1
|
Yin X, Qiu L, Long D, Lv Z, Liu Q, Wang S, Zhang W, Zhang K, Xie M. The ancient CgPEPCK-1, not CgPECK-2, evolved into a multifunctional molecule as an intracellular enzyme and extracellular PRR. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104722. [PMID: 37116769 DOI: 10.1016/j.dci.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a well-known lyase involved in gluconeogenesis, while their evolution and function differentiation have not been fully understood. In this study, by constructing a phylogenetic tree to examine PEPCKs throughout the evolution from poriferans to vertebrates, Mollusk was highlighted as the only phylum to exhibit two distinct lineages, Mollusca_PEPCK-1 and Mollusca_PEPCK-2. Further study of two representative members from Crassostrea gigas (CgPEPCK-1 and CgPEPCK-2) showed that they both shared conserved sequences and structural characteristics of the catalytic enzyme, while CgPEPCK-2 displayed a higher expression level than CgPEPCK-1 in all tested tissues, and CgPEPCK-1 was specifically implicated in the immune defense against LPS stimulation and Vibrio splendidus infection. Functional analysis revealed that CgPEPCK-2 had stronger enzymatic activity than CgPEPCK-1, while CgPEPCK-1 exhibited stronger binding activity with various PAMPs, and only the protein of CgPEPCK-1 increased significantly in hemolymph during immune stimulation. All results supported that distinct sequence and function differentiations of the PEPCK gene family should have occurred since Mollusk. The more advanced evolutionary branch Mollusca_PEPCK-2 should preserve its essential function as a catalytic enzyme to be more specialized and efficient, while the ancient branch Mollusca_PEPCK-1 probably contained some members, such as CgPEPCK-1, that should be integrated into the immune system as an extracellular immune recognition receptor.
Collapse
Affiliation(s)
- Xiaoting Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Dandan Long
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zhao Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Qing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Senyu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiqian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengxi Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
2
|
Mcleod MJ, Krismanich AP, Assoud A, Dmitrienko GI, Holyoak T. Characterization of 3-[(Carboxymethyl)thio]picolinic Acid: A Novel Inhibitor of Phosphoenolpyruvate Carboxykinase. Biochemistry 2019; 58:3918-3926. [PMID: 31461616 DOI: 10.1021/acs.biochem.9b00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) has traditionally been characterized for its role in the first committed step of gluconeogenesis. The current understanding of PEPCK's metabolic role has recently expanded to include it serving as a general mediator of tricarboxylic acid cycle flux. Selective inhibition of PEPCK in vivo and in vitro has been achieved with 3-mercaptopicolinic acid (MPA) (Ki ∼ 8 μM), whose mechanism of inhibition has been elucidated only recently. On the basis of crystallographic and mechanistic data of various inhibitors of PEPCK, MPA was used as the initial chemical scaffold to create a potentially more selective inhibitor, 3-[(carboxymethyl)thio]picolinic acid (CMP), which has been characterized both structurally and kinetically here. These data demonstrate that CMP acts as a competitive inhibitor at the OAA/PEP binding site, with its picolinic acid moiety coordinating directly with the M1 metal in the active site (Ki ∼ 29-55 μM). The extended carboxy tail occupies a secondary binding cleft that was previously shown could be occupied by sulfoacetate (Ki ∼ 82 μM) and for the first time demonstrates the simultaneous occupation of both OAA/PEP subsites by a single molecular structure. By occupying both the OAA/PEP binding subsites simultaneously, CMP and similar molecules can potentially be used as a starting point for the creation of additional selective inhibitors of PEPCK.
Collapse
|
3
|
Lv Z, Qiu L, Wang W, Liu Z, Xue Z, Yu Z, Song X, Chen H, Wang L, Song L. A GTP-dependent Phosphoenolpyruvate Carboxykinase from Crassostrea gigas Involved in Immune Recognition. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:318-329. [PMID: 28888537 DOI: 10.1016/j.dci.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is well known as a key enzyme involved in the metabolic pathway of gluconeogenesis in organisms, but the information about its involvement in immune response is still very limited. In the present study, a novel PEPCK homolog named CgPEPCK was identified from oyster Crassostrea gigas. The deduced amino acid sequence of CgPEPCK shared 52%-74% similarities with those from other known PEPCKs. There were one conserved guanosine triphosphate (GTP) binding site, one substrate binding site, one metal binding site and one active site in CgPEPCK. The mRNA transcripts of CgPEPCK were constitutively expressed in all the tested tissues including hemolymph, mantle, gill, muscle, gonad and hepatopancreas. CgPEPCK proteins were mainly distributed in adductor muscle, gonad, gill and mantle, and rarely detected in hepatopancreas by using immunohistochemical analysis. After the stimulations with lipopolysaccharide (LPS), peptidoglycan (PGN), Vibrio splendidus and V. anguillarum, CgPEPCK transcripts in hemocytes were significantly up-regulated and peaked at 6 h (LPS, 9.62-fold, p < 0.01), 9 h (PGN, 4.25-fold, p < 0.01), 12 h (V. splendidus, 5.72-fold, p < 0.01), 3 h (V. anguillarum, 2.87-fold, p < 0.01), respectively. The recombinant CgPEPCK protein (rCgPEPCK) exhibited Mn2+/Mg2+ dependent GTP binding activity, and the activities to bind LPS and PGN, but not β-1,3-glucan (GLU), lipoteichoic acid (LTA), mannan (MAN) nor polyinosinic-polycytidylic (Poly I: C). It could also bind Escherichia coli, Staphylococcus aureus, Micrococcus luteus and significantly inhibit their growth. All these results collectively suggested that CgPEPCK could not only exert GTP binding activity involved in gluconeogenesis, but also mediate the bacteria recognition and clearance in immune response of oysters.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xue
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Zichao Yu
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
4
|
Biological significance of phosphoenolpyruvate carboxykinase in a cestode parasite, Raillietina echinobothrida and effect of phytoestrogens on the enzyme from the parasite and its host, Gallus domesticus. Parasitology 2017; 144:1264-1274. [PMID: 28485262 DOI: 10.1017/s0031182017000518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is involved in glycolysis in the cestode parasite, Raillietina echinobothrida; whereas, it executes a gluconeogenic role in its host, Gallus domesticus. Because of its differing primary function in the cestode parasite and its host, this enzyme is regarded as a plausible anthelmintic target. Hence, the biological significance of PEPCK in the parasite was analysed using siRNA against PEPCK from R. echinobothrida (RePEPCK). In order to find out the functional differences between RePEPCK and GdPEPCK (PEPCK from its host, G. domesticus), PEPCK genes from both sources were cloned, over-expressed, characterized, and some properties of the purified enzymes were compared. RePEPCK and GdPEPCK showed a standard Michaelis-Menten kinetics with K mapp of 46.9 and 22.9 µ m, respectively, for phosphoenolpyruvate and K mapp of 15.4 µ m for oxaloacetate in GdPEPCK decarboxylation reaction. Here, we report antagonist behaviours of recombinant PEPCKs derived from the parasite and its host. In search of possible modulators for PEPCK, few phytoestrogens were examined on the purified enzymes and their inhibitory constants were determined and discussed. This study stresses the potential of these findings to validate PEPCK as the anthelmintic drug target for parasitism management.
