1
|
Skellam E. Subcellular localization of fungal specialized metabolites. Fungal Biol Biotechnol 2022; 9:11. [PMID: 35614515 PMCID: PMC9134587 DOI: 10.1186/s40694-022-00140-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 01/07/2023] Open
Abstract
Fungal specialized metabolites play an important role in the environment and have impacted human health and survival significantly. These specialized metabolites are often the end product of a series of sequential and collaborating biosynthetic enzymes that reside within different subcellular compartments. A wide variety of methods have been developed to understand fungal specialized metabolite biosynthesis in terms of the chemical conversions and the biosynthetic enzymes required, however there are far fewer studies elucidating the compartmentalization of the same enzymes. This review illustrates the biosynthesis of specialized metabolites where the localization of all, or some, of the biosynthetic enzymes have been determined and describes the methods used to identify the sub-cellular localization.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry and BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76201, USA.
| |
Collapse
|
2
|
Iacovelli R, Mózsik L, Bovenberg RA, Driessen AJ. Identification of a conserved N-terminal domain in the first module of ACV synthetases. Microbiologyopen 2021; 10:e1145. [PMID: 33449449 PMCID: PMC7884236 DOI: 10.1002/mbo3.1145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022] Open
Abstract
The l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine synthetase (ACVS) is a trimodular nonribosomal peptide synthetase (NRPS) that provides the peptide precursor for the synthesis of β-lactams. The enzyme has been extensively characterized in terms of tripeptide formation and substrate specificity. The first module is highly specific and is the only NRPS unit known to recruit and activate the substrate l-α-aminoadipic acid, which is coupled to the α-amino group of l-cysteine through an unusual peptide bond, involving its δ-carboxyl group. Here we carried out an in-depth investigation on the architecture of the first module of the ACVS enzymes from the fungus Penicillium rubens and the bacterium Nocardia lactamdurans. Bioinformatic analyses revealed the presence of a previously unidentified domain at the N-terminus which is structurally related to condensation domains, but smaller in size. Deletion variants of both enzymes were generated to investigate the potential impact on penicillin biosynthesis in vivo and in vitro. The data indicate that the N-terminal domain is important for catalysis.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - László Mózsik
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Roel A.L. Bovenberg
- Synthetic Biology and Cell EngineeringGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- DSM Biotechnology CentreDelftThe Netherlands
| | - Arnold J.M. Driessen
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
3
|
Alonzo DA, Schmeing TM. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Protein Sci 2020; 29:2316-2347. [PMID: 33073901 DOI: 10.1002/pro.3979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Depsipeptides are compounds that contain both ester bonds and amide bonds. Important natural product depsipeptides include the piscicide antimycin, the K+ ionophores cereulide and valinomycin, the anticancer agent cryptophycin, and the antimicrobial kutzneride. Furthermore, database searches return hundreds of uncharacterized systems likely to produce novel depsipeptides. These compounds are made by specialized nonribosomal peptide synthetases (NRPSs). NRPSs are biosynthetic megaenzymes that use a module architecture and multi-step catalytic cycle to assemble monomer substrates into peptides, or in the case of specialized depsipeptide synthetases, depsipeptides. Two NRPS domains, the condensation domain and the thioesterase domain, catalyze ester bond formation, and ester bonds are introduced into depsipeptides in several different ways. The two most common occur during cyclization, in a reaction between a hydroxy-containing side chain and the C-terminal amino acid residue in a peptide intermediate, and during incorporation into the growing peptide chain of an α-hydroxy acyl moiety, recruited either by direct selection of an α-hydroxy acid substrate or by selection of an α-keto acid substrate that is reduced in situ. In this article, we discuss how and when these esters are introduced during depsipeptide synthesis, survey notable depsipeptide synthetases, and review insight into bacterial depsipeptide synthetases recently gained from structural studies.
