1
|
Blum DJ, Ko YH, Pedersen PL. Mitochondrial ATP Synthase Catalytic Mechanism: A Novel Visual Comparative Structural Approach Emphasizes Pivotal Roles for Mg2+ and P-Loop Residues in Making ATP. Biochemistry 2012; 51:1532-46. [DOI: 10.1021/bi201595v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Blum
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Young H. Ko
- Cancer Cure Med, LLC, 300 Redland Court, Suite 212, Owings Mills, Maryland
21117, United States
| | - Peter L. Pedersen
- Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, 725
North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
2
|
Ahmad Z, Okafor F, Laughlin TF. Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase. JOURNAL OF AMINO ACIDS 2011; 2011:785741. [PMID: 22312470 PMCID: PMC3268026 DOI: 10.4061/2011/785741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/21/2011] [Indexed: 11/21/2022]
Abstract
Here we describe the role of charged amino acids at the catalytic sites of Escherichia coli ATP synthase. There are four positively charged and four negatively charged residues in the vicinity of of E. coli ATP synthase catalytic sites. Positive charges are contributed by three arginine and one lysine, while negative charges are contributed by two aspartic acid and two glutamic acid residues. Replacement of arginine with a neutral amino acid has been shown to abrogate phosphate binding, while restoration of phosphate binding has been accomplished by insertion of arginine at the same or a nearby location. The number and position of positive charges plays a critical role in the proper and efficient binding of phosphate. However, a cluster of many positive charges inhibits phosphate binding. Moreover, the presence of negatively charged residues seems a requisite for the proper orientation and functioning of positively charged residues in the catalytic sites. This implies that electrostatic interactions between amino acids are an important constituent of initial phosphate binding in the catalytic sites. Significant loss of function in growth and ATPase activity assays in mutants generated through charge modulations has demonstrated that precise location and stereochemical interactions are of paramount importance.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biology, Alabama A&M University, P.O. Box 610, Normal, AL 35762, USA
| | | | | |
Collapse
|
3
|
Xie P. On chemomechanical coupling of the F(1)-ATPase molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:955-62. [PMID: 19265667 DOI: 10.1016/j.bbabio.2009.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
F(1)-ATPase catalyzes ATP hydrolysis to drive the central gamma-shaft rotating inside a hexameric cylinder composed of alternating alpha and beta subunits. Experiments showed that the rotation of gamma-shaft proceeds in steps of 120 degrees and each 120 degrees -rotation is composed of an 80 degrees substep and a 40 degrees substep. Here, based on the previously proposed models, an improved physical model for chemomechanical coupling of F(1)-ATPase is presented, with which the two-substep rotation is well explained. One substep is driven by the power stroke upon ATP binding, while the other one resulted from the passage of gamma-shaft from previous to next adjacent beta subunits via free diffusion. Using the model, the dynamics and kinetics of F(1)-ATPase, such as the rotating time of each substep, the dwell time at each pause and the rotation rate, are analytically studied. The theoretical results obtained with only three adjustable parameters reproduce the available experimental data well.
Collapse
Affiliation(s)
- Ping Xie
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
4
|
Penefsky HS, Cross RL. Structure and mechanism of FoF1-type ATP synthases and ATPases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 64:173-214. [PMID: 1828930 DOI: 10.1002/9780470123102.ch4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H S Penefsky
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse
| | | |
Collapse
|
5
|
Ahmad Z, Senior AE. Identification of phosphate binding residues of Escherichia coli ATP synthase. J Bioenerg Biomembr 2006; 37:437-40. [PMID: 16691479 DOI: 10.1007/s10863-005-9486-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four positively-charged residues, namely betaLys-155, betaArg-182, betaArg-246, and alphaArg-376 have been identified as Pi binding residues in Escherichia coli ATP synthase. They form a triangular Pi binding site in catalytic site betaE where substrate Pi initially binds for ATP synthesis in oxidative phosphorylation. Positive electrostatic charge in the vicinity of betaArg-246 is shown to be one important component of Pi binding.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
6
|
Abstract
ATP synthase uses a rotary mechanism to carry out its cellular function of manufacturing ATP. The central gamma-shaft rotates inside a hexameric cylinder composed of alternating alpha- and beta-subunits. When operating in the hydrolysis direction under high frictional loads and low ATP concentrations, a coordinated mechanochemical cycle in the three catalytic sites of the beta-subunits rotates the gamma-shaft in three 120 degrees steps. At low frictional loads, the 120 degrees steps alternate with three ATP-independent substeps separated by approximately 30 degrees. We present a quantitative model that accounts for these substeps and show that the observed pauses are due to 1), the asymmetry of the F(1) hexamer that produces a propeller-like motion of the power-stroke and 2), the relatively tight binding of ADP to the catalytic sites.
