1
|
Renzer G, de Almeida Ribeiro I, Guo HB, Fröhlich-Nowoisky J, Berry RJ, Bonn M, Molinero V, Meister K. Hierarchical assembly and environmental enhancement of bacterial ice nucleators. Proc Natl Acad Sci U S A 2024; 121:e2409283121. [PMID: 39418308 PMCID: PMC11513900 DOI: 10.1073/pnas.2409283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial ice nucleating proteins (INPs) are exceptionally effective in promoting the kinetically hindered transition of water to ice. Their efficiency relies on the assembly of INPs into large functional aggregates, with the size of ice nucleation sites determining activity. Experimental freezing spectra have revealed two distinct, defined aggregate sizes, typically classified as class A and C ice nucleators (INs). Despite the importance of INPs and years of extensive research, the precise number of INPs forming the two aggregate classes, and their assembly mechanism have remained enigmatic. Here, we report that bacterial ice nucleation activity emerges from more than two prevailing aggregate species and identify the specific number of INPs responsible for distinct crystallization temperatures. We find that INP dimers constitute class C INs, tetramers class B INs, and hexamers and larger multimers are responsible for the most efficient class A activity. We propose a hierarchical assembly mechanism based on tyrosine interactions for dimers, and electrostatic interactions between INP dimers to produce larger aggregates. This assembly is membrane-assisted: Increasing the bacterial outer membrane fluidity decreases the population of the larger aggregates, while preserving the dimers. Inversely, Dulbecco's Phosphate-Buffered Saline buffer increases the population of multimeric class A and B aggregates 200-fold and endows the bacteria with enhanced stability toward repeated freeze-thaw cycles. Our analysis suggests that the enhancement results from the better alignment of dimers in the negatively charged outer membrane, due to screening of their electrostatic repulsion. This demonstrates significant enhancement of the most potent bacterial INs.
Collapse
Affiliation(s)
- Galit Renzer
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | | | - Hao-Bo Guo
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH45433
| | | | - Rajiv J. Berry
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH45433
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, UT84112-0850
| | - Konrad Meister
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID83725
| |
Collapse
|
2
|
Bieber P, Borduas-Dedekind N. High-speed cryo-microscopy reveals that ice-nucleating proteins of Pseudomonas syringae trigger freezing at hydrophobic interfaces. SCIENCE ADVANCES 2024; 10:eadn6606. [PMID: 38959312 PMCID: PMC11221516 DOI: 10.1126/sciadv.adn6606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ice-nucleating proteins (INpro) trigger the freezing of supercooled water droplets relevant to atmospheric, biological, and technological applications. The high ice nucleation activity of INpro isolated from the bacteria Pseudomonas syringae could be linked to the aggregation of proteins at the bacterial membrane or at the air-water interface (AWI) of droplets. Here, we imaged freezing onsets, providing direct evidence of these proposed mechanisms. High-speed cryo-microscopy identified the onset location of freezing in droplets between two protein-repellent glass slides. INpro from sterilized P. syringae (Snomax) statistically favored nucleation at the AWI of the droplets. Removing cellular fragments by filtration or adding surfactants increased the frequency of nucleation events at the AWI. On the other hand, cultivated intact bacteria cells or lipid-free droplets nucleated ice without an affinity to the AWI. Overall, we provide visual evidence that INpro from P. syringae trigger freezing at hydrophobic interfaces, such as the AWI or the bacterial membrane, with important mechanistic implications for applications of INpro.
Collapse
|
3
|
Schwidetzky R, de Almeida Ribeiro I, Bothen N, Backes AT, DeVries AL, Bonn M, Fröhlich-Nowoisky J, Molinero V, Meister K. Functional aggregation of cell-free proteins enables fungal ice nucleation. Proc Natl Acad Sci U S A 2023; 120:e2303243120. [PMID: 37943838 PMCID: PMC10655213 DOI: 10.1073/pnas.2303243120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Biological ice nucleation plays a key role in the survival of cold-adapted organisms. Several species of bacteria, fungi, and insects produce ice nucleators (INs) that enable ice formation at temperatures above -10 °C. Bacteria and fungi produce particularly potent INs that can promote water crystallization above -5 °C. Bacterial INs consist of extended protein units that aggregate to achieve superior functionality. Despite decades of research, the nature and identity of fungal INs remain elusive. Here, we combine ice nucleation measurements, physicochemical characterization, numerical modeling, and nucleation theory to shed light on the size and nature of the INs from the fungus Fusarium acuminatum. We find ice-binding and ice-shaping activity of Fusarium IN, suggesting a potential connection between ice growth promotion and inhibition. We demonstrate that fungal INs are composed of small 5.3 kDa protein subunits that assemble into ice-nucleating complexes that can contain more than 100 subunits. Fusarium INs retain high ice-nucleation activity even when only the ~12 kDa fraction of size-excluded proteins are initially present, suggesting robust pathways for their functional aggregation in cell-free aqueous environments. We conclude that the use of small proteins to build large assemblies is a common strategy among organisms to create potent biological INs.
