1
|
Asenjo JL, Ludwig HC, Droppelmann CA, Cárcamo JG, Concha II, Yáñez AJ, Cárdenas ML, Cornish-Bowden A, Slebe JC. Subunit interactions in pig-kidney fructose-1,6-bisphosphatase: Binding of substrate induces a second class of site with lowered affinity and catalytic activity. Biochim Biophys Acta Gen Subj 2014; 1840:1798-807. [DOI: 10.1016/j.bbagen.2013.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/28/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
|
2
|
Gao Y, Shen L, Honzatko RB. Central cavity of fructose-1,6-bisphosphatase and the evolution of AMP/fructose 2,6-bisphosphate synergism in eukaryotic organisms. J Biol Chem 2014; 289:8450-61. [PMID: 24436333 DOI: 10.1074/jbc.m114.548586] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) on porcine fructose-1,6-bisphosphatase (pFBPase) and Escherichia coli FBPase (eFBPase) differ in three respects. AMP/Fru-2,6-P2 synergism in pFBPase is absent in eFBPase. Fru-2,6-P2 induces a 13° subunit pair rotation in pFBPase but no rotation in eFBPase. Hydrophilic side chains in eFBPase occupy what otherwise would be a central aqueous cavity observed in pFBPase. Explored here is the linkage of AMP/Fru-2,6-P2 synergism to the central cavity and the evolution of synergism in FBPases. The single mutation Ser(45) → His substantially fills the central cavity of pFBPase, and the triple mutation Ser(45) → His, Thr(46) → Arg, and Leu(186) → Tyr replaces porcine with E. coli type side chains. Both single and triple mutations significantly reduce synergism while retaining other wild-type kinetic properties. Similar to the effect of Fru-2,6-P2 on eFBPase, the triple mutant of pFBPase with bound Fru-2,6-P2 exhibits only a 2° subunit pair rotation as opposed to the 13° rotation exhibited by the Fru-2,6-P2 complex of wild-type pFBPase. The side chain at position 45 is small in all available eukaryotic FBPases but large and hydrophilic in bacterial FBPases, similar to eFBPase. Sequence information indicates the likelihood of synergism in the FBPase from Leptospira interrogans (lFBPase), and indeed recombinant lFBPase exhibits AMP/Fru-2,6-P2 synergism. Unexpectedly, however, AMP also enhances Fru-6-P binding to lFBPase. Taken together, these observations suggest the evolution of AMP/Fru-2,6-P2 synergism in eukaryotic FBPases from an ancestral FBPase having a central aqueous cavity and exhibiting synergistic feedback inhibition by AMP and Fru-6-P.
Collapse
Affiliation(s)
- Yang Gao
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | | | | |
Collapse
|
3
|
Targets of chloroacetaldehyde-induced nephrotoxicity. Toxicol In Vitro 2009; 24:99-107. [PMID: 19733226 DOI: 10.1016/j.tiv.2009.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/27/2009] [Accepted: 08/28/2009] [Indexed: 02/01/2023]
Abstract
Chloroacetaldehyde, one of the main products of hepatic ifosfamide metabolism, contributes to its nephrotoxicity. However, the pathophysiology of this toxicity is not fully understood. The present work examined the time and dose effects of clinically relevant concentrations of chloroacetaldehyde (25-75microM) on precision-cut rat renal cortical slices metabolizing a physiological concentration of lactate. Chloroacetaldehyde toxicity was demonstrated by the decrease in total glutathione and cellular ATP levels. The drop of cellular ATP was linked to the inhibition of oxidative phosphorylation at the level of complex I of the mitochondrial respiratory chain. The large decrease in glucose synthesis from lactate was explained by the inhibition of some gluconeogenic enzymes, mainly glyceraldehyde 3-phosphate dehydrogenase. The decrease in lactate utilization was demonstrated not only by a defect of gluconeogenesis but also by the decrease in [(14)CO(2)] formation from [U-(14)C]-lactate. All the effects of chloroacetaldehyde were concentration and time-dependent. Finally, the chloroacetaldehyde-induced inhibition of glyceraldehyde 3-phosphate dehydrogenase, which is also a glycolytic enzyme, suggests that, under conditions close to those found during ifosfamide therapy, the inhibition of glycolytic pathway by chloroacetaldehyde might be responsible, at least in part, for the therapeutic efficacy of ifosfamide.