Collapse
|
5
|
Johnson TA, Mcleod MJ, Holyoak T. Utilization of Substrate Intrinsic Binding Energy for Conformational Change and Catalytic Function in Phosphoenolpyruvate Carboxykinase. Biochemistry 2016; 55:575-87. [PMID: 26709450 DOI: 10.1021/acs.biochem.5b01215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Previous work has demonstrated that the enzyme cycles between a catalytically inactive open state and a catalytically active closed state. The transition of the enzyme between these states requires the transition of several active site loops to shift from mobile, disordered structural elements to stable ordered states. The mechanism by which these disorder-order transitions are coupled to the ligation state of the active site however is not fully understood. To further investigate the mechanisms by which the mobility of the active site loops is coupled to enzymatic function and the transitioning of the enzyme between the two conformational states, we have conducted structural and functional studies of point mutants of E89. E89 is a proposed key member of the interaction network of mobile elements as it resides in the R-loop region of the enzyme active site. These new data demonstrate the importance of the R-loop in coordinating interactions between substrates at the OAA/PEP binding site and the mobile R- and Ω-loop domains. In turn, the studies more generally demonstrate the mechanisms by which the intrinsic ligand binding energy can be utilized in catalysis to drive unfavorable conformational changes, changes that are subsequently required for both optimal catalytic activity and fidelity.
Collapse
Affiliation(s)
- Troy A Johnson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Matthew J Mcleod
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo , Waterloo, ON N2L 3G1, Canada.,Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
6
|
Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, Tarábek J, Vaněk O, Bednárová L, Pichová I. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. PLoS One 2015; 10:e0120682. [PMID: 25798914 PMCID: PMC4370629 DOI: 10.1371/journal.pone.0120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/05/2015] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mahavir Singh
- LIONEX diagnostics & Therapeutics, Braunschweig, Germany
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
7
|
Johnson TA, Holyoak T. The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function. Biochemistry 2012; 51:9547-59. [PMID: 23127136 DOI: 10.1021/bi301278t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that undergoes a transition between an open, disorded conformation and a closed, ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies showed that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. To more fully investigate the roles of the lid domain in PEPCK function, we introduced three mutations that replaced the 11-residue lid domain with one, two, and three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity, resulting in a decrease in the catalytic parameters of at least 10(6). Structural characterization of the mutants in complexes representing the catalytic cycle suggests that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all the elements required for chemical conversion of substrates to products remaining intact.
Collapse
Affiliation(s)
- Troy A Johnson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
8
|
Drummond ML, Wilson AK, Cundari TR. Nature of protein-CO2 interactions as elucidated via molecular dynamics. J Phys Chem B 2012; 116:11578-93. [PMID: 22882078 DOI: 10.1021/jp304770h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rising global temperatures require innovative measures to reduce atmospheric concentrations of CO(2). The most successful carbon capture technology on Earth is the enzymatic capture of CO(2) and its sequestration in the form of glucose. Efforts to improve upon or mimic this naturally occurring process will require a rich understanding of protein-CO(2) interactions. Toward that end, extensive all-atom molecular dynamics (MD) simulations were performed on the CO(2)-utilizing enzyme phosphoenolpyruvate carboxykinase (PEPCK). Preliminary simulations were performed using implicit and explicit solvent models, which yielded similar results: arginine, lysine, tyrosine, and asparagine enhance the ability of a protein to bind carbon dioxide. Extensive explicit solvent simulations were performed for both wild-type PEPCK and five single-point PEPCK mutants, revealing three prevalent channels by which CO(2) enters (or exits) the active site cleft, as well as a fourth channel (observed only once), the existence of which can be rationalized in terms of the position of a key Arg residue. The strongest CO(2) binding sites in these simulations consist of appropriately positioned hydrogen bond donors and acceptors. Interactions between CO(2) and both Mn(2+) and Mg(2+) present in PEPCK are minimal due to the stable protein- and solvent-based coordination environments of these cations. His 232, suggested by X-ray crystallography as being a potential important CO(2) binding site, is indeed found to be particularly "CO(2)-philic" in these simulations. Finally, a recent mechanism, proposed on the basis of X-ray crystallography, for PEPCK active site lid closure is discussed in light of the MD trajectories. Overall, the results of this work will prove useful not only to scientists investigating PEPCK, but also to groups seeking to develop an environmentally benign, protein-based carbon capture, sequestration, and utilization system.
Collapse
Affiliation(s)
- Michael L Drummond
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76201, USA.
| | | | | |
Collapse
|
9
|
Purification and characterization of phosphoenolpyruvate carboxykinase from Raillietina echinobothrida, a cestode parasite of the domestic fowl. Parasitology 2012; 140:136-46. [DOI: 10.1017/s0031182012001254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYPhosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.32) is an essential regulatory enzyme of glycolysis in helminths in contrast to its role in gluconeogenesis in their host. Previously we have reported that phytochemicals from Flemingia vestita (Family: Fabaceae), genistein in particular, have vermifugal action and are known to affect carbohydrate metabolism in the cestode, Raillietina echinobothrida. In order to determine the functional differences of PEPCK from the parasite and its avian host (Gallus domesticus), we purified the parasite enzyme apparently to homogeneity, and characterized it. The native PEPCK is a monomer with a subunit molecular weight of 65 kDa. The purified enzyme displayed standard Michaelis-Menten kinetics with Km value of 42·52 μM for its substrate PEP. The Ki for the competitive inhibitors GTP, GMP, ITP and IMP for the carboxylation reaction were determined and discussed. In order to identify putative modulators from plant sources, phytochemicals from F. vestita and Stephania glabra were tested on the purified PEPCK, which resulted in alteration of its activity. From our results, we hypothesize that PEPCK may be a potential target site for anthelmintic action.
Collapse
|
10
|
Johnson TA, Holyoak T. Increasing the conformational entropy of the Omega-loop lid domain in phosphoenolpyruvate carboxykinase impairs catalysis and decreases catalytic fidelity . Biochemistry 2010; 49:5176-87. [PMID: 20476774 DOI: 10.1021/bi100399e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many studies have shown that the dynamic motions of individual protein segments can play an important role in enzyme function. Recent structural studies of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) demonstrate that PEPCK contains a 10-residue Omega-loop domain that acts as an active site lid. On the basis of these structural studies, we have previously proposed a model for the mechanism of PEPCK catalysis in which the conformation of this mobile lid domain is energetically coupled to ligand binding, resulting in the closed conformation of the lid, necessary for correct substrate positioning, becoming more energetically favorable as ligands associate with the enzyme. Here we test this model by introducing a point mutation (A467G) into the center of the Omega-loop lid that is designed to increase the entropic penalty for lid closure. Structural and kinetic characterization of this mutant enzyme demonstrates that the mutation has decreased the favorability of the enzyme adapting the closed lid conformation. As a consequence of this shift in the equilibrium defining the conformation of the active site lid, the enzyme's ability to stabilize the reaction intermediate is weakened, resulting in catalytic defect. This stabilization is initially surprising, as the lid domain makes no direct contacts with the enolate intermediate formed during the reaction. Furthermore, during the conversion of OAA to PEP, the destabilization of the lid-closed conformation results in the reaction becoming decoupled as the enolate intermediate is protonated rather than phosphorylated, resulting in the formation of pyruvate. Taken together, the structural and kinetic characterization of A467G-PEPCK supports our model of the role of the active site lid in catalytic function and demonstrates that the shift in the lowest-energy conformation between open and closed lid states is a function of the free energy available to the enzyme through ligand binding and the entropic penalty for ordering of the 10-residue Omega-loop lid domain.