Collapse
Affiliation(s)
- Ralph Schwidetzky
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | | | - Nadine Bothen
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz55128, Germany
| | - Anna T. Backes
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz55128, Germany
| | - Arthur L. DeVries
- Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | | | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, UT84112
| | - Konrad Meister
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID83725
| |
Collapse
|
4
|
Lindow S. History of Discovery and Environmental Role of Ice Nucleating Bacteria. PHYTOPATHOLOGY 2023; 113:605-615. [PMID: 36122194 DOI: 10.1094/phyto-07-22-0256-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The phenomenon of biological ice nucleation that is exhibited by a variety of bacteria is a fascinating phenotype, which has been shown to incite frost damage to frost-sensitive plants and has been proposed to contribute to atmospheric processes that affect the water cycle and earth's radiation balance. This review explores the several possible drivers for the evolutionary origin of the ice nucleation phenotype. These bacteria and the gene required for this phenotype have also been exploited in processes as diverse as reporter gene assays to assess environmentally responsive gene expression in various plant pathogenic and environmental bacteria and in the detection of foodborne human pathogens when coupled with host-specific bacteriophage, whereas ice nucleating bacteria themselves have been exploited in the production of artificial snow for recreation and oil exploration and in the process of freezing of various food products. This review also examines the historical development of our understanding of ice nucleating bacteria, details of the genetic determinants of ice nucleation, and features of the aggregates of membrane-bound ice nucleation protein necessary for catalyzing ice. Lastly, this review also explores the role of these bacteria in limiting the supercooling ability of plants and the strategies and limitations of avoiding plant frost damage by managing these bacterial populations by bactericides, antagonistic bacteria, or cultural control strategies.
Collapse
Affiliation(s)
- Steven Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
5
|
Schwidetzky R, Sudera P, Backes AT, Pöschl U, Bonn M, Fröhlich-Nowoisky J, Meister K. Membranes Are Decisive for Maximum Freezing Efficiency of Bacterial Ice Nucleators. J Phys Chem Lett 2021; 12:10783-10787. [PMID: 34723523 PMCID: PMC8591660 DOI: 10.1021/acs.jpclett.1c03118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ice-nucleating proteins (INPs) from Pseudomonas syringae are among the most active ice nucleators known, enabling ice formation at temperatures close to the melting point of water. The working mechanisms of INPs remain elusive, but their ice nucleation activity has been proposed to depend on the ability to form large INP aggregates. Here, we provide experimental evidence that INPs alone are not sufficient to achieve maximum freezing efficiency and that intact membranes are critical. Ice nucleation measurements of phospholipids and lipopolysaccharides show that these membrane components are not part of the active nucleation site but rather enable INP assembly. Substantially improved ice nucleation by INP assemblies is observed for deuterated water, indicating stabilization of assemblies by the stronger hydrogen bonds of D2O. Together, these results show that the degree of order/disorder and the assembly size are critically important in determining the extent to which bacterial INPs can facilitate ice nucleation.
Collapse
Affiliation(s)
- R. Schwidetzky
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - P. Sudera
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - A. T. Backes
- Max
Planck Institute for Chemistry, 55128 Mainz, Germany
| | - U. Pöschl
- Max
Planck Institute for Chemistry, 55128 Mainz, Germany
| | - M. Bonn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - K. Meister
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- University
of Alaska Southeast, Juneau, Alaska 99801, United States
| |
Collapse
|
6
|
Perspectives on the Future of Ice Nucleation Research: Research Needs and Unanswered Questions Identified from Two International Workshops. ATMOSPHERE 2017. [DOI: 10.3390/atmos8080138] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Gaiteri JC, Henley WH, Siegfried NA, Linz TH, Ramsey JM. Use of Ice-Nucleating Proteins To Improve the Performance of Freeze-Thaw Valves in Microfluidic Devices. Anal Chem 2017; 89:5998-6005. [PMID: 28467855 DOI: 10.1021/acs.analchem.7b00556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Currently, reliable valving on integrated microfluidic devices fabricated from rigid materials is confined to expensive and complex methods. Freeze-thaw valves (FTVs) can provide a low cost, low complexity valving mechanism, but reliable implementation of them has been greatly hindered by the lack of ice nucleation sites within the valve body's small volume. Work to date has required very low temperatures (on the order of -40 °C or colder) to induce freezing without nucleation sites, making FTVs impractical due to instrument engineering challenges. Here, we report the use of ice-nucleating proteins (INPs) to induce ice formation at relatively warm temperatures in microfluidic devices. Microfluidic channels were filled with buffers containing femtomolar INP concentrations from Pseudomonas syringae. The channels were cooled externally with simple, small-footprint Peltier thermoelectric coolers (TECs), and the times required for channel freezing (valve closure) and thawing (valve opening) were measured. Under optimized conditions in plastic chips, INPs made sub-10 s actuations possible at TEC temperatures as warm as -13 °C. Additionally, INPs were found to have no discernible inhibitory effects in model enzyme-linked immunosorbent assays or polymerase chain reactions, indicating their compatibility with microfluidic systems that incorporate these widely used bioassays. FTVs with INPs provide a much needed reliable valving scheme for rigid plastic devices with low complexity, low cost, and no moving parts on the device or instrument. The reduction in freeze time, accessible actuation temperatures, chemical compatibility, and low complexity make the implementation of compact INP-based FTV arrays practical and attractive for the control of integrated biochemical assays.