Collapse
Affiliation(s)
- Diego A Alonzo
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Iacovelli R, Zwahlen RD, Bovenberg RAL, Driessen AJM. Biochemical characterization of the Nocardia lactamdurans ACV synthetase. PLoS One 2020; 15:e0231290. [PMID: 32275728 PMCID: PMC7147772 DOI: 10.1371/journal.pone.0231290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
The L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase (ACVS) is a nonribosomal peptide synthetase (NRPS) that fulfills a crucial role in the synthesis of β-lactams. Although some of the enzymological aspects of this enzyme have been elucidated, its large size, at over 400 kDa, has hampered heterologous expression and stable purification attempts. Here we have successfully overexpressed the Nocardia lactamdurans ACVS in E. coli HM0079. The protein was purified to homogeneity and characterized for tripeptide formation with a focus on the substrate specificity of the three modules. The first L-α-aminoadipic acid-activating module is highly specific, whereas the modules for L-cysteine and L-valine are more promiscuous. Engineering of the first module of ACVS confirmed the strict specificity observed towards its substrate, which can be understood in terms of the non-canonical peptide bond position.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Reto D. Zwahlen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roel A. L. Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- DSM Biotechnology Centre, Delft, The Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Zwahlen RD, Pohl C, Bovenberg RAL, Driessen AJM. Bacterial MbtH-like Proteins Stimulate Nonribosomal Peptide Synthetase-Derived Secondary Metabolism in Filamentous Fungi. ACS Synth Biol 2019; 8:1776-1787. [PMID: 31284717 PMCID: PMC6713467 DOI: 10.1021/acssynbio.9b00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Filamentous fungi are known producers of bioactive natural products, low molecular weight molecules that arise from secondary metabolism. MbtH-like proteins (MLPs) are small (∼10 kDa) proteins, which associate noncovalently with adenylation domains of some bacterial nonribosomal peptide synthetases (NRPS). MLPs promote the folding, stability, and activity of NRPS enzymes. MLPs are highly conserved among a wide range of bacteria; however, they are absent from all fungal species sequenced to date. We analyzed the interaction potential of bacterial MLPs with eukaryotic NRPS enzymes first using crystal structures, with results suggesting a conservation of the interaction surface. Subsequently, we transformed five MLPs into Penicillium chrysogenum strains and analyzed changes in NRPS-derived metabolite profiles. Three of the five transformed MLPs increased the rate of nonribosomal peptide formation and elevated the concentrations of intermediate and final products of the penicillin, roquefortine, chrysogine, and fungisporin biosynthetic pathways. Our results suggest that even though MLPs are not found in the fungal domain of life, they can be used in fungal hosts as a tool for natural product discovery and biotechnological production.
Collapse
Affiliation(s)
- Reto D. Zwahlen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Carsten Pohl
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Roel A. L. Bovenberg
- Synthetic Biology and Cell Engineering, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
- DSM Biotechnology Centre, 2613 AX Delft, The Netherlands
| | - Arnold J. M. Driessen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS): discovery and perspectives. ACTA ACUST UNITED AC 2017; 44:517-524. [DOI: 10.1007/s10295-016-1850-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/06/2016] [Indexed: 11/30/2022]
Abstract
Abstract
The δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine (ACV) tripeptide is the first dedicated intermediate in the biosynthetic pathway leading to the penicillin and cephalosporin classes of β-lactam natural products in bacteria and fungi. It is synthesized nonribosomally by the ACV synthetase (ACVS) enzyme, which has been purified and partially characterized from many sources. Due to its large size and instability, many details regarding the reaction mechanism of ACVS are still not fully understood. In this review we discuss the chronology and associated methodology that led to the discovery of ACVS, some of the main findings regarding its activities, and some recent/current studies being conducted on the enzyme. In addition, we conclude with perspectives on what can be done to increase our understating of this very important protein in the future.