Collapse
Affiliation(s)
- Troy A Johnson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
11
|
Carlson GM, Holyoak T. Structural insights into the mechanism of phosphoenolpyruvate carboxykinase catalysis. J Biol Chem 2009; 284:27037-41. [PMID: 19638345 DOI: 10.1074/jbc.r109.040568] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gerald M Carlson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
12
|
Dharmarajan L, Case CL, Dunten P, Mukhopadhyay B. Tyr235 of human cytosolic phosphoenolpyruvate carboxykinase influences catalysis through an anion-quadrupole interaction with phosphoenolpyruvate carboxylate. FEBS J 2009; 275:5810-9. [PMID: 19021757 DOI: 10.1111/j.1742-4658.2008.06702.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyr235 of GTP-dependent phosphoenolpyruvate (PEP) carboxykinase is a fully invariant residue. The aromatic ring of this residue establishes an energetically favorable weak anion-quadrupole interaction with PEP carboxylate. The role of Tyr235 in catalysis was investigated via kinetic analysis of site-directed mutagenesis-derived variants. The Y235F change lowered the apparent K(m) for PEP by about six-fold, raised the apparent K(m) for Mn(2+) by about 70-fold, and decreased oxaloacetate (OAA)-forming activity by about 10-fold. These effects were due to an enhanced anion-quadrupole interaction between the aromatic side chain at position 235, which now lacked a hydroxyl group, and PEP carboxylate, which probably increased the distance between PEP and Mn(2+) and consequently affected the phosphoryl transfer step and overall catalysis. For the Y235A and Y235S changes, an elimination of the favorable edge-on interaction increased the apparent K(m) for PEP by four- and six-fold, respectively, and the apparent K(m) for Mn(2+) by eight- and six-fold, respectively. The pyruvate kinase-like activity, representing the PEP dephosphorylation step of the OAA-forming reaction, was affected by the substitutions in a similar way to the complete reaction. These observations indicate that the aromatic ring of Tyr235 helps to position PEP in the active site and the hydroxyl group allows an optimal PEP-Mn(2+) distance for efficient phosphoryl transfer and overall catalysis. The Y235A and Y235S changes drastically reduced the PEP-forming and OAA decarboxylase activities, probably due to the elimination of the stabilizing interaction between Tyr235 and the respective products, PEP and pyruvate.
Collapse
Affiliation(s)
- Lakshmi Dharmarajan
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | |
Collapse
|
13
|
Case CL, Mukhopadhyay B. Kinetic characterization of recombinant human cytosolic phosphoenolpyruvate carboxykinase with and without a His10-tag. Biochim Biophys Acta Gen Subj 2007; 1770:1576-84. [PMID: 17888579 DOI: 10.1016/j.bbagen.2007.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/14/2007] [Accepted: 07/19/2007] [Indexed: 11/21/2022]
Abstract
We report the first kinetic characterization of human liver cytosolic GTP-dependent phosphoenolpyruvate carboxykinase (GTP-PEPCK), which plays a major role in the development of type 2 diabetes in human. In this work two recombinant forms of the enzyme were studied. One form had a His10-tag and the other was His-tag-free, and with one exception, both exhibited similar kinetic properties. When Mn2+ was used as the sole divalent cation, the His10-tagged enzyme, but not the His-tag-free enzyme, was increasingly inhibited at Mn2+ concentrations greater than 0.7 mM. This inhibition did not pose any problem in kinetic analysis, for within the relevant Mn2+ concentration range the His-tagged human PEPCK behaved almost identically to the tag-free enzyme. This property will bring simplicity and speed to purifying and studying multiple structural variants of this important enzyme. Apparent Km values of tag-free enzyme for phosphoenolpyruvate, GDP and bicarbonate were 450, 79 and 20,600 microM, respectively, while those for oxaloacetate and GTP were 4 and 23 microM, respectively, emphasizing the enzyme's gluconeogenic character. Bicarbonate (>100 mM) inhibited OAA-forming activity, which was a new observation with a GTP-PEPCK. The apparent Km for Mn2+ in the PEP-forming direction was 30-fold lower than that for the OAA-forming direction. Mn2+ and bicarbonate or CO2 might regulate the enzyme in vivo.
Collapse
Affiliation(s)
- Christopher L Case
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
14
|
Case CL, Concar EM, Boswell KL, Mukhopadhyay B. Roles of Asp75, Asp78, and Glu83 of GTP-dependent Phosphoenolpyruvate Carboxykinase from Mycobacterium smegmatis. J Biol Chem 2006; 281:39262-72. [PMID: 17015450 DOI: 10.1074/jbc.m602591200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of Asp(75), Asp(78), and Glu(83) of the (75)DPSDVARVE(83) element of Mycobacterium smegmatis GTP-dependent phosphoenolpyruvate (PEP) carboxykinase (GTP-PEPCK) were investigated. Asp(78) and Glu(83) are fully conserved in GTP-PEP-CKs. The human PEPCK crystal structure suggests that Asp(78) influences Tyr(220); Tyr(220) helps to position bound PEP, and Glu(83) interacts with Arg(81). Experimental data on other PEPCKs indicate that Arg(81) binds PEP, and the phosphate of PEP interacts with Mn(2+) of metal site 1 for catalysis. We found that D78A and E83A replacements severely reduced activity. E83A substitution raised the apparent K(m) value for Mn(2+) 170-fold. In contrast, Asp(75) is highly but not fully conserved; natural substitutions are Ala, Asn, Gln, or Ser. Such substitutions, when engineered, in M. smegmatis enzyme caused the following. 1) For oxaloacetate synthesis, V(max) decreased 1.4-4-fold. K(m) values for PEP and Mn(2+) increased 3-9- and 1.2-10-fold, respectively. K(m) values for GDP and bicarbonate changed little. 2) For PEP formation, V(max) increased 1.5-2.7-fold. K(m) values for oxaloacetate increased 2-2.8-fold. The substitutions did not change the secondary structure of protein significantly. The kinetic effects are rationalized as follows. In E83A the loss of Glu(83)-Arg(81) interaction affected Arg(81)-PEP association. D78A change altered the Tyr(220)-PEP interaction. These events perturbed PEP-Mn(2+) interaction and consequently affected catalysis severely. In contrast, substitutions at Asp(75), a site far from bound PEP, brought subtle effects, lowering oxaloacetate formation rate but enhancing PEP formation rate. It is likely that Asp(75) substitutions affected PEP-Mn(2+) interaction by changing the positions of Asp(78), Arg(81), and Glu(83), which translated to differential effects on two directions.
Collapse
Affiliation(s)
- Christopher L Case
- Virginia Bioinformatics Institute and Departments of Biochemistry and Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
15
|
Hanson RW, Patel YM. Phosphoenolpyruvate carboxykinase (GTP): the gene and the enzyme. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:203-81. [PMID: 7817869 DOI: 10.1002/9780470123157.ch6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R W Hanson
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH
| | | |
Collapse
|
16
|
Delbaere LTJ, Sudom AM, Prasad L, Leduc Y, Goldie H. Structure/function studies of phosphoryl transfer by phosphoenolpyruvate carboxykinase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:271-8. [PMID: 15023367 DOI: 10.1016/j.bbapap.2003.11.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Accepted: 11/12/2003] [Indexed: 11/24/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PCK) catalyzes the conversion of oxaloacetate (OAA) to PEP and carbon dioxide with the subsequent conversion of nucleoside triphosphate to nucleoside diphosphate (NDP). The 1.9 A resolution structure of Escherichia coli PCK consisted of a 275-residue N-terminal domain and a 265-residue C-terminal domain with the active site located in a cleft between these domains. Each domain has an alpha/beta topology and the overall structure represents a new protein fold. Furthermore, PCK has a unique mononucleotide-binding fold. The 1.8 A resolution structure of the complex of ATP/Mg(2+)/oxalate with PCK revealed a 20 degrees hinge-like rotation of the N- and C-terminal domains, which closed the active site cleft. The ATP was found in the unusual syn conformation as a result of binding to the enzyme. Along with the side chain of Lys254, Mg(2+) neutralizes charges on the P beta and P gamma oxygen atoms of ATP and stabilizes an extended, eclipsed conformation of the P beta and P gamma phosphoryl groups. The sterically strained high-energy conformation likely lowers the free energy of activation for phosphoryl transfer. Additionally, the gamma-phosphoryl group becomes oriented in-line with the appropriate enolate oxygen atom, which strongly supports a direct S(N)2-type displacement of this gamma-phosphoryl group by the enolate anion. In the 2.0 A resolution structure of the complex of PCK/ADP/Mg(2+)/AlF(3), the AlF(3) moiety represents the phosphoryl group being transferred during catalysis. There are three positively charged groups that interact with the fluorine atoms, which are complementary to the three negative charges that would occur for an associative transition state.
