1
|
Croce MV, Isla-Larrain M, Rabassa ME, Demichelis S, Colussi AG, Crespo M, Lacunza E, Segal-Eiras A. Lewis x is highly expressed in normal tissues: a comparative immunohistochemical study and literature revision. Pathol Oncol Res 2007; 13:130-8. [PMID: 17607374 DOI: 10.1007/bf02893488] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 05/10/2007] [Indexed: 01/22/2023]
Abstract
An immunohistochemical analysis was employed to determine the expression of carbohydrate antigens associated to mucins in normal epithelia. Tissue samples were obtained as biopsies from normal breast (18), colon (35) and oral cavity mucosa (8). The following carbohydrate epitopes were studied: sialyl-Lewis x, Lewis x, Lewis y, Tn hapten, sialyl-Tn and Thomsen-Friedenreich antigen. Mucins were also studied employing antibodies against MUC1, MUC2, MUC4, MUC5AC, MUC6 and also normal colonic glycolipid. Statistical analysis was performed and Kendall correlations were obtained. Lewis x showed an apical pattern mainly at plasma membrane, although cytoplasmic staining was also found in most samples. TF, Tn and sTn haptens were detected in few specimens, while sLewis x was found in oral mucosa and breast tissue. Also, normal breast expressed MUC1 at a high percentage, whereas MUC4 was observed in a small number of samples. Colon specimens mainly expressed MUC2 and MUC1, while most oral mucosa samples expressed MUC4 and MUC1. A positive correlation between MUC1VNTR and TF epitope (r=0.396) was found in breast samples, while in colon specimens MUC2 and colonic glycolipid versus Lewis x were statistically significantly correlated (r=0.28 and r=0.29, respectively). As a conclusion, a defined carbohydrate epitope expression is not exclusive of normal tissue or a determined localization, and it is possible to assume that different glycoproteins and glycolipids may be carriers of carbohydrate antigens depending on the tissue localization considered.
Collapse
Affiliation(s)
- María V Croce
- Centre of Basic and Applied Immunological Research (CINIBA), Faculty of Medical Sciences, UNLP, La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Yoshida M, Yokota S, Ouchi S. Characterization and distribution of O-glycosylated carbohydrates in the cell adhesion molecule, contact site A, from Dictyostelium discoideum. Exp Cell Res 1997; 230:393-8. [PMID: 9024799 DOI: 10.1006/excr.1996.3434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper presents further investigation of the properties of carbohydrate II in the cell adhesion molecule, contact site A, from Dictyostelium discoideum. A purified contact site A was digested with Achromobacter protease I to produce a 31-kDa fragment to which carbohydrate II was mainly bound and a 21-kDa fragment containing the NH2 terminus of contact site A, which was identified as Ala-Pro-Thr-Ile-Thr-Ala. The NH2 terminus of the 31-kDa fragment was Thr-Glu-Ala-Thr-Thr-Ser. It was estimated from the cDNA sequence data of contact site A that more than 20 Ser/Thr residues exist as target sites for the O-linked oligosaccharides in the 31-kDa fragment, but not for the N-linked oligosaccharides. These results suggest that carbohydrate II exists as clustered O-linked oligosaccharides in the COOH terminus of contact site A. The results of two-dimensional electrophoresis confirm that oligosaccharides of contact site A contain sialic acids. Immunoelectron microscopy was carried out to define the organelle in which O-glycosylation by carbohydrate II occurs and how carbohydrate II antigens are distributed on the cell surface. The results show that O-glycosylation can occur in the Golgi apparatus in D. discoideum as observed in other cells, although this O-glycosylation was inhibited by tunicamycin. Furthermore, gold particles were densely concentrated in cell-cell contact regions but sparsely distributed in noncontact regions.