Collapse
|
7
|
Tamanaha EY, Zhang B, Guo Y, Chang WC, Barr EW, Xing G, St Clair J, Ye S, Neese F, Bollinger JM, Krebs C. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase. J Am Chem Soc 2016; 138:8862-74. [PMID: 27193226 PMCID: PMC4956533 DOI: 10.1021/jacs.6b04065] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme isopenicillin N synthase (IPNS) installs the β-lactam and thiazolidine rings of the penicillin core into the linear tripeptide l-δ-aminoadipoyl-l-Cys-d-Val (ACV) on the pathways to a number of important antibacterial drugs. A classic set of enzymological and crystallographic studies by Baldwin and co-workers established that this overall four-electron oxidation occurs by a sequence of two oxidative cyclizations, with the β-lactam ring being installed first and the thiazolidine ring second. Each phase requires cleavage of an aliphatic C-H bond of the substrate: the pro-S-CCys,β-H bond for closure of the β-lactam ring, and the CVal,β-H bond for installation of the thiazolidine ring. IPNS uses a mononuclear non-heme-iron(II) cofactor and dioxygen as cosubstrate to cleave these C-H bonds and direct the ring closures. Despite the intense scrutiny to which the enzyme has been subjected, the identities of the oxidized iron intermediates that cleave the C-H bonds have been addressed only computationally; no experimental insight into their geometric or electronic structures has been reported. In this work, we have employed a combination of transient-state-kinetic and spectroscopic methods, together with the specifically deuterium-labeled substrates, A[d2-C]V and AC[d8-V], to identify both C-H-cleaving intermediates. The results show that they are high-spin Fe(III)-superoxo and high-spin Fe(IV)-oxo complexes, respectively, in agreement with published mechanistic proposals derived computationally from Baldwin's founding work.
Collapse
Affiliation(s)
- Esta Y. Tamanaha
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yisong Guo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Wei-chen Chang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Eric W. Barr
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gang Xing
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jennifer St Clair
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Shengfa Ye
- Max-Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - Frank Neese
- Max-Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany
| | - J. Martin Bollinger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
8
|
Tarry MJ, Schmeing TM. Specific disulfide cross-linking to constrict the mobile carrier domain of nonribosomal peptide synthetases. Protein Eng Des Sel 2015; 28:163-70. [PMID: 25713404 DOI: 10.1093/protein/gzv009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/03/2015] [Indexed: 01/03/2023] Open
Abstract
Nonribosomal peptide synthetases are large, multi-domain enzymes that produce peptide molecules with important biological activity such as antibiotic, antiviral, anti-tumor, siderophore and immunosuppressant action. The adenylation (A) domain catalyzes two reactions in the biosynthetic pathway. In the first reaction, it activates the substrate amino acid by adenylation and in the second reaction it transfers the amino acid onto the phosphopantetheine arm of the adjacent peptide carrier protein (PCP) domain. The conformation of the A domain differs significantly depending on which of these two reactions it is catalyzing. Recently, several structures of A-PCP di-domains have been solved using mechanism-based inhibitors to trap the PCP domain in the A domain active site. Here, we present an alternative strategy to stall the A-PCP di-domain, by engineering a disulfide bond between the native amino acid substrate and the A domain. Size exclusion studies showed a significant shift in apparent size when the mutant A-PCP was provided with cross-linking reagents, and this shift was reversible in the presence of high concentrations of reducing agent. The cross-linked protein crystallized readily in several of the conditions screened and the best crystals diffracted to ≈8 Å.
Collapse
Affiliation(s)
- Michael J Tarry
- Department of Biochemistry, McGill University, Montréal, QC, Canada H3G 0B1
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC, Canada H3G 0B1 Groupe de Recherche Axé sur la Structure des Protéines (GRASP), McGill University, Montréal, QC, Canada H3G 0B1
| |
Collapse
|
9
|
Garcia-Gonzalez E, Müller S, Ensle P, Süssmuth RD, Genersch E. Elucidation of sevadicin, a novel non-ribosomal peptide secondary metabolite produced by the honey bee pathogenic bacterium Paenibacillus larvae. Environ Microbiol 2014; 16:1297-309. [PMID: 24975930 DOI: 10.1111/1462-2920.12417] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 01/08/2023]
Abstract
American foulbrood (AFB) caused by the bee pathogenic bacterium Paenibacillus larvae is the most devastating bacterial disease of honey bees worldwide. From AFB-dead larvae, pure cultures of P. larvae can normally be cultivated indicating that P. larvae is able to defend its niche against all other bacteria present. Recently, comparative genome analysis within the species P. larvae suggested the presence of gene clusters coding for multi-enzyme complexes, such as non-ribosomal peptide synthetases (NRPSs). The products of these enzyme complexes are known to have a wide range of biological activities including antibacterial activities. We here present our results on antibacterial activity exhibited by vegetative P. larvae and the identification and analysis of a novel antibacterially active P. larvae tripeptide (called sevadicin; Sev) produced by a NRPS encoded by a gene cluster found in the genome of P. larvae. Identification of Sev was ultimately achieved by comparing the secretome of wild-type P. larvae with knockout mutants of P. larvae lacking production of Sev. Subsequent mass spectrometric studies, enantiomer analytics and chemical synthesis revealed the sequence and configuration of the tripeptide, D-Phe-D-ALa-Trp, which was shown to have antibacterial activity. The relevance of our findings is discussed in respect to host-pathogen interactions.