Collapse
Affiliation(s)
- Louis T J Delbaere
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5.
| | | | | | | | | |
Collapse
|
17
|
Bueno C, González-Nilo FD, Victoria Encinas M, Cardemil E. Substrate binding to fluorescent labeled wild type, Lys213Arg, and His233Gln Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases. Int J Biochem Cell Biol 2004; 36:861-9. [PMID: 15006638 DOI: 10.1016/j.biocel.2003.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 09/09/2003] [Accepted: 09/29/2003] [Indexed: 11/18/2022]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate (PEP) carboxykinase is a key enzyme of the gluconeogenic pathway and catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO(2) in the presence of a divalent metal ion. Previous experiments have shown that mutation of amino acid residues at metal site 1 decrease the steady-state affinity of the enzyme for PEP, suggesting interaction of PEP with the metal ion [Biochemistry 41 (2002) 12763]. To more completely understand this enzyme interactions with substrate ligands, we have prepared the phosphopyridoxyl (P-pyridoxyl)-derivatives of wild type, Lys213Arg, and His233Gln S. cerevisiae PEP carboxykinase and used the changes in the fluorescence probe to determine the dissociation equilibrium constants of PEP, ATPMn(2-), and ADPMn(1-) from the corresponding derivatized enzyme-Mn(2+) complexes. Homology modeling of P-pyridoxyl-PEP carboxykinase and P-pyridoxyl-PEP carboxykinase-substrate complexes agree with experimental evidence indicating that the P-pyridoxyl group does not interfere with substrate binding. ATPMn(2-) binding is 0.8kcalmol(-1) more favorable than ADPMn(1-) binding to wild type P-pyridoxyl-enzyme. The thermodynamic data obtained in this work indicate that PEP binding is 2.3kcalmol(-1) and 3.2kcalmol(-1) less favorable for the Lys213Arg and His233Gln mutant P-pyridoxyl-PEP carboxykinases than for the wild type P-pyridoxyl-enzyme, respectively. The possible relevance of N and O ligands for Mn(2+) in relation to PEP binding and catalysis is discussed.
Collapse
Affiliation(s)
- Claudia Bueno
- Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 33, Chile
| | | | | | | |
Collapse
|
18
|
Aich S, Imabayashi F, Delbaere LTJ. Expression, purification, and characterization of a bacterial GTP-dependent PEP carboxykinase. Protein Expr Purif 2003; 31:298-304. [PMID: 14550651 DOI: 10.1016/s1046-5928(03)00189-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Corynebacterium glutamicum (C. glutamicum) phosphoenolpyruvate carboxykinase (PCK) gene (pckA) was cloned into an Escherichia coli expression vector with a glutathione S-transferase (GST) tag. This recombinant DNA can produce highly overexpressed tagged protein in soluble form. This is the first report of the production of C. glutamicum PCK overexpressed in E. coli. The GST-fused PCK was purified using the glutathione-Sepharose 4B affinity column and the GST tag was removed in one-step. This one-step, easy purification method would be very useful for future mutational and structural studies. The molecular mass of the purified protein is approximately 68 kDa as confirmed by mass spectrometry and it is a monomeric enzyme. Also, the enzyme assays revealed that C. glutamicum PCK has a GTP-specific activity and that its activity is maximal in the presence of both Mn2+ and Mg2+.
Collapse
Affiliation(s)
- Sanjukta Aich
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Sask, Canada S7N 5E5
| | | | | |
Collapse
|
19
|
Roth JA, Garrick MD. Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. Biochem Pharmacol 2003; 66:1-13. [PMID: 12818360 DOI: 10.1016/s0006-2952(03)00145-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic exposure to the divalent heavy metals, such as iron, lead, manganese (Mn), and chromium, has been linked to the development of severe, often irreversible neurological disorders and increased vulnerability to developing Parkinson's disease. Although the mechanisms by which these metals elicit or facilitate neuronal cell death are not well defined, neurotoxicity is limited by the extent to which they are transported across the blood-brain barrier and their subsequent uptake within targeted neurons. Once inside the neuron, these heavy metals provoke a series of biochemical and molecular events leading to cell death induced by either apoptosis and/or necrosis. The toxicological properties of Mn have been studied extensively in recent years because of the potential health risk created by increased atmospheric levels owing to the impending use of the gas additive methylcyclopentadienyl manganese tricarbonyl. Individuals exposed to high environmental levels of Mn, which include miners, welders, and those living near ferroalloy processing plants, display a syndrome known as manganism, best characterized by debilitating symptoms resembling those of Parkinson's disease. Mn disposition in vivo is influenced by dietary iron intake and stores within the body since the two metals compete for the same binding protein in serum (transferrin) and subsequent transport systems (divalent metal transporter, DMT1). There appear to be two distinct carrier-mediated transport systems for Mn and ferrous ion: a transferrin-dependent and a transferrin-independent pathway, both of which utilize DMT1 as the transport protein. Accordingly, this commentary focuses on the biochemical and molecular processes responsible for the cytotoxic actions of Mn and the role that cellular transport plays in mediating the physiological as well as the toxicological actions of this metal.
Collapse
Affiliation(s)
- Jerome A Roth
- Department of Pharmacology and Toxicology, 102 Farber Hall, University at Buffalo, Buffalo, NY 14214, USA.
| | | |
Collapse
|
20
|
Sudom A, Walters R, Pastushok L, Goldie D, Prasad L, Delbaere LTJ, Goldie H. Mechanisms of activation of phosphoenolpyruvate carboxykinase from Escherichia coli by Ca2+ and of desensitization by trypsin. J Bacteriol 2003; 185:4233-42. [PMID: 12837799 PMCID: PMC164867 DOI: 10.1128/jb.185.14.4233-4242.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2003] [Accepted: 04/24/2003] [Indexed: 01/07/2023] Open
Abstract
The 1.8-A resolution structure of the ATP-Mg(2+)-Ca(2+)-pyruvate quinary complex of Escherichia coli phosphoenolpyruvate carboxykinase (PCK) is isomorphous to the published complex ATP-Mg(2+)-Mn(2+)-pyruvate-PCK, except for the Ca(2+) and Mn(2+) binding sites. Ca(2+) was formerly implicated as a possible allosteric regulator of PCK, binding at the active site and at a surface activating site (Glu508 and Glu511). This report found that Ca(2+) bound only at the active site, indicating that there is likely no surface allosteric site. (45)Ca(2+) bound to PCK with a K(d) of 85 micro M and n of 0.92. Glu508Gln Glu511Gln mutant PCK had normal activation by Ca(2+). Separate roles of Mg(2+), which binds the nucleotide, and Ca(2+), which bridges the nucleotide and the anionic substrate, are implied, and the catalytic mechanism of PCK is better explained by studies of the Ca(2+)-bound structure. Partial trypsin digestion abolishes Ca(2+) activation (desensitizes PCK). N-terminal sequencing identified sensitive sites, i.e., Arg2 and Arg396. Arg2Ser, Arg396Ser, and Arg2Ser Arg396Ser (double mutant) PCKs altered the kinetics of desensitization. C-terminal residues 397 to 540 were removed by trypsin when wild-type PCK was completely desensitized. Phe409 and Phe413 interact with residues in the Ca(2+) binding site, probably stabilizing the C terminus. Phe409Ala, DeltaPhe409, Phe413Ala, Delta397-521 (deletion of residues 397 to 521), Arg396(TAA) (stop codon), and Asp269Glu (Ca(2+) site) mutations failed to desensitize PCK and, with the exception of Phe409Ala, appeared to have defects in the synthesis or assembly of PCK, suggesting that the structure of the C-terminal domain is important in these processes.