Collapse
Affiliation(s)
- Sean X Sun
- Department of Mechanical Engineering and Whitaker Institute of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
7
|
Dittrich M, Hayashi S, Schulten K. ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase. Biophys J 2004; 87:2954-67. [PMID: 15315950 PMCID: PMC1304769 DOI: 10.1529/biophysj.104.046128] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The enzyme F1-adenosine triphosphatase (ATPase) is a molecular motor that converts the chemical energy stored in the molecule adenosine triphosphate (ATP) into mechanical rotation of its gamma-subunit. During steady-state catalysis, the three catalytic sites of F1 operate in a cooperative fashion such that at every instant each site is in a different conformation corresponding to a different stage along the catalytic cycle. Notwithstanding a large amount of biochemical and, recently, structural data, we still lack an understanding of how ATP hydrolysis in F1 is coupled to mechanical motion and how the catalytic sites achieve cooperativity during rotatory catalysis. In this publication, we report combined quantum mechanical/molecular mechanical simulations of ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase. Our simulations reveal a dramatic change in the reaction energetics from strongly endothermic in betaTP to approximately equienergetic in betaDP. The simulations identify the responsible protein residues, the arginine finger alphaR373 being the most important one. Similar to our earlier study of betaTP, we find a multicenter proton relay mechanism to be the energetically most favorable hydrolysis pathway. The results elucidate how cooperativity between catalytic sites might be achieved by this remarkable molecular motor.
Collapse
Affiliation(s)
- Markus Dittrich
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
8
|
Ahmad Z, Senior AE. Mutagenesis of residue betaArg-246 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F1-ATPase. J Biol Chem 2004; 279:31505-13. [PMID: 15150266 DOI: 10.1074/jbc.m404621200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Residues responsible for phosphate binding in F(1)F(0)-ATP synthase catalytic sites are of significant interest because phosphate binding is believed linked to proton gradient-driven subunit rotation. From x-ray structures, a phosphate-binding subdomain is evident in catalytic sites, with conserved betaArg-246 in a suitable position to bind phosphate. Mutations betaR246Q, betaR246K, and betaR246A in Escherichia coli were found to impair oxidative phosphorylation and to reduce ATPase activity of purified F(1) by 100-fold. In contrast to wild type, ATPase of mutants was not inhibited by MgADP-fluoroaluminate or MgADP-fluoroscandium, showing the Arg side chain is required for wild-type transition state formation. Whereas 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) inhibited wild-type ATPase essentially completely, ATPase in mutants was inhibited maximally by approximately 50%, although reaction still occurred at residue betaTyr-297, proximal to betaArg-246 in the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts in betaE (empty) catalytic sites, as shown previously by x-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild type but not in mutants. The results show that phosphate can bind in the betaE catalytic site of E. coli F(1) and that betaArg-246 is an important phosphate-binding residue.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
9
|
Dittrich M, Hayashi S, Schulten K. On the mechanism of ATP hydrolysis in F1-ATPase. Biophys J 2003; 85:2253-66. [PMID: 14507690 PMCID: PMC1303451 DOI: 10.1016/s0006-3495(03)74650-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 07/16/2003] [Indexed: 11/20/2022] Open
Abstract
Most of the cellular ATP in living organisms is synthesized by the enzyme F(1)F(o)-ATP synthase. The water soluble F(1) part of the enzyme can also work in reverse and utilize the chemical energy released during ATP hydrolysis to generate mechanical motion. Despite the availability of a large amount of biochemical data and several x-ray crystallographic structures of F(1), there still remains a considerable lack of understanding as to how this protein efficiently converts the chemical energy released during the reaction ATP + H(2)O --> ADP + P(i) into mechanical motion of the stalk. We report here an ab initio QM/MM study of ATP hydrolysis in the beta(TP) catalytic site of F(1). Our simulations provide an atomic level description of the reaction path, its energetics, and the interaction of the nucleotide with the protein environment during catalysis. The simulations suggest that the reaction path with the lowest potential energy barrier proceeds via nucleophilic attack on the gamma-phosphate involving two water molecules. Furthermore, the ATP hydrolysis reaction in beta(TP) is found to be endothermic, demonstrating that the catalytic site is able to support the synthesis of ATP and does not promote ATP hydrolysis in the particular conformation studied.