Collapse
Affiliation(s)
- M Yoshida
- Research Institute of Food Science, Kinki University, Higashi-Osaka, Japan
| | | | | |
Collapse
|
3
|
Abstract
L-selectin, a member of the selectin family of leukocyte-endothelial adhesion proteins, mediates the initial attachment of lymphocytes to lymph node high endothelial venules during lymphocyte recirculation. One of the endothelial-associated ligands for L-selectin is GlyCAM-1, a mucin-like glycoprotein, which presents novel sulfated, sialylated and fucosylated O-glycans. In order to understand the generation of these glycans, we have examined the biosynthesis of GlyCAM-1 in lymph node organ culture. Using peptide-specific antibodies, lectins, and recombinant L-selectin, we detected the following species of GlyCAM-1: unglycosylated (< 28 kDa); modified with GalNAc only (28-33 kDa); modified with sialic acid, fucose, and sulfate but lacking L-selectin reactivity (40-50 kDa); and mature (L-selectin-reactive) ligand (50-60 kDa). Pulse-chase labeling at 15 degrees C suggested that GalNAc is added in a pre-Golgi compartment. Treatment with brefeldin A almost completely blocked sulfation, indicating that this modification occurs in the trans-Golgi network. Two distinct sialylation events occurred in the presence of brefeldin A, while fucosylation was partially blocked. We conclude that sialylation precedes both fucosylation and sulfation during biosynthesis. This ordering will help to identify the critical acceptor structures recognized by lymph node glycosyltransferases and sulfotransferases.
Collapse
Affiliation(s)
- D Crommie
- Department of Anatomy and Program in Immunology, University of California, San Francisco 94143-0452, USA
| | | |
Collapse
|
4
|
Brockhausen I. Chapter 5 Biosynthesis 3. Biosynthesis of O-Glycans of the N-Acetylgalactosamine-α-Ser/Thr Linkage Type. NEW COMPREHENSIVE BIOCHEMISTRY 1995. [DOI: 10.1016/s0167-7306(08)60593-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Egea G, Francí C, Gambús G, Lesuffleur T, Zweibaum A, Real FX. cis-Golgi resident proteins and O-glycans are abnormally compartmentalized in the RER of colon cancer cells. J Cell Sci 1993; 105 ( Pt 3):819-30. [PMID: 7691849 DOI: 10.1242/jcs.105.3.819] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neoplastic transformation is commonly associated with altered glycosylation of proteins and lipids. To understand the basis for altered mucin glycosylation, we have examined the distribution of RER markers, a cis-Golgi resident protein, and the GalNAc alpha-O-Ser/Thr epitope (Tn) in human colon cancer cells and in normal colon. In cultured mucin-producing colon cancer cells, Gal-NAc alpha-O-Ser/Thr was found in mucin droplets and in RER cisternae. In addition, the Golgi apparatus was disorganized in a proportion of cells and a 130 kDa cis-Golgi resident protein was also abnormally redistributed to the RER. The distribution of the MUC2 intestinal apomucin, protein disulphide isomerase, Gal-NAc alpha-O-Ser/Thr, and the 130 kDa cis-Golgi resident protein was analysed in normal colon and in colon cancer tissues. In normal colon, MUC2 apomucin and protein disulphide isomerase were located in the RER, whereas the cis-Golgi resident protein and GalNAc alpha-O-Ser/Thr were detected only in the cis-Golgi compartment. In contrast, the two Golgi markers colocalized with the MUC2 apomucin and protein disulphide isomerase in the RER of colon cancer cells. On the basis of these results, we propose that in colon cancer cells a redistribution of molecules normally present in the Golgi apparatus takes place; this alteration may contribute to the abnormal glycosylation of proteins and lipids associated with neoplastic transformation.
Collapse
Affiliation(s)
- G Egea
- Departament d'Immunologia, Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Pascale M, Erra M, Malagolini N, Serafini-Cessi F, Leone A, Bonatti S. Post-translational processing of an O-glycosylated protein, the human CD8 glycoprotein, during the intracellular transport to the plasma membrane. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74024-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Carraway KL, Fregien N, Carraway KL, Carraway CA. Tumor sialomucin complexes as tumor antigens and modulators of cellular interactions and proliferation. J Cell Sci 1992; 103 ( Pt 2):299-307. [PMID: 1478934 DOI: 10.1242/jcs.103.2.299] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- K L Carraway
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, FL 33101
| | | | | | | |
Collapse
|
8
|
Rosa P, Mantovani S, Rosboch R, Huttner W. Monensin and brefeldin A differentially affect the phosphorylation and sulfation of secretory proteins. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49828-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Abstract
Considerable advances have been made in recent years in our understanding of the biochemistry of mucin-type glycoproteins. This class of compounds is characterized mainly by a high level of O-linked oligosaccharides. Initially, the glycoproteins were solely known as the major constituents of mucus. Recent studies have shown that mucins from the gastrointestinal tract, lungs, salivary glands, sweat glands, breast, and tumor cells are structurally related to high-molecular-weight glycoproteins, which are produced by epithelial cells as membrane proteins. During mucin synthesis, an orchestrated sequence of events results in giant molecules of Mr 4 to 6 x 10(6), which are stored in mucous granules until secretion. Once secreted, mucin forms a barrier, not only to protect the delicate epithelial cells against the extracellular environment, but also to select substances for binding and uptake by these epithelia. This review is designed to critically examine relations between structure and function of the different compounds categorized as mucin glycoproteins.