Collapse
Affiliation(s)
- Athena Sudom
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | | | | | |
Collapse
|
21
|
Encinas MV, González-Nilo FD, Goldie H, Cardemil E. Ligand interactions and protein conformational changes of phosphopyridoxyl-labeled Escherichia coli phosphoenolpyruvate carboxykinase determined by fluorescence spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4960-8. [PMID: 12383254 DOI: 10.1046/j.1432-1033.2002.03196.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli phosphoenolpyruvate (PEP) carboxykinase catalyzes the decarboxylation of oxaloacetate and transfer of the gamma-phosphoryl group of ATP to yield PEP, ADP, and CO2. The interaction of the enzyme with the substrates originates important domain movements in the protein. In this work, the interaction of several substrates and ligands with E. coli PEP carboxykinase has been studied in the phosphopyridoxyl (P-pyridoxyl)-enzyme adduct. The derivatized enzyme retained the substrate-binding characteristics of the native protein, allowing the determination of several protein-ligand dissociation constants, as well as the role of Mg2+ and Mn2+ in substrate binding. The binding affinity of PEP to the enzyme-Mn2+ complex was -8.9 kcal.mol-1, which is 3.2 kcal.mol-1 more favorable than in the complex with Mg2+. For the substrate nucleotide-metal complexes, similar binding affinities (-6.0 to -6.2 kcal.mol-1) were found for either metal ion. The fluorescence decay of the P-pyridoxyl group fitted to two lifetimes of 5.15 ns (34%) and 1.2 ns. These lifetimes were markedly altered in the derivatized enzyme-PEP-Mn complexes, and smaller changes were obtained in the presence of other substrates. Molecular models of the P-pyridoxyl-E. coli PEP carboxykinase showed different degrees of solvent-exposed surfaces for the P-pyridoxyl group in the open (substrate-free) and closed (substrate-bound) forms, which are consistent with acrylamide quenching experiments, and suggest that the fluorescence changes reflect the domain movements of the protein in solution.
Collapse
Affiliation(s)
- María Victoria Encinas
- Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| | | | | | | |
Collapse
|
22
|
González-Nilo FD, Krautwurst H, Yévenes A, Cardemil E, Cachau R. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: theoretical and experimental study of the effect of glutamic acid 284 on the protonation state of lysine 213. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1599:65-71. [PMID: 12479406 DOI: 10.1016/s1570-9639(02)00400-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The crystal structure of Escherichia coli phosphoenolpyruvate (PEP) carboxykinase shows Lys213 is one of the ligands of enzyme-bound Mn2+ [Nat. Struct. Biol. 4 (1997) 990]. The direct coordination of Mn2+ by N(epsilon) of Lys213 is only consistent with a neutral (uncharged) Lys213, suggesting a low pKa for this residue. This work shows, through theoretical calculations and experimental analyses on homologous Saccharomyces cerevisiae PEP carboxykinase, how the microenvironment affects Mn2+ binding and the protonation state of Lys213. We show that Glu284, a residue close to Lys212, is required for correct protonation states of Lys212 and Lys213, and for Mn2+ binding. deltaG and deltaH values for the proton reorganization processes were calculated to analyze the energetic stability of the two different protonation states of Lys212 and Lys213 in wild-type and Glu284Gln S. cerevisiae PEP carboxykinase. Calculations were done using two modeling approaches, ab-initio density functional calculations and free energy perturbation (FEP) calculations. Both methods suggest that Lys212 must be protonated and Lys213 neutral in the wild-type enzyme. On the other hand, the calculations on the Glu284Gln mutant suggest a more stable neutral Lys212 and protonated Lys213. Experimental measurements showed 3 orders of magnitude lower activity and a threefold increase in Km for Mn2+ for Glu284Gln S. cerevisiae PEP carboxykinase when compared to wild type. The data here presented suggest that Glu284 is required for Mn2+ binding by S. cerevisiae PEP carboxykinase. We propose that Glu284 modulates the pKa value of Lys213 through electrostatic effects mediated by
Collapse
Affiliation(s)
- Fernando D González-Nilo
- Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 33, Chile
| | | | | | | | | |
Collapse
|
23
|
Ríos SE, Nowak T. Role of cysteine 306 in the catalytic mechanism of Ascaris suum phosphoenolpyruvate carboxykinase. Arch Biochem Biophys 2002; 404:25-37. [PMID: 12127066 DOI: 10.1016/s0003-9861(02)00236-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biochemical and metabolic data lead to the conclusion that the enzyme phosphoenolpyruvate carboxykinase (PEPCK) contributes to a critical point of divergence in energy conservation pathways between mammals and nematodes. The Ascaris suum PEPCK shares considerable homology with PEPCK from avian liver and is a good candidate for mutagenesis studies. The Cys306 substitution by Ser and Ala produced active enzymes and the two mutants are kinetically indistinguishable from each other. This substitution affects the catalytic affinity for the formation of the specific enzyme-nucleotide complex (k(cat)/K(m)) in the forward and reverse reactions. Studies with the substrate analogs 2(')dGDP and 2(')dGTP indicate that Cys306 in A. suum PEPCK is one of the residues important in nucleotide binding and may interact with the 2(')OH group in the ribose ring. Alternatively, mutation of this residue could cause protein changes that interfere with the proper conformation of the nucleotides for optimal catalysis to take place.
Collapse
Affiliation(s)
- Sandra E Ríos
- Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA
| | | |
Collapse
|
24
|
Mukhopadhyay B, Concar EM, Wolfe RS. A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J Biol Chem 2001; 276:16137-45. [PMID: 11278451 DOI: 10.1074/jbc.m008960200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This is the first report on a bacterial verterbrate-type GTP-dependent phosphoenolpyruvate carboxykinase (PCK). The pck gene of Mycobacterium smegmatis was cloned. The recombinant PCK was overexpressed in Escherichia coli in a soluble form and with high activity. The purified enzyme was found to be monomeric (72 kDa), thermophilic (optimum temperature, 70 degrees C), very stable upon storage at 4 degrees C, stimulated by thiol-containing reducing agents, and inhibited by oxalate and by alpha-ketoglutarate. The requirement for a divalent cation for activity was fulfilled best by Mn(2+) and Co(2+) and poorly by Mg(2+). At 37 degrees C, the highest V(m) value (32.5 units/mg) was recorded with Mn(2+) and in the presence of 37 mm dithiothreitol (DTT). The presence of Mg(2+) (2 mm) greatly lowered the apparent K(m) values for Mn(2+) (by 144-fold in the presence of DTT and by 9.4-fold in the absence of DTT) and Co(2+) (by 230-fold). In the absence of DTT but in the presence of Mg(2+) (2 mm) as the co-divalent cation, Co(2+) was 21-fold more efficient than Mn(2+). For producing oxaloacetate, the enzyme utilized both GDP and IDP; ADP served very poorly. The apparent K(m) values for phosphoenolpyruvate, GDP, and bicarbonate were >100, 66, and 8300 micrometer, respectively, whereas those for GTP and oxaloacetate (for the phosphoenolpyruvate formation activity) were 13 and 12 microm, respectively. Thus, this enzyme preferred the gluconeogenesis/glycerogenesis direction. This property fits the suggestion that in M. smegmatis, pyruvate carboxylase is not anaplerotic but rather gluconeogenic (Mukhopadhyay, B., and Purwantini, E. (2000) Biochim. Biophys. Acta. 1475, 191-206). Both in primary structure and kinetic properties, the mycobacterial PCK was very similar to its vertebrate-liver counterparts and thus could serve as a model for these enzymes; examples for several immediate targets are presented.