Collapse
Affiliation(s)
- Eva Garcia-Gonzalez
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany; Institut für Biologie, Humboldt Universität Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
10
|
Beer R, Herbst K, Ignatiadis N, Kats I, Adlung L, Meyer H, Niopek D, Christiansen T, Georgi F, Kurzawa N, Meichsner J, Rabe S, Riedel A, Sachs J, Schessner J, Schmidt F, Walch P, Niopek K, Heinemann T, Eils R, Di Ventura B. Creating functional engineered variants of the single-module non-ribosomal peptide synthetase IndC by T domain exchange. ACTA ACUST UNITED AC 2014; 10:1709-18. [DOI: 10.1039/c3mb70594c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Production of indigoidine can be enhanced by swapping a synthetic T domain into the NRPS IndC.
Collapse
|
11
|
Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J Mol Biol 2013; 425:3137-50. [PMID: 23756159 DOI: 10.1016/j.jmb.2013.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/26/2013] [Accepted: 06/03/2013] [Indexed: 11/24/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large modular macromolecular machines that produce small peptide molecules with wide-ranging biological activities, such as antibiotics and green chemicals. The condensation (C) domain is responsible for amide bond formation, the central chemical step in nonribosomal peptide synthesis. Here we present two crystal structures of the first condensation domain of the calcium-dependent antibiotic (CDA) synthetase (CDA-C1) from Streptomyces coelicolor, determined at resolutions 1.8Å and 2.4Å. The conformations adopted by CDA-C1 are quite similar in these two structures yet distinct from those seen in other NRPS C domain structures. HPLC-based reaction assays show that this CDA-C1 construct is catalytically active, and small-angle X-ray scattering experiments suggest that the conformation observed in these crystal structures could faithfully represent the conformation in solution. We have performed targeted molecular dynamics simulations, normal mode analyses and energy-minimized linear interpolation to investigate the conformational changes required to transition between the observed structures. We discuss the implications of these conformational changes in the synthetic cycle and of the observation that the "latch" that covers the active site is consistently formed in all studied C domains.
Collapse
|
12
|
|
13
|
Misiek M, Braesel J, Hoffmeister D. Characterisation of the ArmA adenylation domain implies a more diverse secondary metabolism in the genus Armillaria. Fungal Biol 2011; 115:775-81. [DOI: 10.1016/j.funbio.2011.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
14
|
Van Den Berg M, Gidijala L, Kiela J, Bovenberg R, Vander Keli I. Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi. Biotechnol Genet Eng Rev 2011; 27:1-32. [PMID: 21415891 DOI: 10.1080/02648725.2010.10648143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
β-lactam antibiotics (e.g. penicillins, cephalosporins) are of major clinical importance and contribute to over 40% of the total antibiotic market. These compounds are produced as secondary metabolites by certain actinomycetes and filamentous fungi (e.g. Penicillium, Aspergillus and Acremonium species). The industrial producer of penicillin is the fungus Penicillium chrysogenum. The enzymes of the penicillin biosynthetic pathway are well characterized and most of them are encoded by genes that are organized in a cluster in the genome. Remarkably, the penicillin biosynthetic pathway is compartmentalized: the initial steps of penicillin biosynthesis are catalyzed by cytosolic enzymes, whereas the two final steps involve peroxisomal enzymes. Here, we describe the biochemical properties of the enzymes of β-lactam biosynthesis in P. chrysogenum and the role of peroxisomes in this process. An overview is given on strain improvement programs via classical mutagenesis and, more recently, genetic engineering, leading to more productive strains. Also, the potential of using heterologous hosts for the development of novel ß-lactam antibiotics and non-ribosomal peptide synthetase-based peptides is discussed.