Collapse
Affiliation(s)
- G J Strous
- Laboratory of Cell Biology, University of Utrecht, The Netherlands
| | | |
Collapse
|
10
|
Watkins SC, Slayter HS, Codington JF. Intracellular pathway of a mucin-type membrane glycoprotein in mouse mammary tumor cells. Carbohydr Res 1991; 213:185-200. [PMID: 1933937 DOI: 10.1016/s0008-6215(00)90608-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epiglycanin, a mucin-type glycoprotein, was found by immunoelectron microscopy to be located in cytoplasmic compartments, as well as at the surface of the TA3-Ha mammary carcinoma ascites cell. The glycoprotein was identified by means of gold-labeled secondary antibody bound to a primary anti-epiglycanin monoclonal antibody or by lectins specific for carbohydrate structures in epiglycanin. The primary antibody recognized a glycopeptide component containing a beta-D-(1----3)-D-GalNAc chain attached to a serine or threonine residue. Two routes to the cell surface from epiglycanins's first-recognized location in the trans-Golgi reticulum were suggested. Its presence in vesicles, which fuse with the cell surface, would explain the presence of epiglycanin as an integral membrane protein. Some of these observed vesicles, however, may be endocytotic in character. Epiglycanin was also found in large multivesiculate sacs which were observed on occasion to be open to the extracellular milieu. This finding, as well as the observed fusion of small vesicles from the trans-Golgi network with the sacs, strongly suggested exocytotic migration for the large sacs. Endocytotic migration may also be possible, although incubation of viable cells with gold-labeled antiepiglycanin antibody resulted in minimal uptake within the intracellular sacs, and incubation with [125I]-epiglycanin under metabolic conditions resulted in no detectable uptake of radiolabel by the cells.
Collapse
Affiliation(s)
- S C Watkins
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
11
|
Biosynthesis of truncated O-glycans in the T cell line Jurkat. Localization of O-glycan initiation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38842-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Sheng ZQ, Hull SR, Carraway KL. Biosynthesis of the cell surface sialomucin complex of ascites 13762 rat mammary adenocarcinoma cells from a high molecular weight precursor. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38917-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Ichihara-Tanaka K, Titani K, Sekiguchi K. Recombinant carboxyl-terminal fibrin-binding domain of human fibronectin expressed in mouse L cells. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40244-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Piller V, Piller F, Klier FG, Fukuda M. O-glycosylation of leukosialin in K562 cells. Evidence for initiation and elongation in early Golgi compartments. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:123-35. [PMID: 2526734 DOI: 10.1111/j.1432-1033.1989.tb14904.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The O-glycosylation of leukosialin, a major sialoglycoprotein found on leukocytes, has been studied in the human erythroleukemic cell line K562. The appearance of its O-linked chains has been followed in pulse-chase experiments with [35S]methionine by immunoprecipitation with an anti-peptide antiserum as well as with a lectin from Salvia sclarea seeds (SSA) specific for GalNAc-Ser/Thr and the peanut (Arachis hypogaea) agglutinin (PNA) which recognizes Gal beta 1----3GalNAc-Ser/Thr structures. An O-glycan-free precursor was converted into the fully O-glycosylated mature form within the 10-min labeling period and no intermediates carrying only GalNAc-Ser/Thr structures could be detected. The ionophore monensin was used in order to slow down intracellular traffic and thus O-glycan synthesis. The drug partly inhibited the transport from rough endoplasmic reticulum (RER) to the Golgi and also the cell-surface expression of leukosialin. It was found to have a marked effect on the synthesis of O-linked carbohydrate structures of leukosialin since the amount of