Collapse
Affiliation(s)
- B Mukhopadhyay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
25
|
Wong DK, Lee BY, Horwitz MA, Gibson BW. Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun 1999; 67:327-36. [PMID: 9864233 PMCID: PMC96314 DOI: 10.1128/iai.67.1.327-336.1999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron plays a critical role in the pathophysiology of Mycobacterium tuberculosis. To gain a better understanding of iron regulation by this organism, we have used two-dimensional (2-D) gel electrophoresis, mass spectrometry, and database searching to study protein expression in M. tuberculosis under conditions of high and low iron concentration. Proteins in cellular extracts from M. tuberculosis Erdman strain grown under low-iron (1 microM) and high-iron (70 microM) conditions were separated by 2-D polyacrylamide gel electrophoresis, which allowed high-resolution separation of several hundred proteins, as visualized by Coomassie staining. The expression of at least 15 proteins was induced, and the expression of at least 12 proteins was decreased under low-iron conditions. In-gel trypsin digestion was performed on these differentially expressed proteins, and the digestion mixtures were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry to determine the molecular masses of the resulting tryptic peptides. Partial sequence data on some of the peptides were obtained by using after source decay and/or collision-induced dissociation. The fragmentation data were used to search computerized peptide mass and protein sequence databases for known proteins. Ten iron-regulated proteins were identified, including Fur and aconitase proteins, both of which are known to be regulated by iron in other bacterial systems. Our study shows that, where large protein sequence databases are available from genomic studies, the combined use of 2-D gel electrophoresis, mass spectrometry, and database searching to analyze proteins expressed under defined environmental conditions is a powerful tool for identifying expressed proteins and their physiologic relevance.
Collapse
Affiliation(s)
- D K Wong
- Department of Chemistry and Pharmaceutical Chemistry, University of California, San Francisco p594143-0446, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Understanding how phosphoryl transfer is accomplished by kinases, a ubiquitous group of enzymes, is central to many biochemical processes. Qualitative analysis of the crystal structures of enzyme-substrate complexes of kinases reveals structural features of these enzymes important to phosphoryl transfer. Recently determined crystal structures which mimic the transition state complex have added new insight into the debate as to whether kinases use associative or dissociative mechanisms of catalysis.
Collapse
Affiliation(s)
- A Matte
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
27
|
Tari LW, Matte A, Goldie H, Delbaere LT. Mg(2+)-Mn2+ clusters in enzyme-catalyzed phosphoryl-transfer reactions. NATURE STRUCTURAL BIOLOGY 1997; 4:990-4. [PMID: 9406547 DOI: 10.1038/nsb1297-990] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Matte A, Tari LW, Goldie H, Delbaere LT. Structure and mechanism of phosphoenolpyruvate carboxykinase. J Biol Chem 1997; 272:8105-8. [PMID: 9139042 DOI: 10.1074/jbc.272.13.8105] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- A Matte
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
29
|
Sixteenth Midwest Enzyme Chemistry Conference. Bioorg Chem 1997. [DOI: 10.1006/bioo.1996.1048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Tari LW, Matte A, Pugazhenthi U, Goldie H, Delbaere LT. Snapshot of an enzyme reaction intermediate in the structure of the ATP-Mg2+-oxalate ternary complex of Escherichia coli PEP carboxykinase. NATURE STRUCTURAL BIOLOGY 1996; 3:355-63. [PMID: 8599762 DOI: 10.1038/nsb0496-355] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the 1.8 A crystal structure of adenosine triphosphate (ATP)-magnesium-oxalate bound phosphoenolpyruvate carboxykinase (PCK) from Escherichia coli. ATP binding induces a 20 degree hinge-like rotation of the N- and C-terminal domains which closes the active-site cleft. PCK possesses a novel nucleotide-binding fold, particularly in the adenine-binding region, where the formation of a cis backbone torsion angle in a loop glycine residue promotes intimate contacts between the adenine-binding loop and adenine, while stabilizing a syn conformation of the base. This complex represents a reaction intermediate analogue along the pathway of the conversion of oxaloacetate to phosphoenolpyruvate, and provides insight into the mechanistic details of the chemical reaction catalysed by this enzyme.
Collapse
Affiliation(s)
- L W Tari
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
31
|
Jurado LA, Machín I, Urbina JA. Trypanosoma cruzi phospho enol pyruvate carboxykinase (ATP-dependent): transition metal ion requirement for activity and sulfhydryl group reactivity. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1292:188-96. [PMID: 8547343 DOI: 10.1016/0167-4838(95)00201-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We studied the transition metal ion requirements for activity and sulfhydryl group reactivity in phospho enol pyruvate carboxykinase (PEP-carboxykinase; ATP:oxaloacetate carboxylase (transphosphorylating), EC 4.1.1.49), a key enzyme in the energy metabolism of the protozan parasite Trypanosoma (Schizotrypanum) cruzi. As for other PEP-carboxykinases this enzyme has a strict requirement of transition metal ions for activity, even in the presence of excess Mg2+ ions for the carboxylation reaction; the order of effectiveness of these ions as enzyme activators was: Co2+ > Mn2+ > Cd2+ > Ni2+ >> Fe2+ > VO2+, while Zn2+ and Ca2+ had no activating effects. When we investigated the effect of the varying type or concentration of the transition metal ions on the kinetic parameters of the enzyme the results suggested that the stimulatory effects of the transition metal center were mostly associated with the activation of the relatively inert CO2 substrate. The inhibitory effects of 3-mercaptopicolinic acid (3MP) on the enzyme were found to depend on the transition metal ion activator: for the Mn(2+)-activated enzyme the inhibition was purely non-competitive (Kii = Kis) towards all substrates, while for the Co(2+)-activated enzyme the inhibitor was much less effective, produced a mixed-type inhibition and affected differentially the interaction of the enzyme with its substrates. The modification of a single, highly reactive, cysteine per enzyme molecule by 5,5'-dithiobis (2-nitro-benzoate) (DTNB) lead ton an almost complete inhibition of Mn(2+)-activated T. cruzi PEP-carboxykinase; however, in contrast with the results of previous studies in vertebrate and yeast enzymes, the substrate ADP slowed the chemical modification and enzyme inactivation but did not prevent it. PEP and HCO3- had no significant effect on the rate or extent of the enzyme inactivation. The kinetics of the enzyme inactivation by DTNB was also dependent on the transition metal activator, being much slower for the Co(2+)-activated enzyme than for its Mn(2+)-activated counterpart. When the bulkier but more hydrophobic reagent N-(7-dimethylamino-4-methylcoumarinyl)maleimide (DACM) was used the enzyme was slowly and incompletely inactivated in the presence of Mn2+ and ADP afforded almost complete protection from inactivation; in the presence of Co2+ the enzyme was completely resistant to inactivation. Taken together, our results indicate that the parasite enzyme has a specific requirement of transition metal ions for activity and that they modulate the reactivity of a single, essential thiol group, different from the hyperreactive cysteines present in vertebrate or yeast enzymes.
