in dnaE, the structural gene for the alpha-subunit of DNA polymerase III. The in vivo processing of lipid-modified prolipoprotein was more resistant to globomycin in the mutant strain 307 than in its parent. The prolipoprotein signal peptidase activity was also increased twofold in the mutant, and there was a threefold increase in the activity of isoleucyl-tRNA synthetase. The results suggest that a mutation in dnaE may affect the expression of the ileS-lsp operon in E. coli. In addition, strain 307 showed a reduced level of streptomycin resistance compared with its parental strain AB1157 (rpsL31). Strain 307 was killed by streptomycin at a concentration of 200 micrograms/ml, which did not affect the rate of bulk protein synthesis in this mutant. A second mutation which was involved in the reduced streptomycin resistance in strain 307 was identified and found to be closely linked to or within the rpsD (ramA, ribosomal ambiguity) gene. Both dnaE and rpsD were required for the reduced streptomycin resistance in strain 307.
Collapse
|
12
|
Miller KW, Bouvier J, Stragier P, Wu HC. Identification of the genes in the Escherichia coli ileS-lsp operon. Analysis of multiple polycistronic mRNAs made in vivo. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48249-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|