Collapse
Affiliation(s)
- Marco Van Den Berg
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Kluyver Center for Genomics of Industrial Fermentation, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genet Biol 2010; 48:49-61. [PMID: 20601041 DOI: 10.1016/j.fgb.2010.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/02/2010] [Accepted: 06/21/2010] [Indexed: 12/16/2022]
Abstract
With many bioactive non-ribosomal peptides and polyketides produced in fungi, studies of their biosyntheses are an active area of research. Practical limitations of working with mega-dalton synthetases including cell lysis and protein extraction to recombinant gene and pathway expression has slowed understanding of many secondary metabolic processes relative to bacterial counterparts. Recent advances in accessing fungal biosynthetic machinery are beginning to change this. Here we describe the successes of some studies of thiotemplate biosynthesis in fungal systems, along with very recent advances in chemical tagging and mass spectrometric strategies to selectively study biosynthetic conveyer belts in isolation, and within a few years, in endogenous fungal proteomes.
Collapse
|
16
|
Abstract
The conventional notion that peptides are poor candidates for orally available drugs because of protease-sensitive peptide bonds, intrinsic hydrophilicity, and ionic charges contrasts with the diversity of antibiotic natural products with peptide-based frameworks that are synthesized and utilized by Nature. Several of these antibiotics, including penicillin and vancomycin, are employed to treat bacterial infections in humans and have been best-selling therapeutics for decades. Others might provide new platforms for the design of novel therapeutics to combat emerging antibiotic-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Elizabeth M Nolan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
Howard-Jones AR, Rutledge PJ, Clifton IJ, Adlington RM, Baldwin JE. Unique binding of a non-natural l,l,l-substrate by isopenicillin N synthase. Biochem Biophys Res Commun 2005; 336:702-8. [PMID: 16143309 DOI: 10.1016/j.bbrc.2005.08.155] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 08/08/2005] [Indexed: 11/26/2022]
Abstract
Isopenicillin N synthase (IPNS) is a non-haem iron oxidase that catalyses the formation of isopenicillin N from the tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine. In this report, we describe the crystal structure of the enzyme with a non-natural L,L,L-tripeptide substrate, delta-(L-alpha-aminoadipoyl)-L-cysteinyl-L-3,3,3,3',3',3'-hexafluorovaline. This structure reveals a strong binding interaction of the tripeptide within the active site and a unique conformation for the non-natural L,L,L-diastereomer. Taken together, these findings provide a possible rationale for the previously observed inhibitory effects of L,L,L-tripeptide substrates on IPNS activity.
Collapse
|
18
|
Abstract
Metabolic engineering has become a rational alternative to classical strain improvement in optimisation of beta-lactam production. In metabolic engineering directed genetic modification are introduced to improve the cellular properties of the production strains. This has resulted in substantial increases in the existing beta-lactam production processes. Furthermore, pathway extension, by heterologous expression of novel genes in well-characterised strains, has led to introduction of new fermentation processes that replace environmentally damaging chemical methods. This minireview discusses the recent developments in metabolic engineering and the applications of this approach for improving beta-lactam production.
Collapse
Affiliation(s)
- Jette Thykaer
- Center for Process Biotechnology, BioCentrum, Technical University of Denmark, Building 223, DK-2800, Lyngby, Denmark
| | | |
Collapse
|
19
|
Lichter A, Gaventa JM, Ciuffetti LM. Chromosome-based molecular characterization of pathogenic and non-pathogenic wheat isolates of Pyrenophora tritici-repentis. Fungal Genet Biol 2002; 37:180-9. [PMID: 12409102 DOI: 10.1016/s1087-1845(02)00500-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ToxA gene of Pyrenophora tritici-repentis encodes a host-selective toxin (Ptr ToxA) that has been shown to confer pathogenicity when used to transform a non-pathogenic wheat isolate. Major karyotype polymorphisms between pathogenic and non-pathogenic strains, and to a lesser extent among pathogenic strains, and among non-pathogenic strains were identified. ToxA was localized to a 3.0 Mb chromosome. PCR-based subtraction was carried out with the ToxA chromosome as tester DNA and genomic DNA from a non-pathogenic isolate as driver DNA. Seven of 8 single-copy probes that originated from the 3.0 Mb chromosome could be assigned to a 2.75 Mb chromosome of a non-pathogenic isolate. Nine different repetitive DNA probes originated from the 3.0 Mb chromosome, including sequences that correspond to known fungal transposable elements. Two additional single-copy probes that originated from a 3.4 Mb chromosome were unique to the pathogens and they correspond to a peptide synthetase gene. Our findings suggest substantial differences between pathogenic and non-pathogenic isolates of P. tritici-repentis.