Collapse
Affiliation(s)
- Markus Dittrich
- Beckman Institute, and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
10
|
Le NP, Omote H, Wada Y, Al-Shawi MK, Nakamoto RK, Futai M. Escherichia coli ATP synthase alpha subunit Arg-376: the catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state. Biochemistry 2000; 39:2778-83. [PMID: 10704230 DOI: 10.1021/bi992530h] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The three catalytic sites of the F(O)F(1) ATP synthase interact through a cooperative mechanism that is required for the promotion of catalysis. Replacement of the conserved alpha subunit Arg-376 in the Escherichia coli F(1) catalytic site with Ala or Lys resulted in turnover rates of ATP hydrolysis that were 2 x 10(3)-fold lower than that of the wild type. Mutant enzymes catalyzed hydrolysis at a single site with kinetics similar to that of the wild type; however, addition of excess ATP did not chase bound ATP, ADP, or Pi from the catalytic site, indicating that binding of ATP to the second and third sites failed to promote release of products from the first site. Direct monitoring of nucleotide binding in the alphaR376A and alphaR376K mutant F(1) by a tryptophan in place of betaTyr-331 (Weber et al. (1993) J. Biol. Chem. 268, 20126-20133) showed that the catalytic sites of the mutant enzymes, like the wild type, have different affinities and therefore, are structurally asymmetric. These results indicate that alphaArg-376, which is close to the beta- or gamma-phosphate group of bound ADP or ATP, respectively, does not make a significant contribution to the catalytic reaction, but coordination of the arginine to nucleotide filling the low-affinity sites is essential for promotion of rotational catalysis to steady-state turnover.
Collapse
Affiliation(s)
- N P Le
- Division of Biological Sciences, The Institute of Scientific and Industrial Research, Osaka University, CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | |
Collapse
|
11
|
García JJ, Gómez-Puyou A, Maldonado E, Tuena De Gómez-Puyou M. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:622-9. [PMID: 9370375 DOI: 10.1111/j.1432-1033.1997.00622.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of ATP, ADP and pyrophosphate (PPi) on hydrolysis and release of [gamma-32P]ATP bound to the high-affinity catalytic site of soluble F1 from bovine heart mitochondria under unisite conditions [Grubmeyer, C., Cross, R. L. & Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100] was studied. In accord with the previous data, it was observed that millimolar concentrations of ATP or ADP added to F1 undergoing unisite hydrolysis of [gamma-32P]ATP accelerated its hydrolysis. PPi also produced a hydrolytic burst of a fraction of the previously bound [gamma-32P]ATP; kinetic data suggested that for production of optimal hydrolysis by PPi of the bound [gamma-32P]ATP, two binding sites with apparent Kd of 27 microM and 240 microM must be filled. The extent of the hydrolytic burst induced by MgPPi was lower than that induced by ADP and ATP. In F1 in which PPi had produced a hydrolytic burst of the bound [gamma-32P]ATP, the addition of ATP induced a second burst of hydrolysis. By filtration experiments and enzyme trapping, it was also studied whether ATP, ADP and PPi produce release of the tightly bound [gamma-32P]ATP. At millimolar concentrations, ATP and ADP brought about release of about 25% of the previously bound [gamma-32P]ATP. At micromolar concentrations, ADP accelerated the hydrolysis of the previously bound [gamma-32P]ATP but not its release. Hence, the hydrolytic and release reactions could be separated, indicating that the two reactions require the occupancy of different sites in F1. With PPi, no release of the tightly bound [gamma-32P]ATP was observed. The ADP induced hydrolysis and release of the F1-bound [gamma-32P]ATP were inhibited by sodium azide to the same extent (60%). Since release of ATP from a high-affinity catalytic site of F1 represents the terminal step of oxidative phosphorylation, the data illustrate that the binding energy of substrates to F1 is critical to the ejection of ATP into the media. The failure of PPi to induce release of [gamma-32P]ATP bound to F1 under unisite conditions is probably due to its lower binding energy.