Collapse
|
4
|
Dziewulska-Szwajkowska D, Dzugaj A. Regulatory properties of Rana esculenta liver D-fructose-1,6-bisphosphate 1-phosphohydrolase and their comparison with properties of other vertebrate liver isoenzymes. Comp Biochem Physiol B Biochem Mol Biol 1999; 122:241-51. [PMID: 10327613 DOI: 10.1016/s0305-0491(99)00005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
D-Fructose-1,6-bisphosphate 1-phosphohydrolase [EC 3.1.3.11] (Fru-1,6P2ase), a regulatory enzyme of gluconeogenesis, was isolated from Rana esculenta liver in homogeneous from with approximately 30% yield. Basic kinetic properties of the enzyme and its subunit molecular weight were determined. Km is 1.72 microM. Like other vertebrate Fru-1,6P2ase, the frog liver enzyme is inhibited by fructose-2,6-bisphosphate (Fru-2,6P2) competitively, Ki is 78 nM and by AMP allosterically, I0.5 is 10.9 microM. Both inhibitors (Fru-2,6P2 and AMP) act synergistically on liver Fru-1,6-P2ase. Ki for Fru-2,6P2 determined in the presence of 1-10 microM of AMP were 35-2 nM, respectively. Maximum activity was found at pH 7.5. Like other Fru-1,6P2ases, the frog enzyme requires magnesium ions for its activity and is activated by potassium ions; the Ka for Mg2+ is 267 microM, Ka for K+ is 77 mM. The subunit molecular weight of the frog liver Fru-1,6P2ase was 37,300 Da. A great similarity between regulatory properties of frog liver Fru-1,6P2ase and liver enzymes of other vertebrates, suggests a similar regulation of gluconeogenesis in amphibia and other vertebrates.
Collapse
|
5
|
Shyur LF, Aleshin AE, Honzatko RB, Fromm HJ. Biochemical properties of mutant and wild-type fructose-1,6-bisphosphatases are consistent with the coupling of intra- and intersubunit conformational changes in the T- and R-state transition. J Biol Chem 1996; 271:33301-7. [PMID: 8969189 DOI: 10.1074/jbc.271.52.33301] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The significance of interactions between AMP domains in recombinant porcine fructose-1,6-bisphosphatase (FBPase) is explored by site-directed mutagenesis and kinetic characterization of homogeneous preparations of mutant enzymes. Mutations of Lys42, Ile190, and Gly191 do not perturb the circular dichroism spectra, but have significant effects on ligand binding and mechanisms of cooperativity. The Km for fructose 1,6-bisphosphate and the Ki for the competitive inhibitor, fructose 2,6-bisphosphate, decreased by as much as 4- and 8-fold, respectively, in the Q32L, K42E, K42T, I190T, and G191A mutants relative to the wild-type enzyme. Q32L, unlike the other four mutants, exhibited a 1.7-fold increase in Kcat. Mg2+ binding is sigmoidal for the five mutants as well as for the wild-type enzyme, but the Mg2+ affinities were decreased (3-22-fold) in mutant FBPases. With the exception of Q32L (8-fold increase), the 50% inhibiting concentrations of AMP for K42E, K42T, I190T, and G191A were increased over 2,000-fold (>10 mM) relative to the wild-type enzyme. Most importantly, a loss of AMP cooperativity was found with K42E, K42T, I190T, and G191A. In addition, the mechanism of AMP inhibition with respect to Mg2+ was changed from competitive to noncompetitive for K42T, I190T, and G191A FBPases. Structural modeling and kinetic studies suggest that Lys42, Ile190, and Gly191 are located at the pivot point of intersubunit conformational changes that energetically couple the Mg2+-binding site to the AMP domain of FBPase.