Collapse
Affiliation(s)
- Joseph C Gaiteri
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - W Hampton Henley
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Nathan A Siegfried
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Thomas H Linz
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, Wayne State University , Detroit, Michigan 48202, United States
| | - J Michael Ramsey
- Department of Chemistry, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Biophysical characterization of soluble Pseudomonas syringae ice nucleation protein InaZ fragments. Int J Biol Macromol 2017; 94:634-641. [DOI: 10.1016/j.ijbiomac.2016.10.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/21/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022]
|
9
|
O'Sullivan D, Murray BJ, Ross JF, Whale TF, Price HC, Atkinson JD, Umo NS, Webb ME. The relevance of nanoscale biological fragments for ice nucleation in clouds. Sci Rep 2015; 5:8082. [PMID: 25626414 PMCID: PMC4308702 DOI: 10.1038/srep08082] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/05/2015] [Indexed: 11/09/2022] Open
Abstract
Most studies of the role of biological entities as atmospheric ice-nucleating particles have focused on relatively rare supermicron particles such as bacterial cells, fungal spores and pollen grains. However, it is not clear that there are sufficient numbers of these particles in the atmosphere to strongly influence clouds. Here we show that the ice-nucleating activity of a fungus from the ubiquitous genus Fusarium is related to the presence of nanometre-scale particles which are far more numerous, and therefore potentially far more important for cloud glaciation than whole intact spores or hyphae. In addition, we quantify the ice-nucleating activity of nano-ice nucleating particles (nano-INPs) washed off pollen and also show that nano-INPs are present in a soil sample. Based on these results, we suggest that there is a reservoir of biological nano-INPs present in the environment which may, for example, become aerosolised in association with fertile soil dust particles.
Collapse
Affiliation(s)
- D O'Sullivan
- Institute for Climate and Atmospheric Science, School of Earth &Environment, University of Leeds, UK
| | - B J Murray
- Institute for Climate and Atmospheric Science, School of Earth &Environment, University of Leeds, UK
| | - J F Ross
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - T F Whale
- Institute for Climate and Atmospheric Science, School of Earth &Environment, University of Leeds, UK
| | - H C Price
- Institute for Climate and Atmospheric Science, School of Earth &Environment, University of Leeds, UK
| | - J D Atkinson
- 1] Institute for Climate and Atmospheric Science, School of Earth &Environment, University of Leeds, UK [2] Now at Institute for Atmospheric and Climate Science, Universitaetstr. 16, ETH Zurich, Switzerland
| | - N S Umo
- Institute for Climate and Atmospheric Science, School of Earth &Environment, University of Leeds, UK
| | - M E Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| |
Collapse
|
10
|
Lorv JSH, Rose DR, Glick BR. Bacterial ice crystal controlling proteins. SCIENTIFICA 2014; 2014:976895. [PMID: 24579057 PMCID: PMC3918373 DOI: 10.1155/2014/976895] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/15/2013] [Indexed: 05/31/2023]
Abstract
Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.
Collapse
Affiliation(s)
- Janet S. H. Lorv
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - David R. Rose
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
11
|
Yu F, Liu X, Tao Y, Zhu K. High saturated fatty acids proportion in Escherichia coli enhances the activity of ice-nucleation protein from Pantoea ananatis. FEMS Microbiol Lett 2013; 345:141-6. [PMID: 23763336 DOI: 10.1111/1574-6968.12197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 11/29/2022] Open
Abstract
The ice-nucleation protein (INP) from Pantoea ananatis was expressed in Escherichia coli. INP expression increased the freezing point of the E. coli culture by a few degrees. Deletion of FabH, an important enzyme in fatty acid biosynthesis, significantly inhibited the ice-nucleation activity. Increased unsaturated fatty acids in the fabH mutant cells decreased the ice-nucleation activity. Adding exogenous saturated fatty acids increased both E. coli fatty acid saturation and the ice-nucleation activity. In contrast, adding unsaturated fatty acids exhibited the opposite effects. Furthermore, an E. coli MG1655-fadR strain with high saturated fatty acids content was constructed, in which the INP activity was enhanced by about 17% compared with its activity in the wild-type MG1655 strain.
Collapse
Affiliation(s)
- Feifei Yu
- Institute of Microbiology Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
12
|
|
13
|
Murray BJ, O'Sullivan D, Atkinson JD, Webb ME. Ice nucleation by particles immersed in supercooled cloud droplets. Chem Soc Rev 2012; 41:6519-54. [PMID: 22932664 DOI: 10.1039/c2cs35200a] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of ice particles in the Earth's atmosphere strongly affects the properties of clouds and their impact on climate. Despite the importance of ice formation in determining the properties of clouds, the Intergovernmental Panel on Climate Change (IPCC, 2007) was unable to assess the impact of atmospheric ice formation in their most recent report because our basic knowledge is insufficient. Part of the problem is the paucity of quantitative information on the ability of various atmospheric aerosol species to initiate ice formation. Here we review and assess the existing quantitative knowledge of ice nucleation by particles immersed within supercooled water droplets. We introduce aerosol species which have been identified in the past as potentially important ice nuclei and address their ice-nucleating ability when immersed in a supercooled droplet. We focus on mineral dusts, biological species (pollen, bacteria, fungal spores and plankton), carbonaceous combustion products and volcanic ash. In order to make a quantitative comparison we first introduce several ways of describing ice nucleation and then summarise the existing information according to the time-independent (singular) approximation. Using this approximation in combination with typical atmospheric loadings, we estimate the importance of ice nucleation by different aerosol types. According to these estimates we find that ice nucleation below about -15 °C is dominated by soot and mineral dusts. Above this temperature the only materials known to nucleate ice are biological, with quantitative data for other materials absent from the literature. We conclude with a summary of the challenges our community faces.