Collapse
Affiliation(s)
- J J García
- Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., México
| | | | | | | |
Collapse
|
12
|
Abstract
The structure of the core catalytic unit of ATP synthase, alpha 3 beta 3 gamma, has been determined by X-ray crystallography, revealing a roughly symmetrical arrangement of alternating alpha and beta subunits around a central cavity in which helical portions of gamma are found. A low-resolution structural model of F0, based on electron spectroscopic imaging, locates subunit a and the two copies of subunit b outside of a subunit c oligomer. The structures of individual subunits epsilon and c (largely) have been solved by NMR spectroscopy, but the oligomeric structure of c is still unknown. The structures of subunits a and delta remain undefined, that of b has not yet been defined but biochemical evidence indicates a credible model. Subunits gamma, epsilon, b, and delta are at the interface between F1 and F0; gamma epsilon complex forms one element of the stalk, interacting with c at the base and alpha and beta at the top. The locations of b and delta are less clear. Elucidation of the structure F0, of the stalk, and of the entire F1F0 remains a challenging goal.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
13
|
Liang Y, Ackerman SH. Characterization of mutations in the beta subunit of the mitochondrial F1-ATPase that produce defects in enzyme catalysis and assembly. J Biol Chem 1996; 271:26522-8. [PMID: 8900121 DOI: 10.1074/jbc.271.43.26522] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ATP2 gene, coding for the beta subunit of the mitochondrial F1-ATPase, was cloned from nine independent isolates of chemically mutagenized yeast. Seven different mutant alleles were identified. In one case the mutation occurs in the mitochondrial targeting sequence (M1I). The remaining six mutations map to the mature part of the beta subunit protein and alter amino acids that are conserved in the bovine heart mitochondrial and Escherichia coli beta subunit proteins. Biochemical analysis of the yeast atp2 mutants identified two different phenotypes. The G133D, P179L, and G227D mutations correlate with an assembly-defective phenotype that is characterized by the accumulation of the F1 alpha and beta subunits in large protein aggregates. Strains harboring the A192V, E222K, or R293K mutations assemble an F1 of normal size that is none-the-less catalytically inactive. The effect of the atp2 mutations was also analyzed in diploids formed by crossing the mutants to wild type yeast. Hybrid enzymes formed with beta subunits containing either the G133D, E222K, or R293K mutations are compromised for steady-state ATPase activity. The display of partial dominance confirms the importance of Gly133 for structural stability and of Glu222 and Arg293 for catalytic cooperativity.
Collapse
Affiliation(s)
- Y Liang
- Department of Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
14
|
Affiliation(s)
- Y Hatefi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
15
|
Labahn A, Gräber P. From uni-site to multi-site ATP synthesis in thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:170-6. [PMID: 8369335 DOI: 10.1016/0005-2728(93)90169-g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The membrane-bound H(+)-ATPase from chloroplasts, CF0F1, was brought into the active, reduced state by illumination in the presence of thioredoxin and dithiothreitol. The endogenous nucleotides were removed by a washing procedure so that the active, reduced enzyme contained one tightly bound ATP per CF0F1. When [14C]ADP was added in substoichiometric amounts during continuous illumination, ADP was bound to the enzyme, phosphorylated and released as [14C]ATP, i.e., the tightly bound ATP was not involved in the catalytic turnover ('uni-site ATP-synthesis'). The rate constant for ADP binding was k = (2.0 +/- 0.5) x 10(6) M-1 s-1. The rate of ATP synthesis was measured as a function of the ADP concentration from 8 nM up to 1 mM in the presence of 2 mM phosphate during continuous illumination. A linear increase of the rate was observed up to 100 nM. Above this concentration a supralinear increase was found, indicating the occupation of a second ADP-binding site. A plateau was reached between 1.5 microM and 2.3 microM ADP with a rate of vpl = 3.7 s-1. The half-maximal rate from this plateau was observed at 780 nM. Above 2.3 microM ADP up to 1 mM ADP the data were described by Michaelis-Menten kinetics (vmax = 80 s-1; apparent KM = 32 microM). These results indicated the participation of at least two different ADP binding sites in ATP synthesis catalyzed by the membrane-bound CF0F1.