Collapse
Affiliation(s)
- Amnon Lichter
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902, USA
| | | | | |
Collapse
|
20
|
Shiau CY, Liu YT. L-delta-(alpha-Aminoadipoyl)-L-cysteine-D-valine synthetase: production of dipeptides containing valine residue at its C-terminus. Biochem Biophys Res Commun 2002; 292:794-8. [PMID: 11944883 DOI: 10.1006/bbrc.2002.6728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
L-delta-(alpha-Aminoadipoyl)-L-cysteine-D-valine synthetase (ACVS) has been recently studied as a model enzyme for peptide synthetases. It was found that in the absence of alpha-aminoadipic acid but in the presence of several cysteine analogues it was incorporated into several analogue dipeptides upon incubation of the potential cysteine analogues with ACVS. [(14)C]Cysteine was incorporated into the[(14)C]cysteinyl-valine analogue dipeptides. Notably, [(14)C]valine incorporation in the presence of N-acylated cysteine analogues was observed. The alpha-aminoadipic acid activation site is influential, inhibitory or promotive, on the production of these putative dipeptide products. The production of dipeptide analogues, containing valine or analogues at the C-terminus, leads to the speculation that the biosynthetic direction of ACV could be from the C-terminus to the N-terminus.
Collapse
Affiliation(s)
- Chia-Yang Shiau
- Institute of Medical Science, National Defence Medical Centre, Taipei, 114, Republic of China.
| | | |
Collapse
|
21
|
Yuan WM, Gentil GD, Budde AD, Leong SA. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J Bacteriol 2001; 183:4040-51. [PMID: 11395469 PMCID: PMC95288 DOI: 10.1128/jb.183.13.4040-4051.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2000] [Accepted: 04/10/2001] [Indexed: 11/20/2022] Open
Abstract
Ustilago maydis, the causal agent of corn smut disease, acquires and transports ferric ion by producing the extracellular, cyclic peptide, hydroxamate siderophores ferrichrome and ferrichrome A. Ferrichrome biosynthesis likely proceeds by hydroxylation and acetylation of L-ornithine, and later steps likely involve covalently bound thioester intermediates on a multimodular, nonribosomal peptide synthetase. sid1 encodes L-ornithine N(5)-oxygenase, which catalyzes hydroxylation of L-ornithine, the first committed step of ferrichrome and ferrichrome A biosynthesis in U. maydis. In this report we characterize sid2, another biosynthetic gene in the pathway, by gene complementation, gene replacement, DNA sequence, and Northern hybridization analysis. Nucleotide sequencing has revealed that sid2 is located 3.7 kb upstream of sid1 and encodes an intronless polypeptide of 3,947 amino acids with three iterated modules of an approximate length of 1,000 amino acids each. Multiple motifs characteristic of the nonribosomal peptide synthetase protein family were identified in each module. A corresponding iron-regulated sid2 transcript of 11 kb was detected by Northern hybridization analysis. By contrast, constitutive accumulation of this large transcript was observed in a mutant carrying a disruption of urbs1, a zinc finger, GATA family transcription factor previously shown to regulate siderophore biosynthesis in Ustilago. Multiple GATA motifs are present in the intergenic region between sid1 and sid2, suggesting bidirectional transcription regulation by urbs1 of this pathway. Indeed, mutation of two of these motifs, known to be important to regulation of sid1, altered the differential regulation of sid2 by iron.
Collapse
Affiliation(s)
- W M Yuan
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
22
|
Healy FG, Wach M, Krasnoff SB, Gibson DM, Loria R. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol Microbiol 2000; 38:794-804. [PMID: 11115114 DOI: 10.1046/j.1365-2958.2000.02170.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four Streptomyces species have been described as the causal agents of scab disease, which affects economically important root and tuber crops worldwide. These species produce a family of cyclic dipeptides, the thaxtomins, which alone mimic disease symptomatology. Structural considerations suggest that thaxtomins are synthesized non-ribosomally. Degenerate oligonucleotide primers were used to amplify conserved portions of the acyladenylation module of peptide synthetase genes from genomic DNA of representatives of the four species. Pairwise Southern hybridizations identified a peptide synthetase acyladenylation module conserved among three species. The complete nucleotide sequences of two peptide synthetase genes (txtAB) were determined from S. acidiscabies 84.104 cosmid library clones. The organization of the deduced TxtA and TxtB peptide synthetase catalytic domains is consistent with the formation of N-methylated cyclic dipeptides such as thaxtomins. Based on high-performance liquid chromatography (HPLC) analysis, thaxtomin A production was abolished in txtA gene disruption mutants. Although the growth and morphological characteristics of the mutants were identical to those of the parent strain, txtA mutants were avirulent on potato tubers. Moreover, introduction of the thaxtomin synthetase cosmid into a txtA mutant restored both pathogenicity and thaxtomin A production, demonstrating a critical role for thaxtomins in pathogenesis.