Collapse
Affiliation(s)
- B J Murray
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
14
|
Alpert PA, Aller JY, Knopf DA. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases. Phys Chem Chem Phys 2011; 13:19882-94. [DOI: 10.1039/c1cp21844a] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Lagriffoul A, Boudenne JL, Absi R, Ballet JJ, Berjeaud JM, Chevalier S, Creppy EE, Gilli E, Gadonna JP, Gadonna-Widehem P, Morris CE, Zini S. Bacterial-based additives for the production of artificial snow: what are the risks to human health? THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:1659-1666. [PMID: 20097407 DOI: 10.1016/j.scitotenv.2010.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/29/2009] [Accepted: 01/06/2010] [Indexed: 05/28/2023]
Abstract
For around two decades, artificial snow has been used by numerous winter sports resorts to ensure good snow cover at low altitude areas or more generally, to lengthen the skiing season. Biological additives derived from certain bacteria are regularly used to make artificial snow. However, the use of these additives has raised doubts concerning the potential impact on human health and the environment. In this context, the French health authorities have requested the French Agency for Environmental and Occupational Health Safety (Afsset) to assess the health risks resulting from the use of such additives. The health risk assessment was based on a review of the scientific literature, supplemented by professional consultations and expertise. Biological or chemical hazards from additives derived from the ice nucleation active bacterium Pseudomonas syringae were characterised. Potential health hazards to humans were considered in terms of infectious, toxic and allergenic capacities with respect to human populations liable to be exposed and the means of possible exposure. Taking into account these data, a qualitative risk assessment was carried out, according to four exposure scenarios, involving the different populations exposed, and the conditions and routes of exposure. It was concluded that certain health risks can exist for specific categories of professional workers (mainly snowmakers during additive mixing and dilution tank cleaning steps, with risks estimated to be negligible to low if workers comply with safety precautions). P. syringae does not present any pathogenic capacity to humans and that the level of its endotoxins found in artificial snow do not represent a danger beyond that of exposure to P. syringae endotoxins naturally present in snow. However, the risk of possible allergy in some particularly sensitive individuals cannot be excluded. Another important conclusion of this study concerns use of poor microbiological water quality to make artificial snow.
Collapse
Affiliation(s)
- A Lagriffoul
- Agence Française de Sécurité Sanitaire de l'Environnement et du Travail, avenue du Général Leclerc, Maisons-Alfort, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Muryoi N, Matsukawa K, Yamade K, Kawahara H, Obata H. Purification and properties of an ice-nucleating protein from an ice-nucleating bacterium, Pantoea ananatis KUIN-3. J Biosci Bioeng 2005; 95:157-63. [PMID: 16233385 DOI: 10.1016/s1389-1723(03)80122-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Accepted: 10/14/2002] [Indexed: 11/15/2022]
Abstract
An ice-nucleating protein (INP) from the extracellular ice-nucleating matter (EIM) of Pantoea ananatis (Erwinia uredovora) KUIN-3 was purified and characterized. The EIM produced by the strain KUIN-3 was purified by ultrafiltration, sucrose density-gradient ultracentrifugation and gel filtration. The INP was purified using of column chromatography on hydroxyapatite and Superdex 200 in the nondenaturing detergent of 0.1% (w/v) Triton X-100. The purified INP was composed of one subunit of 117 kDa according to SDS-PAGE. It has become apparent that the INP was the ice-nucleating lipoglycoprotein based on the reaction of carbohydrate stain and lipid stain with the INP. It was inhibited by p-mercuribenzoate and N-bromosuccinimide. The activity of the INP gradually decreased from 65 degrees C. The pH stability was held between pH 7.0 and pH 11.0. The INP had a lower ice-nucleating temperature below pH 6.0. It has become apparent that the INP consisted of the class C structure in the EIM based on its freezing difference spectrum in D2O versus H2O.
Collapse
Affiliation(s)
- Naomi Muryoi
- Department of Biotechnology, Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan.
| | | | | | | | | |
Collapse
|
17
|
Kawahara H. The structures and functions of ice crystal-controlling proteins from bacteria. J Biosci Bioeng 2005; 94:492-6. [PMID: 16233340 DOI: 10.1016/s1389-1723(02)80185-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2002] [Accepted: 09/03/2002] [Indexed: 11/18/2022]
Abstract
Many organisms have evolved into unique mechanisms which minimize freezing injury due to extracellular ice formation. Specifically, certain bacteria have produced a few proteins each with different functions. For example, the ice nucleation protein acts as a template for ice formation, which is responsible for imparting ice nucleating activity. The anti-nucleating protein inhibits the fluctuation of ice nucleus formation by a foreign particle in the water drop. Also, the antifreeze proteins depress the freezing temperature, modify or suppress ice crystal growth, inhibit ice recrystallization, and protect the cell membrane from cold-induced damage. In this article, a review on the current knowledge of the structure and the function of these three types of proteins, which are capable of interacting with ice itself or its nuclei from bacteria.