Collapse
Affiliation(s)
- L A Jurado
- Laboratario de Química Biológica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | |
Collapse
|
32
|
Encinas MV, Rojas MC, Goldie H, Cardemil E. Comparative steady-state fluorescence studies of cytosolic rat liver (GTP), Saccharomyces cerevisiae (ATP) and Escherichia coli (ATP) phospho enol pyruvate carboxykinases. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1162:195-202. [PMID: 8448184 DOI: 10.1016/0167-4838(93)90147-j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Two members of the ATP-dependent class of phospho enol pyruvate (PEP) carboxykinases (Saccharomyces cerevisiae and Escherichia coli PEP carboxykinase), and one member of the GTP-dependent class (the cytosolic rat liver enzyme) have been comparatively analyzed by taking advantage of their intrinsic fluorescence. The S. cerevisiae and the rat liver enzymes show intrinsic fluorescence with a maximum emission characteristic of moderately buried tryptophan residues, while the E. coli carboxykinase shows somewhat more average exposure for these fluorophores. The fluorescence of the three proteins was similarly quenched by the polar compound acrylamide, but differences were observed for the ionic quencher iodide. For the ATP-dependent enzymes, these last experiments indicate more exposure to the aqueous media of the tryptophan population of the E. coli than of the S. cerevisiae enzyme. The effect of nucleotides on the emission intensities and quenching efficiencies revealed substrate-induced conformational changes in the E. coli and cytosolic rat liver PEP carboxykinases. The addition of Mn2+ or of the adenosine nucleotides in the presence of Mg2+ induced an enhancement in the fluorescence of the E. coli enzyme. The addition of guanosine or inosine nucleotides to the rat liver enzyme quenched its fluorescence. From the ligand-induced fluorescence changes, dissociation constants of 40 +/- 6 microM, 10 +/- 0.8 microM, and 15 +/- 1 microM were obtained for Mn2+, MgATP and MgADP binding to the E. coli enzyme, respectively. For the cytosolic rat liver PEP carboxykinase, the respective values for GDP, IDP and ITP binding are 6 +/- 0.5 microM, 6.7 +/- 0.4 microM and 10.1 +/- 1.7 microM. A comparison of the dissociation constants obtained in this work with those reported for other PEP carboxykinases is presented.
Collapse
Affiliation(s)
- M V Encinas
- Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile
| | | | | | | |
Collapse
|
33
|
Höppner W, Beckert L, Buck F, Seitz H. Is the p29 protein involved in the rapid regulation of phosphoenolpyruvate carboxykinase (GTP)? J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47367-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Harlocker SL, Kapper MA, Greenwalt DE, Bishop SH. Phosphoenolpyruvate carboxykinase from ribbed mussel gill tissue: Reactivity with metal ions, kinetics, and action of 3-mercaptopicolinic acid. ACTA ACUST UNITED AC 1991. [DOI: 10.1002/jez.1402570302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Johnson WV, Kemp JR, Anderson PM. Purification and properties of mitochondrial phosphoenolpyruvate carboxykinase from liver of Squalus acanthias. Arch Biochem Biophys 1990; 280:376-82. [PMID: 2369129 DOI: 10.1016/0003-9861(90)90345-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Liver from Squalus acanthias (spiny dogfish), a representative elasmobranch, contains approximately 1.4 units (mumol/min) of phosphoenolpyruvate carboxykinase activity per gram and approximately 90% of the total units of activity are localized in the mitochondria. The mitochondrial phosphoenolpyruvate carboxykinase was isolated and characterized. The purified enzyme has properties generally similar to those found in mammalian and avian species. The enzyme has a molecular weight of approximately 70,000 and exists in a functional state as a monomer. The isolated enzyme displays a dual cation requirement (e.g., 6 mM Mg2+ and 10 microM Mn2+) for maximal activity; very little activity is observed when Mg2+ is present alone, and the maximal activity attained with Mn2+ alone (millimolar concentrations required) is significantly less than that observed under optimal conditions with both cations present. When assayed in the direction of oxalacetate formation there is a lag in product formation with time; the lag can be eliminated by the presence of 50 microM GTP (product). The Km for substrates is not affected by Mn2+ concentration, suggesting that the role of Mn2+ may not be related to substrate binding. The apparent Km for phosphoenolpyruvate (approximately 1 mM) is substantially higher than that reported for phosphoenolpyruvate carboxykinase from other species. The activity of phosphoenolpyruvate carboxykinase is increased 70% by physiological concentrations of urea. Maximal velocity of the reaction in the direction of oxalacetate formation is approximately half that of the reverse reaction.
Collapse
Affiliation(s)
- W V Johnson
- Department of Biochemistry, School of Medicine, University of Minnesota, Duluth 55812
| | | | | |
Collapse
|
36
|
Cardemil E, Encinas MV, Jabalquinto AM. Reactive sulfhydryl groups in Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1040:71-6. [PMID: 2198945 DOI: 10.1016/0167-4838(90)90147-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) is inactivated by several thiol- and vicinal dithiol-specific reagents. Titration experiments of the enzyme with 5,5'-dithiobis(2-nitrobenzoate) (DTNB) show the presence of reactive monothiol and vicinal dithiol groups, whose modifications lead to enzyme inactivation. The enzyme is also inactivated by N-(1-pyrenyl)iodoacetamide (PyrIAM), with a binding stoichiometry of approx. 2 mol per mol of enzyme subunit. A high level of pyrene excimer fluorescence is detected on the labeled enzyme, thus implying the reaction of the reagent with two spatially close sulfhydryl groups in the protein. The carboxykinase is not completely inactivated by different vicinal dithiol-specific reagents, thus implying a catalytically non-essential character for these groups. From substrate protection experiments of the enzyme inactivation by DTNB, PyrIAM and vicinal dithiol-specific reagents, it is concluded that the loss of enzyme activity is caused by the modification of both thiol and vicinal dithiol groups in the substrate binding region.