Collapse
Affiliation(s)
- L F Shyur
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
6
|
Shyur LF, Aleshin AE, Honzatko RB, Fromm HJ. Site-directed mutagenesis of residues at subunit interfaces of porcine fructose-1,6-bisphosphatase. J Biol Chem 1996; 271:3005-10. [PMID: 8621693 DOI: 10.1074/jbc.271.6.3005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mutation of Arg-15, Glu-19, Arg-22, and Thr-27 of porcine liver fructose-1,6-bisphosphatase was carried out by site-directed mutagenesis. These residues are conserved in all known primary sequences of mammalian fructose-1,6-bisphosphatase. On the basis of the crystal structure of the enzyme, Arg-15, Glu-19, and Arg-22 are located at the interface of the two dimers (C1-C2 and C3-C4), and Thr-27 is in the AMP binding site. The wild-type and mutant forms of the enzyme were purified to homogeneity and characterized by initial rate kinetics and circular dichroism (CD) spectrometry. No discernible differences were observed between the secondary structures of the wild-type and mutant forms of fructose-1, 6-bisphosphatase on the basis of CD data. Kinetic analyses revealed similar kcat values for mutants R15A, E19Q, R22K, and T27A of fructose-1,6-bisphosphatase; however, a 2-fold increase of kcat was observed with R22M compared with that of the wild-type enzyme. Small changes in Km values for fructose-1,6-bisphosphate were found in the five mutants. 4 6-fold decreases in Ki values for fructose 2,6-bisphosphate and 5-9-fold decreases in the binding affinity of Mg2+ relative to the wild-type enzyme were exhibited by R15A and E19Q. No alteration of Mg2+ cooperativity was found in the five mutants. Significant changes in Ki values for AMP were obtained in the case of R22K (30-fold) and T27A (1300-fold) with a Hill coefficient of 2.0. Replacement of Arg-22 with methionine, however, caused the total loss of AMP cooperativity without changing AMP affinity. Modeling of the mutant structures was undertaken in an attempt to define the functional role of Arg-22. These studies link specific interactions between subunits in fructose-1,6-bisphosphatase to observed properties of cooperativity.
Collapse
Affiliation(s)
- L F Shyur
- Department of Biochemistry and Biophysics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
7
|
Sola MM, Oliver FJ, Salto R, Gutiérrez M, Vargas AM. Regulation of rat-kidney cortex fructose-1,6-bisphosphatase activity. I. Effects of fructose-2,6-bisphosphate and divalent cations. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:1963-8. [PMID: 8138035 DOI: 10.1016/0020-711x(88)90332-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The native rat-kidney cortex Fructose-1,6-BPase is differentially regulated by Mg2+ and Mn2+. 2. Mg2+ binding to the enzyme is hyperbolic and large concentrations of the cation are non-inhibitory. 3. Mn2+ produces a 10-fold rise in Vmax higher than Mg2+. [Mn2+]0.5 is much larger than [Mg2+]0.5. At elevated [Mn2+] inhibition is observed. 4. Mg2+ and Mn2+ produce antagonistic effects on the inhibition of the enzyme by high substrate. 5. Fru-2,6-P2 inhibits the enzyme by rising the S0.5 and favouring a sigmoidal kinetics. 6. The inhibition by Fru-2,6-P2 is released by Mg2+ and more powerfully by Mn2+ increasing the I0.5.
Collapse
Affiliation(s)
- M M Sola
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | | | |
Collapse
|
8
|
Dziewulska-Szwajkowska D, Skałecki K, Dzugaj A. Kinetic parameters of human and rabbit liver D-fructose 1,6-diphosphate 1-phosphohydrolase determined at 25 and 37 degrees C. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1993; 105:395-400. [PMID: 8395376 DOI: 10.1016/0305-0491(93)90247-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Kinetic parameters of human and rabbit liver D-fructose 1,6-diphosphate 1-phosphohydrolase (EC 3.1.3.11) (FDP-ase) at 25 and 37 degrees C have been determined. 2. Km determined at 25 degrees C were 1.4 microM for human and 1.6 microM for rabbit enzyme; at 37 degrees C, corresponding values were 1.7 and 1.8 microM. 3. Both enzymes are allosterically inhibited by AMP. Respective values of I0.5 were 7.2 microM for human and 13.2 microM for rabbit at 25 degrees C, and 16.6 microM for human and 27.3 microM for rabbit at 37 degrees C. 4. Fructose 2,6-diphosphate, a potent regulator of gluconeogenesis, is more effective at 25 than at 37 degrees C. Ki determined at 25 degrees C was 0.07 microM for human and 0.035 microM for rabbit in comparison with 0.17 microM for human and 0.09 microM for rabbit at 37 degrees C. 5. Affinity of FDP-ase for magnesium is also dependent on temperature. For the human enzyme, Km at 25 degrees C was 226 microM and at 37 degrees C, 176 microM. For the rabbit enzyme, corresponding values were 256 and 240 microM. 6. Both enzymes are activated by KCl. Determined values of A0.5 were 91 mM for human, and 50 mM for rabbit enzyme at 25 degrees C, and 129 mM for human and 100 mM for rabbit enzyme at 37 degrees C.