Collapse
Affiliation(s)
- Hidehisa Kawahara
- Department of Biotechnology, Faculty of Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
18
|
MURYOI NAOMI, MATSUKAWA KENJI, YAMADE KAZUHIRO, KAWAHARA HIDEHISA, OBATA HITOSHI. Purification and Properties of an Ice-Nucleating Protein from an Ice-Nucleating Bacterium, Pantoea ananatis KUIN-3. J Biosci Bioeng 2003. [DOI: 10.1263/jbb.95.157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
|
20
|
Palaiomylitou MA, Matis KA, Zouboulis AI, Kyriakidis DA. A kinetic model describing cell growth and production of highly active, recombinant ice nucleation protein in Escherichia coli. Biotechnol Bioeng 2002; 78:321-32. [PMID: 11920448 DOI: 10.1002/bit.10107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A structured kinetic model, which describes the production of the recombinant ice nucleation protein in different conditions, was applied. The model parameters were estimated based on the variation of the specific growth rate and the intracellular product concentration during cultivation. The equations employed relate the cellular plasmid content or plasmid copy number with the cloned-gene expression; these correlations were successfully tested on the experimental data. The optimal nutrient conditions for the growth of Escherichia coli expressing the inaZ gene of Pseudomonas syringae were determined for the production of active ice nucleation protein. The kinetics of the cultures expressing the inaZ gene were studied in a bioreactor at different growth temperatures and nutrient conditions.
Collapse
Affiliation(s)
- M A Palaiomylitou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece
| | | | | | | |
Collapse
|
21
|
Abstract
The simple linear polymer polyglycerol (PGL) was found to apparently bind and inhibit the ice nucleating activity of proteins from the ice nucleating bacterium Pseudomonas syringae. PGL of molecular mass 750 Da was added to a solution consisting of 1 ppm freeze-dried P. syringae 31A in water. Differential ice nucleator spectra were determined by measuring the distribution of freezing temperatures in a population of 98 drops of 1 microL volume. The mean freezing temperature was lowered from -6.8 degrees C (control) to -8.0,-9.4,-12.5, and -13.4 degrees C for 0.001, 0.01, 0.1, and 1% w/w PGL concentrations, respectively (SE < 0.2 degrees C). PGL was found to be an ineffective inhibitor of seven defined organic ice nucleating agents, whereas the general ice nucleation inhibitor polyvinyl alcohol (PVA) was found to be effective against five of the seven. The activity of PGL therefore seems to be specific against bacterial ice nucleating protein. PGL alone was an ineffective inhibitor of ice nucleation in small volumes of environmental or laboratory water samples, suggesting that the numerical majority of ice nucleating contaminants in nature may be of nonbacterial origin. However, PGL was more effective than PVA at suppressing initial ice nucleation events in large volumes, suggesting a ubiquitous sparse background of bacterial ice nucleating proteins with high nucleation efficiency. The combination of PGL and PVA was particularly effective for reducing ice formation in solutions used for cryopreservation by vitrification.
Collapse
Affiliation(s)
- Brian Wowk
- 21st Century Medicine, Inc., 10844 Edison Court, Rancho Cucamonga, CA 91730, USA.
| | | |
Collapse
|
22
|
KAWAHARA HIDEHISA. The Structures and Functions of Ice Crystal-Controlling Proteins from Bacteria. J Biosci Bioeng 2002. [DOI: 10.1263/jbb.94.492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Abstract
The relationship between the amino acid sequence and the three-dimensional structure of proteins with internal repeats is discussed. In particular, correlations between the amino acid composition and the ability to fold in a unique structure, as well as classification of the structures based on their repeat length, are described. This analysis suggests rules that can be used for the structural prediction of repeat-containing proteins. The paper is focused on prediction and modeling of solenoid-like proteins with the repeat length ranging between 5 and 40 residues. The models of leucine-rich repeat proteins and bacterial proteins with pentapeptide repeats are examined in light of the recently solved structures of the related molecules.
Collapse
Affiliation(s)
- A V Kajava
- Center for Molecular Modeling, Bethesda, Maryland 20892-5626, USA
| |
Collapse
|
24
|
Tegos G, Vargas C, Perysinakis A, Koukkou AI, Christogianni A, Nieto JJ, Ventosa A, Drainas C. Release of cell-free ice nuclei from Halomonas elongata expressing the ice nucleation gene inaZ of Pseudomonas syringae. J Appl Microbiol 2000; 89:785-92. [PMID: 11119152 DOI: 10.1046/j.1365-2672.2000.01180.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Release of ice nuclei in the growth medium of recombinant Halomonas elongata cells expressing the inaZ gene of Pseudomonas syringae was studied in an attempt to produce cell-free active ice nuclei for biotechnological applications. Cell-free ice nuclei were not retained by cellulose acetate filters of 0.2 microm pore size. Highest activity of cell-free ice nuclei was obtained when cells were grown in low salinity (0.5-5% NaCl, w/v). Freezing temperature threshold, estimated to be below -7 degrees C indicating class C nuclei, was not affected by medium salinity. Their density, as estimated by Percoll density centrifugation, was 1.018 +/- 0.002 gml(-1) and they were found to be free of lipids. Ice nuclei are released in the growth medium of recombinant H. elongata cells probably because of inefficient anchoring of the ice-nucleation protein aggregates in the outer membrane. The ice+ recombinant H. elongata cells could be useful for future use as a source of active cell-free ice nucleation protein.