Collapse
Affiliation(s)
- E Cardemil
- Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile
| | | | | |
Collapse
|
37
|
Mitochondrial phosphoenolpyruvate carboxykinase from the chicken. Comparison of the cDNA and protein sequences with the cytosolic isozyme. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39115-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
38
|
Ash DE, Emig FA, Chowdhury SA, Satoh Y, Schramm VL. Mammalian and avian liver phosphoenolpyruvate carboxykinase. Alternate substrates and inhibition by analogues of oxaloacetate. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39124-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Cheng KC, Nowak T. A Histidine Residue at the Active Site of Avian Liver Phosphoenolpyruvate Carboxykinase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47165-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
|
41
|
Hwang SH, Nowak T. Stereoselective ligand interactions of chicken liver phosphoenolpyruvate carboxykinase with fluorophosphoenolpyruvate. Arch Biochem Biophys 1989; 269:646-63. [PMID: 2919888 DOI: 10.1016/0003-9861(89)90150-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The stereospecific interactions of chicken liver phosphoenolpyruvate carboxykinase (P-enolpyruvate carboxykinase) with the two geometric isomers of 3-fluorophosphoenolpyruvate (F-P-enolpyruvate) were examined. Previous studies have shown that the Z isomer of F-P-enolpyruvate is a substrate for P-enolpyruvate carboxykinase but the E isomer is a competitive inhibitor [T. H. Duffy and T. Nowak (1984) Biochemistry 23, 661-670]. The reasons for this substrate selectivity were investigated. Studies of the 1H, 19F, and 31P relaxation rates of the ligands in the binary Mn-ligand complexes indicate the formation of direct coordination complexes. The temperature and frequency dependence of the proton relaxation rates (PRR) of the respective enzyme-Mn-ligand complexes demonstrates that the perturbation of the electronic environment at the Mn(II) site on the enzyme is different upon binding of the inhibitor (E-F-P-enolpyruvate) in contrast to the binding of substrates (P-enolpyruvate or Z-F-P-enolpyruvate). Structural studies demonstrate that Z-F-P-enolpyruvate forms a second sphere coordination complex with enzyme-bound Mn(II). E-F-P-enolpyruvate exchanges slowly from the ternary complex and binds less than or equal to 10 A from the bound Mn(II). CD studies in the far-uv region demonstrate that the alpha-helical content of P-enolpyruvate carboxykinase is increased at the expense of antiparallel and parallel beta-sheet structure upon binding of Mn(II) and substrate (P-enolpyruvate or Z-F-P-enolpyruvate) to the apoenzyme, but show no such structural change upon binding of Mn(II) and E-F-P-enolpyruvate. Analogous results are observed from CD studies at the aromatic amino acid region (250-350 nm). The stereoselective catalytic activities of P-enolpyruvate carboxykinase with F-P-enolpyruvate analogs can be explained by different interactions of these ligands within the catalytic site of the enzyme.
Collapse
Affiliation(s)
- S H Hwang
- Department of Chemistry, University of Notre Dame, Indiana 46556
| | | |
Collapse
|
42
|
Cheng KC, Nowak T. Arginine Residues at the Active Site of Avian Liver Phosphoenolpyruvate Carboxykinase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94068-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
Malebrán LP, Cardemil E. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 915:385-92. [PMID: 3307926 DOI: 10.1016/0167-4838(87)90024-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) is completely inactivated by phenylglyoxal and 2,3-butanedione in borate buffer at pH 8.4, with pseudo-first-order kinetics and a second-order rate constant of 144 min-1 X M-1 and 21.6 min-1 X M-1, respectively. Phosphoenolpyruvate, ADP and Mn2+ (alone or in combination) protect the enzyme against inactivation, suggesting that the modification occurs at or near to the substrate-binding site. Almost complete restoration of activity was obtained when a sample of 2,3-butanedione-inactivated enzyme was freed of excess modifier and borate ions, suggesting that only arginyl groups are modified. The changes in the rate of inactivation in the presence of substrates and Mn2+ were used to determine the dissociation constants for enzyme-ligand complexes, and values of 23 +/- 3 microM, 168 +/- 44 microM and 244 +/- 54 microM were found for the dissociation constants for the enzyme-Mn2+, enzyme-ADP and enzyme-phosphoenolpyruvate complexes, respectively. Based on kinetic data, it is shown that 1 mol of reagent must combine per enzyme active unit in order to inactivate the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of 3-4 mol [7-14C]phenylglyoxal per mol of enzyme subunit. Assuming a stoichiometry of 1:1 between phenylglyoxal incorporation and arginine modification, our results suggest that the modification of only two of the three to four reactive arginine residues per phosphoenolpyruvate carboxykinase subunit is responsible for inactivation.
Collapse
Affiliation(s)
- L P Malebrán
- Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile
| | | |
Collapse
|
44
|
Urbina JA. The phosphoenolpyruvate carboxykinase of Trypanosoma (Schizotrypanum) cruzi epimastigotes: molecular, kinetic, and regulatory properties. Arch Biochem Biophys 1987; 258:186-95. [PMID: 3310897 DOI: 10.1016/0003-9861(87)90335-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) of the epimastigote form of Trypanosoma (Schizotrypanum) cruzi has been purified to homogeneity. The enzyme is composed of two apparently identical 42,000 +/- 500 subunits, is highly specific for adenine nucleotides, and has a strict requirement of Mn2+ ions for activity; the activation of the enzyme by ionic Mn2+ reveals that one Mn2+ ion required for each 42,000 subunit. Hyperbolic kinetics are observed for all substrates in the carboxylation reaction with Km (phosphoenolpyruvate) of 0.36 +/- 0.08 mM, Km (HCO-3) of 3.7 +/- 0.2 mM, and Km (Mg-ADP) of 39 +/- 1 microM. In the decarboxylation reaction the kinetics with respect to oxalacetic acid are also hyperbolic with a Km of 27 +/- 3 microM, but towards Mg-ATP there is a biphasic response: hyperbolic at low (less than 250 microM) concentrations with a Km of 39 +/- 1 microM, but at higher concentrations the nucleotide produces a strong inhibition of the enzyme activity. This inhibition is also observed with Mg-GTP and Mg-ITP which are not substrates of the reaction. The results are consistent with an important regulatory function of the enzyme in the amino-acid catabolism of T. cruzi.
Collapse
Affiliation(s)
- J A Urbina
- Centro de Biología Celular, Facultad de Ciencias, Universidad Central de Venezuela, Caracas
| |
Collapse
|
45
|
Rohrer SP, Saz HJ, Nowak T. Purification and characterization of phosphoenolpyruvate carboxykinase from the parasitic helminth Ascaris suum. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)69269-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Lee MH, Goody RS, Nowak T. Guanosine thiophosphate derivatives as substrate analogues for phosphoenolpyruvate carboxykinase. Biochemistry 1985; 24:7594-602. [PMID: 3912004 DOI: 10.1021/bi00347a014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The interactions of nucleotides with phosphoenolpyruvate carboxykinase were studied by using the stereospecific thiophosphate analogues of GDP and GTP. The metal ion dependent stereoselectivity of these analogues was determined by using steady-state kinetics. The RP and SP isomers of guanosine 5'-O-(1-thiodiphosphate) (GDP alpha S) were substrates with low turnover, and a small preference for the RP isomer was observed. Neither the enzyme-metal nor the nucleotide-metal complex elicited any substantial change in the selectivity. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) exhibited no substrate activity for the enzyme, regardless of the cations. This nucleotide was a competitive inhibitor against GDP, however. Both RP and SP diastereomers of guanosine 5'-O-(1-thiotriphosphate) (GTP alpha S) were good substrates for phosphoenolpyruvate carboxykinase; in several cases, depending upon the cation, kcat and/or Vm/Km for the RP isomer is greater than for the substrate GTP. The enzyme-metal complex but not the nucleotide-metal complex affects the relative Km and the Vmax values. In contrast, guanosine 5'-O-(2-thiotriphosphate) (GTP beta S) (SP) is a much better substrate (greater than 50 times) than is GTP beta S (RP). The metal ions have little effect on the selectivity. These results suggest a specific interaction of the beta-phosphate of the nucleotide with the protein. The analogue guanosine 5'-O-(3-thiotriphosphate) (GPT gamma S) serves as a substrate to yield GDP and thiophosphoenolpyruvate. The latter was detected by 31P NMR and was shown to slowly hydrolyze to form phosphoenolpyruvate.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
47
|
|
48
|
Makinen AL, Nowak T. 3-Mercaptopicolinate. A reversible active site inhibitor of avian liver phosphoenolpyruvate carboxykinase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)44278-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
The purification, characterization, and activation of phosphoenolpyruvate carboxykinase from chicken liver mitochondria. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)83806-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|