1
|
Alanazi YF, Lockhart-Cairns MP, Cain SA, Jowitt TA, Weiss AS, Baldock C. Autosomal Recessive Cutis Laxa 1C Mutations Disrupt the Structure and Interactions of Latent TGFβ Binding Protein-4. Front Genet 2021; 12:706662. [PMID: 34539739 PMCID: PMC8446450 DOI: 10.3389/fgene.2021.706662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Latent TGFβ binding protein-4 (LTBP4) is a multi-domain glycoprotein, essential for regulating the extracellular bioavailability of TGFβ and assembly of elastic fibre proteins, fibrillin-1 and tropoelastin. LTBP4 mutations are linked to autosomal recessive cutis laxa type 1C (ARCL1C), a rare congenital disease characterised by high mortality and severely disrupted connective tissues. Despite the importance of LTBP4, the structure and molecular consequences of disease mutations are unknown. Therefore, we analysed the structural and functional consequences of three ARCL1C causing point mutations which effect highly conserved cysteine residues. Our structural and biophysical data show that the LTBP4 N- and C-terminal regions are monomeric in solution and adopt extended conformations with the mutations resulting in subtle changes to their conformation. Similar to LTBP1, the N-terminal region is relatively inflexible, whereas the C-terminal region is flexible. Interaction studies show that one C-terminal mutation slightly decreases binding to fibrillin-1. We also found that the LTBP4 C-terminal region directly interacts with tropoelastin which is perturbed by both C-terminal ARCL1C mutations, whereas an N-terminal mutation increased binding to fibulin-4 but did not affect the interaction with heparan sulphate. Our results suggest that LTBP4 mutations contribute to ARCL1C by disrupting the structure and interactions of LTBP4 which are essential for elastogenesis in a range of mammalian connective tissues.
Collapse
Affiliation(s)
- Yasmene F Alanazi
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Michael P Lockhart-Cairns
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Stuart A Cain
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Thomas A Jowitt
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, Darlington, NSW, Australia.,School of Life and Environmental Sciences, Darlington, NSW, Australia.,Sydney Nano Institute, The University of Sydney, Darlington, NSW, Australia
| | - Clair Baldock
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR, Kielty CM. Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions. J Biol Chem 2008; 283:27017-27. [PMID: 18669635 DOI: 10.1074/jbc.m803373200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrillin-1 N- and C-terminal heparin binding sites have been characterized. An unprocessed monomeric N-terminal fragment (PF1) induced a very high heparin binding response, indicating heparin-mediated multimerization. Using PF1 deletion and short fragments, a heparin binding site was localized within the domain encoded by exon 7 after the first hybrid domain. Rodent embryonic fibroblasts adhered to PF1 and deletion fragments, and, when cells were plated on fibrillin-1 or fibronectin Arg-Gly-Asp cell-binding fragments, cells showed heparin-dependent spreading and focal contact formation in response to soluble PF1. Within domains encoded by exons 59-62 near the fibrillin-1 C terminus are novel conformation-dependent high affinity heparin and tropoelastin binding sites. Heparin disrupted tropoelastin binding but did not disrupt N- and C-terminal fibrillin-1 interactions. Thus, fibrillin-1 N-terminal interactions with heparin/heparan sulfate directly influence cell behavior, whereas C-terminal interactions with heparin/heparan sulfate regulate elastin deposition. These data highlight how heparin/heparan sulfate controls fibrillin-1 interactions.
Collapse
Affiliation(s)
- Stuart A Cain
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR, Kielty CM. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci 2007; 120:1383-92. [PMID: 17374638 DOI: 10.1242/jcs.003954] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have defined the molecular basis of cell adhesion to fibrillin-1, the major structural component of extracellular microfibrils that are associated with elastic fibres. Using human dermal fibroblasts, and recombinant domain swap fragments containing the Arg-Gly-Asp motif, we have demonstrated a requirement for upstream domains for integrin-alpha(5)beta(1)-mediated cell adhesion and migration. An adjacent heparin-binding site, which supports focal adhesion formation, was mapped to the fibrillin-1 TB5 motif. Site-directed mutagenesis revealed two arginine residues that are crucial for heparin binding, and confirmed their role in focal adhesion formation. These integrin and syndecan adhesion motifs juxtaposed on fibrillin-1 are evolutionarily conserved and reminiscent of similar functional elements on fibronectin, highlighting their crucial functional importance.
Collapse
Affiliation(s)
- Daniel V Bax
- UK Centre for Tissue Engineering, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|