Collapse
Affiliation(s)
- G Tegos
- Department of Chemistry, University of Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li J, Lee TC. Enhanced production of extracellular ice nucleators from Erwinia herbicola. J GEN APPL MICROBIOL 1998; 44:405-413. [PMID: 12501408 DOI: 10.2323/jgam.44.405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effects of growth conditions and chemical or physical treatments on the production of extracellular ice nucleators (ECINs) by Erwinia herbicola cells were investigated. The spontaneous release of ECINs, active at temperatures higher than -4 degrees C, into the environment depended on culture conditions, with optimal production when cells were grown in yeast extract to an early stationary phase at temperatures below 22 degrees C. ECINs were vesicular, released from cell surfaces with sizes ranging from 0.1 to 0.3 &mgr;m as determined by ultrafiltration and transmission electron microscopy. Protein profiles of ECIN fractions during bacterial growth were examined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE), and Ina proteins were detected by Western blotting. ECIN production was enhanced 5-fold when cells were treated with EDTA and 20- to 30-fold when subjected to sonication. These conditions provide a means for large-scale preparationage> ECINs by E. herbicola.
Collapse
Affiliation(s)
- Jingkun Li
- Department of Food Science and the Center for Advanced Food Technology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | |
Collapse
|
26
|
Palaiomylitou MA, Kalimanis A, Koukkou AI, Drainas C, Anastassopoulos E, Panopoulos NJ, Ekateriniadou LV, Kyriakidis DA. Phospholipid analysis and fractional reconstitution of the ice nucleation protein activity purified from Escherichia coli overexpressing the inaZ gene of Pseudomonas syringae. Cryobiology 1998; 37:67-76. [PMID: 9698431 DOI: 10.1006/cryo.1998.2102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ice nucleation protein was partially purified from the membrane fraction of E. coli carrying inaZ from Pseudomonas syringae. The ice nucleation protein was totally localized in the bacterial envelope and was extracted by either salt (0.25 M NH4Cl) or the nonionic detergent Tween 20. The extracted protein was partially purified by sequential passage through DEAE-52 cellulose and Sephacryl-S400 columns. The activity of the purified protein was lost after treatment with phospholipase C, and its activity was subsequently restored by addition of the naturally occurring lipid phosphatidylethanolamine. These results suggest that ice nucleation proteins have a requirement for lipids that reconstitute a physiological hydrophobic environment similar to the one existing in vivo, to attain and maintain a structure that enables ice catalysis.
Collapse
Affiliation(s)
- M A Palaiomylitou
- Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54006, Greece
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Hine AV, Brown TA. Synthesis and expression of a gene encoding a 48-residue repeat in the Pseudomonas syringae ice nucleation protein. Gene 1994; 142:73-8. [PMID: 8181760 DOI: 10.1016/0378-1119(94)90357-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of this work was to construct short analogues of the repetitive water-binding domain of the Pseudomonas syringae ice nucleation protein, InaZ. Structural analysis of these analogues might provide data pertaining to the protein-water contacts that underlie ice nucleation. An artificial gene coding for a 48-mer repeat sequence from InaZ was synthesized from four oligodeoxyribonucleotides and ligated into the expression vector, pGEX2T. The recombinant vector was cloned in Escherichia coli and a glutathione S-transferase fusion protein obtained. This fusion protein displayed a low level of ice-nucleating activity when tested by a droplet freezing assay. The fusion protein could be cleaved with thrombin, providing a means for future recovery of the 48-mer peptide in amounts suitable for structural analysis by nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- A V Hine
- Department of Biochemistry and Applied Molecular Biology, UMIST, Manchester, UK
| | | |
Collapse
|
29
|
Ruggles JA, Nemecek-Marshall M, Fall R. Kinetics of appearance and disappearance of classes of bacterial ice nuclei support an aggregation model for ice nucleus assembly. J Bacteriol 1993; 175:7216-21. [PMID: 8226668 PMCID: PMC206863 DOI: 10.1128/jb.175.22.7216-7221.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The kinetics of appearance and disappearance of three classes of ice nuclei in Pseudomonas syringae was investigated under conditions where high-level expression of the ice nucleation phenotype was obtained. The appearance of types 1, 2, and 3 ice nuclei, catalyzing nucleation at -2 to -5, -5 to -7, and -7 to -10 degrees C, respectively, was investigated during low-temperature induction in wild-type strains and in a unique, detergent-sensitive mutant that contained no type 3 ice nuclei when grown at 32 degrees C. Nuclei appeared in the following order: type 3, then type 2 and type 1. The disappearance of classes of ice nuclei was monitored during high-temperature treatment of fully induced cells; nuclei disappeared in the order type 1, type 2, and type 3. Although analysis of nucleation events is complicated by masking and unmasking of ice sites in the same cells, these temporal sequences of ice nucleus appearance or disappearance are consistent with an aggregation model for ice nucleus assembly (A. G. Govindarajan and S. E. Lindow, Proc. Natl. Acad. Sci. USA 85:1334-1338, 1988; G. Warren and P. Wolber, Mol. Microbiol. 5:239-243, 1991).