Collapse
|
9
|
Reyes AM, Bravo N, Ludwig H, Iriarte A, Slebe JC. Modification of Cys-128 of pig kidney fructose 1,6-bisphosphatase with different thiol reagents: size dependent effect on the substrate and fructose-2,6-bisphosphate interaction. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:159-68. [PMID: 8387793 DOI: 10.1007/bf01026037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide was shown to abolish the inhibition by fructose 2,6-bisphosphate, which also protected the enzyme against this chemical modification [Reyes, A., Burgos, M. E., Hubert, E., and Slebe, J. C. (1987), J. Biol. Chem. 262, 8451-8454]. On the basis of these results, it was suggested that a single reactive sulfhydryl group was essential for the inhibition. We have isolated a peptide bearing the N-ethylmaleimide target site and the modified residue has been identified as cysteine-128. We have further examined the reactivity of this group and demonstrated that when reagents with bulky groups are used to modify the protein at the reactive sulfhydryl [e.g., N-ethylmaleimide or 5,5'-dithiobis-(2-nitrobenzoate)], most of the fructose 2,6-bisphosphate inhibition potential is lost. However, there is only partial or no loss of inhibition when smaller groups (e.g., cyanate or cyanide) are introduced. Kinetic and ultraviolet difference spectroscopy-binding studies show that the treatment of fructose 1,6-bisphosphatase with N-ethylmaleimide causes a considerable reduction in the affinity of the enzyme for fructose 2,6-bisphosphate while affinity for fructose 1,6-bisphosphate does not change. We can conclude that modification of this reactive sulfhydryl affects the enzyme sensitivity to fructose 2,6-bisphosphate inhibition by sterically interfering with the binding of this sugar bisphosphate, although this residue does not seem to be essential for the inhibition to occur. The results also suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate may interact with the enzyme in a different way.
Collapse
Affiliation(s)
- A M Reyes
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia
| | | | | | | | | |
Collapse
|
10
|
Maier K, Hinze H, Holzer H. Inactivation of enzymes and an enzyme inhibitor by oxidative modification with chlorinated amines and metal-catalyzed oxidation systems. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1079:238-41. [PMID: 1832966 DOI: 10.1016/0167-4838(91)90131-i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative inactivation of various key enzymes and alpha-1-proteinase inhibitor (alpha-1-PI) was studied by treatment with N-chloramines and the metal-catalyzed oxidation (MCO)-systems ascorbate/Fe(III) and ascorbate/Cu(II). Chlorinated amines completely inhibited alpha-1-PI, fructose-1,6-bis phosphatase (Fru-P2ase) and glyceraldehyde phosphate dehydrogenase (GAPD) at a low molar excess, and glucose-6-phosphate dehydrogenase (G6PD) at a high molar excess, but did not impair beta-N-acetylglucosaminidase (beta-NAG), alkaline phosphatase (AP) or lactate dehydrogenase (LDH). MCO-systems affected the activities of Fru-P2ase, GAPD, AP, LDH and G6PD, but not those of beta-NAG or alpha-1-PI. EDTA prevented inactivation of Fru-P2ase, G6PD and LDH by ascorbate/Cu(II) and of Fru-P2ase by ascorbate/Fe(III) suggesting a site-specific oxidation catalyzed by a protein-bound metal ion. In conclusion, N-chloramines and MCO-systems exhibited different properties with regard to oxidative inactivation, sulfhydryl-enzymes were susceptible to both systems, but other enzymes were only susceptible to one or neither system.