Collapse
Affiliation(s)
- A Labahn
- Biologisches Institut, Universität Stuttgart, Germany
| | | |
Collapse
|
16
|
Senior A, Wilke-Mounts S, al-Shawi M. Lysine 155 in beta-subunit is a catalytic residue of Escherichia coli F1 ATPase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53137-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
ATP-hydrolysis in chloroplasts: evidence for the participation of three ATP binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90055-k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Boyer PD. The binding change mechanism for ATP synthase--some probabilities and possibilities. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1140:215-50. [PMID: 8417777 DOI: 10.1016/0005-2728(93)90063-l] [Citation(s) in RCA: 716] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- P D Boyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles 90024-1570
| |
Collapse
|
19
|
Matsuno-Yagi A, Hatefi Y. Studies on the mechanism of oxidative phosphorylation. Different effects of F0 inhibitors on unisite and multisite ATP hydrolysis by bovine submitochondrial particles. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53886-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Duncan TM, Cross RL. A model for the catalytic site of F1-ATPase based on analogies to nucleotide-binding domains of known structure. J Bioenerg Biomembr 1992; 24:453-61. [PMID: 1429539 DOI: 10.1007/bf00762362] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An updated topological model is constructed for the catalytic nucleotide-binding site of the F1-ATPase. The model is based on analogies to the known structures of the MgATP site on adenylate kinase and the guanine nucleotide sites on elongation factor Tu (Ef-Tu) and the ras p21 protein. Recent studies of these known nucleotide-binding domains have revealed several common functional features and similar alignment of nucleotide in their binding folds, and these are used as a framework for evaluating results of affinity labeling and mutagenesis studies of the beta subunit of F1. Several potentially important residues on beta are noted that have not yet been studied by mutagenesis or affinity labeling.
Collapse
Affiliation(s)
- T M Duncan
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|
21
|
Abstract
The catalytic site of Escherichia coli F1-ATPase is reviewed in terms of structure and function. Structural prediction, biochemical analyses, and mutagenesis experiments suggest that the catalytic site is formed primarily by residues 137-335 of beta-subunit. Subdomains of the site involved in phosphate-bond cleavage/synthesis and adenine-ring binding are discussed. Ambiguities inherent in steady-state catalytic measurements due to catalytic site cooperativity are discussed, and the advantages of pre-steady-state ("unisite") techniques are emphasized. The emergence of a single high-affinity catalytic site occurs as a result of F1-oligomer assembly. Measurements of unisite catalysis rate and equilibrium constants, and their modulation by varied pH, dimethylsulfoxide, and mutations, are described and conclusions regarding the nature of the high-affinity catalytic site and mechanism of catalysis are presented.
Collapse
Affiliation(s)
- A E Senior
- Department of Biochemistry, University of Rochester Medical Center, New York 14642
| |
Collapse
|
22
|
Gräber P, Labahn A. Proton transport-coupled unisite catalysis by the H(+)-ATPase from chloroplasts. J Bioenerg Biomembr 1992; 24:493-7. [PMID: 1331040 DOI: 10.1007/bf00762367] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proton transport-coupled unisite catalysis was measured with the H(+)-ATPase from chloroplasts. The reaction was measured in the ATP hydrolysis direction under deenergized conditions and in the ATP synthesis direction under energized conditions. The equilibrium constant of the enzyme does not change upon energization, whereas the dissociation constants of substrates and products change by orders of magnitude. This indicates that the Gibbs free enthalpy derived from proton translocation is used to change binding affinities of substrates and products, and this results in synthesis of free ATP.