Collapse
Affiliation(s)
- J A Ruggles
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | | | |
Collapse
|
30
|
Gurian-Sherman D, Lindow SE, Panopoulos NJ. Isolation and characterization of hydroxylamine-induced mutations in the Erwinia herbicola ice nucleation gene that selectively reduce warm temperature ice nucleation activity. Mol Microbiol 1993; 9:383-91. [PMID: 8412688 DOI: 10.1111/j.1365-2958.1993.tb01699.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cells of ice nucleation active bacterial species catalyse ice formation over the temperature range of -2 to -12 degrees C. Current models of ice nucleus structure associate the size of ice nucleation protein aggregates with the temperature at which they catalyse ice formation. To better define the structural features of ice nucleation proteins responsible for the functional heterogeneity of ice nuclei within a genetically homogeneous collection of cells we used in vitro chemical mutagenesis to isolate mutants with reduced ability to nucleate ice at warm assay temperatures but which retain normal or near normal nucleation activity at cold temperatures (WIND, i.e. warm ice nucleus-deficient mutants). Nearly half of the mutants obtained after hydroxylamine mutagenesis of the iceE gene from Erwinia herbicola had this phenotype. The phenotypes and location of lesions on the genetic map of iceE were determined for a number of mutants. All WIND mutations were restricted to the portion of iceE encoding the repetitive region of the polypeptide. DNA sequencing of two WIND mutants revealed single nucleotide substitutions changing a conserved serine or glycine residue to phenylalanine and serine, respectively. The implications of these findings in structure/function models for the ice nucleation protein are discussed.
Collapse
Affiliation(s)
- D Gurian-Sherman
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | |
Collapse
|
31
|
Lindow SE, Andersen G, Beattie GA. Characteristics of Insertional Mutants of
Pseudomonas syringae
with Reduced Epiphytic Fitness. Appl Environ Microbiol 1993; 59:1593-601. [PMID: 16348939 PMCID: PMC182124 DOI: 10.1128/aem.59.5.1593-1601.1993] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random Tn
5
mutagenesis was used to identify genes ir.
Pseudomonas syringae
which contribute to epiphytic fitness. Mutants were selected on the basis of deficiencies in epiphytic growth or survival on plants rather than deficiencies in predetermined phenotypes exhibited in culture. A sample freezing procedure was used to measure the population sizes of 5,300 mutants of
P. syringae
exposed to alternating wet and dry conditions on bean leaves in growth chambers. Eighty-two mutants exhibited reduced population sizes. Of these mutants, over half exhibited a reduced ability to survive the stresses associated with dry leaves, while others grew more slowly or attained reduced stationary-phase population sizes on leaves. While some epiphytic fitness mutants were altered in phenotypes that could be measured in culture, many mutants were not altered in any in vitro phenotype examined. Only three of the epiphytic fitness mutants were auxotrophs, and none had catabolic deficiencies for any of 31 organic compounds tested. Other mutants that exhibited reductions in one or more of the following were identified: motility, osmotolerance, desiccation tolerance, growth rate in batch culture, and extracellular polysaccharide production. All of the mutants retained the abilities to produce disease symptoms on the compatible host plant, bean, to incite a hypersensitive response on the non-host plant, tobacco, and to produce a fluorescent pyoverdine siderophore.
Collapse
Affiliation(s)
- S E Lindow
- Department of Plant Pathology, University of California, Berkeley, California 94720
| | | | | |
Collapse
|
32
|
Affiliation(s)
- P K Wolber
- DNA Plant Technology Corporation, Oakland, CA 94608
| |
Collapse
|
33
|
Dar GH, Anand RC, Sharma PK. Genetically engineered microorganisms to rescue plants from frost injury. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 1993; 50:1-19. [PMID: 8213308 DOI: 10.1007/bfb0007384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ice nucleation active bacteria belonging to genera Pseudomonas, Xanthomonas and Erwinia contribute to frost damage to plants by initiating the formation of ice in plants that would otherwise supercool and avoid the damaging ice formation. The biological control of frost injury can be achieved by the application of non-ice nucleation active bacteria to the plant surfaces before they become colonized by Ice+ species. ice genes have been cloned from Pseudomonas and isogenic Ice- derivatives constructed via genetic manipulations. These genetically engineered microorganisms (GEMs) have been released into the environment to control the frost damage. The incidence of frost injury to the plants has, thereby, been reduced by 50-85% during natural frosts. These GEMs do not survive in soil and show no aerial dispersal in the environment.
Collapse
Affiliation(s)
- G H Dar
- Microbiology Section, S.K. University of Agricultural Sciences and Technology, Shalimar, Srinagar, Kashmir, India
| | | | | |
Collapse
|
34
|
Properties of cell-free ice nuclei from ice nucleation-active Pseudomonas fluorescens KUIN-1. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0922-338x(93)90046-b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
|
36
|
Kieft TL, Ruscetti T. Molecular sizes of lichen ice nucleation sites determined by gamma radiation inactivation analysis. Cryobiology 1992. [DOI: 10.1016/0011-2240(92)90042-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Abstract
Many organisms have evolved novel mechanisms to minimize freezing injury due to extracellular ice formation. This article reviews our present knowledge on the structure and mode of action of two types of proteins capable of ice interaction. The antifreeze proteins inhibit ice crystal formation and alter ice growth habits. The ice nucleation proteins, on the other hand, provide a proper template to stimulate ice growth. The potential applications of these proteins in different industries are discussed.
Collapse
Affiliation(s)
- C L Hew
- Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
38
|
Abstract
Certain organisms nucleate the crystallization of ice. This requires a small volume of water to be induced, probably by lattice-matching with a solid template, to form an 'ice embryo'--a region sharing at least some of the characteristics of macroscopic ice. It is of particular interest to understand the structure and function of biological structures capable of lattice-matching (or otherwise inducing a quasi-crystalline state). Some strains of the Gram-negative eubacterial genera Erwinia, Pseudomonas, and Xanthomonas, and the mycobionts of certain lichens, display ice-nucleating activity. In bacteria, the activity is conferred by a protein that contains three nested periodicities of repetition, which probably reflects a hierarchy of three motifs of structural repetition. Thus the tertiary structure of the ice-nucleation protein is likely to be regular, consistent with the expectation of its forming a template for lattice-matching. Even within a clonal culture, the nucleating sites formed by bacteria and lichens vary considerably in the threshold temperatures at which they display activity; this indicates wide variations in either the size of the template, or its structural regularity, or both. However, ice-nucleating sites of lichen and bacterial origin are clearly differentiated by their sensitivities to experimental treatments.