O-glycans containing only GalNAc or NeuNAc alpha 2----6GalNAc was significantly increased after monensin treatment. Under these conditions the biosynthesis of the N-glycan on leukosialin was completely arrested in an endoglycosidase-H-sensitive step of processing, whereas the O-glycans already contained galactose and sialic acid although at a reduced level. On the other hand, the small amounts of leukosialin expressed on the cell surface of monensin-treated cells carried the same glycans as those remaining blocked inside the cell. In addition, immunocytochemical studies using SSA and PNA on untreated K562 cells suggested the absence of detectable amounts of GalNAc-Ser/Thr-bearing glycoproteins in the RER as well as in the Golgi. In contrast Gal beta 1----3GalNAc structures could be detected on intracellular membranes which were tentatively identified as the cis-Golgi. Together these results lead us to the following conclusions: N-glycan transfer occurs in the RER before the initiation of O-glycans which takes place at the entrance of the protein into the Golgi; further elongation of O-glycans with galactose and sialic acid follows very rapidly, probably before the final processing of N-glycans to complex-type structures.
Collapse
Affiliation(s)
- V Piller
- La Jolla Cancer Research Foundation, Cancer Research Center
| | | | | | | |
Collapse
|
15
|
Hull SR, Carraway KL. Sulfation of the tumor cell surface sialomucin of the 13762 rat mammary adenocarcinoma. J Cell Biochem 1989; 40:67-81. [PMID: 2745574 DOI: 10.1002/jcb.240400108] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ASGP-1, the major cell surface sialomucin of the 13762 ascites rat mammary adenocarcinoma, is at least 0.5% of the total ascites cell protein and has sulfate on 20% of its O-linked oligosaccharide chains. We have used this system to investigate the O-glycosylation pathway in these cells and to determine the temporal relationship between sulfation and sialylation. The two major sulfated oligosaccharides (S-1 and S-2) were isolated as their oligosaccharitols by alkaline borohydride elimination, anion exchange HPLC, and ion-suppression HPLC. From structural analyses S-1 is proposed to be a branched, sulfated trisaccharide -O4S-GlcNAc beta 1,6-(Gal beta 1,3)-GalNAc and S-2 its sialylated derivative -O4S-GlcNAc beta 1,6-(NeuAc alpha 2,3-Gal beta 1,3)-GalNac. Pulse labeling with sulfate indicated that sulfation occurred primarily on a form of ASGP-1 intermediate in size between immature and mature sialomucin. Pulse-chase analyses showed that the intermediate could be chased into mature ASGP-1. The concomitant conversion of S-1 into S-2 had a half-time of less than 5 min. Monensin treatment of the tumor cells led to a 95% inhibition of sulfation with the accumulation of unsulfated trisaccharide GlcNAc beta 1,6-(Gal beta 1,3)-GalNAc and sialylated derivative GlcNAc beta 1,6-(NeuAc alpha 2,3-Gal beta 1,3)-GalNAc. These data suggest that sulfation of ASGP-1 is an intermediate synthetic step, which competes with beta-1,4-galactosylation for the trisaccharide intermediate and thus occurs in the same compartment as beta-1,4-galactosylation. Moreover, sulfation precedes sialylation, but the two are rapidly successive kinetic events in the oligosaccharide assembly of ASGP-1.
Collapse
Affiliation(s)
- S R Hull
- Department of Anatomy and Cell Biology, University of Miami School of Medicine, Florida 33101
| | | |
Collapse
|
16
|
Abstract
O-glycosylation is the post-translational process whereby carbohydrate is added to hydroxylated amino acids of proteins. The major O-glycosylation pathway in animal cells is involved in the synthesis of oligosaccharides linked by N-acetylgalactosamine to serine or threonine residues in 'mucin-type' proteins or their analogs. In this review, we discuss the evidence for the cellular localization of the biosynthetic steps in this pathway and propose a simplified, consensus version. We also propose variations of the simple pathway to account for its heterogeneity and variability in different cell types and differentiation states.
Collapse
|