Collapse
Affiliation(s)
- P Gräber
- Biologisches Institut, Universität Stuttgart, Germany
| | | |
Collapse
|
23
|
|
24
|
Hisabori T, Muneyuki E, Odaka M, Yokoyama K, Mochizuki K, Yoshida M. Single site hydrolysis of 2‘,3‘-O-(2,4,6-trinitrophenyl)-ATP by the F1-ATPase from thermophilic bacterium PS3 is accelerated by the chase-addition of excess ATP. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42868-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Alteration by site-directed mutagenesis of the conserved lysine residue in the ATP-binding consensus sequence of the RecD subunit of the Escherichia coli RecBCD enzyme. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46006-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Muneyuki E, Yoshida M, Bullough DA, Allison WS. Heterogeneous hydrolysis of substoichiometric ATP by the F1-ATPase from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:304-11. [PMID: 1828699 DOI: 10.1016/s0005-2728(05)80251-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The hydrolysis of 0.3 microM [alpha,gamma-32P]ATP by 1 microM F1-ATPase isolated from the plasma membranes of Escherichia coli has been examined in the presence and absence of inorganic phosphate. The rate of binding of substoichiometric substrate to the ATPase is attenuated by 2 mM phosphate and further attenuated by 50 mM phosphate. Under all conditions examined, only 10-20% of the [alpha,gamma-32P]ATP that bound to the enzyme was hydrolyzed sufficiently slowly to be examined in cold chase experiments with physiological concentrations of non-radioactive ATP. These features differ from those observed with the mitochondrial F1-ATPase. The amount of bound substrate in equilibrium with bound products observed in the slow phase which was subject to promoted hydrolysis by excess ATP was not affected by the presence of phosphate. Comparison of the fluxes of enzyme-bound species detected experimentally in the presence of 2 mM phosphate with those predicted by computer simulation of published rate constants determined for uni-site catalysis (Al-Shawi, M.D., Parsonage, D. and Senior, A.E. (1989) J. Biol. Chem. 264, 15376-15383) showed that hydrolysis of substoichiometric ATP observed experimentally was clearly biphasic. Less than 20% of the substoichiometric ATP added to the enzyme was hydrolyzed according to the published rate constants which were calculated from the slow phase of product release in the presence of 1 mM phosphate. The majority of the substoichiometric ATP added to the enzyme was hydrolyzed with product release that was too rapid to be detected by the methods employed in this study, indicating again that the F1-ATPase from E. coli and bovine heart mitochondria hydrolyze substoichiometric ATP differently.
Collapse
Affiliation(s)
- E Muneyuki
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohoma, Japan
| | | | | | | |
Collapse
|
27
|
Abstract
Uni-site ATP synthesis was measured with thylakoids. The membrane-bound ATP-synthase, CF0F1, was brought into the active, reduced state by illumination in the presence of thioredoxin, dithiothreitol and phosphate. This enzyme contains two tightly bound ATP per CF0F1. ATP was released from the enzyme when ADP was added in substoichiometric amounts during illumination. Experiments with [14C]ADP indicated that after binding the same nucleotide was phosphorylated and released as [14C]ATP, i.e. only one site is involved in ATP-synthesis ('uni-site ATP-synthesis'). The two tightly bound ATP are not involved in the catalytic turnover. The rate constant for ADP binding was (4 +/- 2) x 10(6) M-1s-1. Compared to deenergized conditions the rate constant for ADP binding and that for ATP-release were drastically increased, i.e. membrane energization increased the rate constants for the ATP-synthesis direction.
Collapse
Affiliation(s)
- A Labahn
- Max Volmer Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, FRG
| | | | | |
Collapse
|
28
|
al-Shawi MK, Parsonage D, Senior AE. Adenosine triphosphatase and nucleotide binding activity of isolated beta-subunit preparations from Escherichia coli F1F0-ATP synthase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39403-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Thermodynamic analyses of the catalytic pathway of F1-ATPase from Escherichia coli. Implications regarding the nature of energy coupling by F1-ATPases. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39579-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|