Collapse
Affiliation(s)
- G Warren
- DNA Plant Technology Corporation, Oakland, California 94608
| | | |
Collapse
|
39
|
Duman JG, Wen Wu D, Wolber PK, Mueller GM, Neven LG. Further characterization of the lipoprotein ice nucleator from freeze tolerant larvae of the cranefly Tipula trivittata. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0305-0491(91)90341-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Margaritis A, Bassi AS. Principles and biotechnological applications of bacterial ice nucleation. Crit Rev Biotechnol 1991; 11:277-95. [PMID: 1760850 DOI: 10.3109/07388559109069185] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Certain aerobic, Gram-negative bacteria, including the epiphytic plant pathogen, Pseudomonas syringae, possess a membrane protein that enables them to nucleate crystallization in supercooled water. Currently, these ice-nucleating (IN) bacteria are being used in snow making and have potential applications in the production and texturing of frozen foods, and as a replacement of silver iodide in cloud seeding. A negative aspect of these IN bacteria is frost damage to plant surfaces. Thus, of the various types of biological ice nucleators, bacteria have been the subject of most research and also appear relevant to the anticipated practical uses. The intent of this review is to explain the identification and ecology of the ice-nucleating bacteria, as well as to discuss aspects of molecular biology related to ice nucleation and consider existing and potential applications of this unique phenomenon.
Collapse
Affiliation(s)
- A Margaritis
- Department of Chemical and Biochemical Engineering, Faculty of Engineering Science, University of Western Ontario, London, Canada
| | | |
Collapse
|
41
|
Watanabe NM, Southworth MW, Warren GJ, Wolber PK. Rates of assembly and degradation of bacterial ice nuclei. Mol Microbiol 1990; 4:1871-9. [PMID: 2127952 DOI: 10.1111/j.1365-2958.1990.tb02036.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kinetics of ice-nucleus assembly from newly synthesized nucleation protein were observed following induction of nucleation gene expression in the heterologous host Escherichia coli. Assembly was significantly slower for the small proportion of ice nuclei active above -4.4 degrees C; this was consistent with the belief that these nuclei comprise the largest aggregates of nucleation protein. The kinetics of nucleus degradation were followed after inhibiting protein synthesis. Nucleation activity and protein showed a concerted decay, indicating that most of the functional ice nuclei are in equilibrium with a single cellular pool of nucleation protein. A minority of the ice nuclei decayed much more slowly than the majority; presumably their nucleation protein was distinct either by virtue of different structure or different subcellular compartmentalization, or because of its presence in a metabolically distinct subpopulation of cells.
Collapse
Affiliation(s)
- N M Watanabe
- DNA Plant Technology Corporation, Oakland, California 94608
| | | | | | | |
Collapse
|
42
|
Mueller GM, Wolber PK, Warren GJ. Clustering of ice nucleation protein correlates with ice nucleation activity. Cryobiology 1990; 27:416-22. [PMID: 2203606 DOI: 10.1016/0011-2240(90)90018-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibodies raised against a synthetic peptide specifically detect ice nucleation proteins from Pseudomonas species in Western blots. In immunofluorescent staining of whole bacteria, the antibodies reveal the protein in clusters, as indicated by patches of intense fluorescence in Escherichia coli cells heterologously expressing Pseudomonas ice nucleation genes. The abundance, size, and brightness of the clusters vary considerably from cell to cell. Their varying sizes may explain the variability in activity of bacterial ice nuclei. Growth at lower temperatures produces more ice nuclei, and gives brighter and more frequent patches, than growth at 37 degrees C. The observed clustering may thus reflect formation of functional ice nucleation sites in vivo. The presence of ice nucleation protein in clusters is also correlated with alterations in cell morphology.
Collapse
Affiliation(s)
- G M Mueller
- DNA Plant Technology Corporation, Oakland, California 94608
| | | | | |
Collapse
|
43
|
Abstract
Biological ice nuclei (active at approximately -4 degrees C) were extracted from cells of the lichen Rhizoplaca chrysoleuca by sonication. Sensitivity to proteases, guanidine hydrochloride, and urea showed these nuclei to be proteinaceous. The nuclei were relatively heat stable, active from pH 1.5 to 12, and active without lipids, thereby demonstrating significant differences from bacterial ice nuclei.
Collapse
Affiliation(s)
- T L Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro 87801
| | | |
Collapse
|
44
|
Obata H, Takeuchi S, Tokuyama T. Release of cell-free ice nuclei from Pseudomonas viridiflava with a Triton X-100/EDTA system and their ice nucleation properties. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0922-338x(90)90139-n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Abstract
Certain bacteria possess proteins that enable them to nucleate crystallization in supercooled water. These ice-nucleation proteins are thought to produce templates for the assembly of very small seed crystals of ice. The proteins from different species have related, internally repetitive primary structures, which may be directly responsible for aligning the water molecules of the seed crystal.
Collapse
|