Collapse
Affiliation(s)
- K Maier
- GSF-Forschungszentrum für Umwelt, Gesundheit, Projekt Inhalation, F.R.G
| | | | | |
Collapse
|
11
|
Vargas A, Sola M, Bounias M. Inhibition by substrate of fructose 1,6-bisphosphatase purified from rat kidney cortex. Calculation of the kinetic constants of the enzyme. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55403-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Ke HM, Thorpe CM, Seaton BA, Lipscomb WN, Marcus F. Structure refinement of fructose-1,6-bisphosphatase and its fructose 2,6-bisphosphate complex at 2.8 A resolution. J Mol Biol 1990; 212:513-39. [PMID: 2157849 DOI: 10.1016/0022-2836(90)90329-k] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The structures of the native fructose-1,6-bisphosphatase (Fru-1,6-Pase), from pig kidney cortex, and its fructose 2,6-bisphosphate (Fru-2,6-P2) complexes have been refined to 2.8 A resolution to R-factors of 0.194 and 0.188, respectively. The root-mean-square deviations from the standard geometry are 0.021 A and 0.016 A for the bond length, and 4.4 degrees and 3.8 degrees for the bond angle. Four sites for Fru-2,6-P2 binding per tetramer have been identified by difference Fourier techniques. The Fru-2,6-P2 site has the shape of an oval cave about 10 A deep, and with other dimensions about 18 A by 12 A. The two Fru-2,6-P2 binding caves of the dimer in the crystallographically asymmetric unit sit next to one another and open in opposite directions. These two binding sites mutually exchange their Arg243 side-chains, indicating the potential for communication between the two sites. The beta, D-fructose 2,6-bisphosphate has been built into the density and refined well. The oxygen atoms of the 6-phosphate group of Fru-2,6-P2 interact with Arg243 from the adjacent monomer and the residues of Lys274, Asn212, Tyr264, Tyr215 and Tyr244 in the same monomer. The sugar ring primarily contacts with the backbone atoms from Gly246 to Met248, as well as the side-chain atoms, Asp121, Glu280 and Lys274. The 2-phosphate group interacts with the side-chain atoms of Ser124 and Lys274. A negatively charged pocket near the 2-phosphate group includes Asp118, Asp121 and Glu280, as well as Glu97 and Glu98. The 2-phosphate group showed a disordered binding perhaps because of the disturbance from the negatively charged pocket. In addition, Asn125 and Lys269 are located within a 5 A radius of Fru-2,6-P2. We argue that Fru-2,6-P2 binds to the active site of the enzyme on the basis of the following observations: (1) the structure similarity between Fru-2,6-P2 and the substrate; (2) sequence conservation of the residues directly interacting with Fru-2,6-P2 or located at the negatively charged pocket; (3) a divalent metal site next to the 2-phosphate group of Fru-2,6-P2; and (4) identification of some active site residues in our structure, e.g. tyrosine and Lys274, consistent with the results of the ultraviolet spectra and the chemical modification. The structures are described in detail including interactions of interchain surfaces, and the chemically modifiable residues are discussed on the basis of the refined structures.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- H M Ke
- Gibbs Chemical Laboratory, Harvard University, Cambridge, MA 02138
| | | | | | | | | |
Collapse
|
13
|
Liu F, Fromm HJ. Investigation of the relationship between tyrosyl residues and the adenosine 5′-monophosphate binding site of rabbit liver fructose-1,6-biphosphatase as studied by chemical modification and nuclear magnetic resonance spectroscopy. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51466-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Andrés V, García-Salguero L, Gómez ME, Aragón JJ. Allosteric inhibition of Dictyostelium discoideum fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate. FEBS Lett 1988; 241:51-4. [PMID: 2848725 DOI: 10.1016/0014-5793(88)81029-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It has been found that the inhibition of Dictyostelium discoideum fructose-1,6-bisphosphatase by fructose 2,6-P2 greatly diminished when the pH was raised to the range 8.5-9.5, which resulted in a marked decrease of the affinity for the inhibitor with no change in the Km for the substrate. This provides evidence for the involvement of an allosteric site for fructose 2,6-P2. Moreover, the fact that excess substrate inhibition also decreased at the pH values for minimal fructose 2,6-P2 inhibition, and was essentially abolished in the presence of fructose 2,6-P2, strongly suggests that this inhibition takes place by binding of fructose 1,6-P2 as a weak analogue of the physiological effector fructose 2,6-P2.
Collapse
Affiliation(s)
- V Andrés
- Instituto de Investigaciones Biomédicas del CSIC, Departamento de Bioquímica de la Facultad de Medicina de la Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|