Collapse
Affiliation(s)
- F G Healy
- Department of Plant Pathology, 334 Plant Science Building, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
23
|
Kallow W, Kennedy J, Arezi B, Turner G, von Döhren H. Thioesterase domain of delta-(l-alpha-Aminoadipyl)-l-cysteinyl-d-valine synthetase: alteration of stereospecificity by site-directed mutagenesis. J Mol Biol 2000; 297:395-408. [PMID: 10715209 DOI: 10.1006/jmbi.2000.3566] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carboxy-terminal thioesterase domain of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase catalyzes the hydrolytic release of the tripeptide product (LLD-ACV). By site-directed mutagenesis an S3599A change was introduced into the highly conserved GXSXG motif, resulting in a more than 95 % decrease of penicillin production. Purification of the modified multienzyme showed surprisingly only a 50 % reduction of the peptide formation rate, with the stereoisomer delta-(l-alpha-aminoadipyl)-l-cysteinyl-l-valine (LLL-ACV) as the dominating product. Thioesterases of ACV synthetases differ from other thioesterases integrated in non-ribosomal peptide synthetases in their direct association with an epimerase domain, and their respective GXSXG-seryl residue is apparently not essential in acyl transfer leading to peptide release. Instead, this motif may be involved in the control of tripeptide epimerization by selection of the isomer to be released, and the construct supports the presence of LLL-ACV as an intermediate in penicillin biosynthesis.
Collapse
Affiliation(s)
- W Kallow
- Institute of Biochemistry and Molecular Biology, Technical University Berlin, Germany
| | | | | | | | | |
Collapse
|
24
|
Loke P, Ng CP, Sim TS. PCR cloning, heterologous expression, and characterization of isopenicillin N synthase fromStreptomyces lipmaniiNRRL 3584. Can J Microbiol 2000. [DOI: 10.1139/w99-127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key step which involves the cyclization of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to the bicyclic ring structure of isopenicillin N in the penicillin and cephalosporin biosynthetic pathway, is catalyzed by isopenicillin N synthase (IPNS). In this study, an IPNS gene from Streptomyces lipmanii NRRL 3584 (slIPNS) was cloned via PCR-based homology cloning, sequenced and expressed in Escherichia coli. Soluble slIPNS was overexpressed up to 21% of total soluble protein, and verified to be functionally active when in an IPNS enzymatic assay. Sequence comparison of the slIPNS gene obtained (excluding the consensus primer sequences) with another cloned IPNS from S. lipmanii 16884.3, revealed one three-nucleotide deletion and three closely-spaced single nucleotide deletions. Futhermore, this paper also reports the first instance of the usage of PCR as an alternative and rapid strategy for IPNS cloning using consensus primers. Key words: isopenicillin N synthase, β-lactam antibiotics, secondary metabolism, consensus primers.
Collapse
|
25
|
Abstract
The most commonly used beta-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal beta-lactam biosynthesis genes are controlled by a complex regulatory network, e. g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of beta-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.
Collapse
Affiliation(s)
- A A Brakhage
- Lehrstuhl für Mikrobiologie, Universität München, D-80638 Munich, Germany.
| |
Collapse
|
26
|
Kallow W, von Döhren H, Kleinkauf H. Penicillin biosynthesis: energy requirement for tripeptide precursor formation by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Acremonium chrysogenum. Biochemistry 1998; 37:5947-52. [PMID: 9558329 DOI: 10.1021/bi971741o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In nonribosomal peptide formation by multifunctional enzymes, peptide synthetases catalyze the activation and directed condensation of amino acids. The peptide synthetase involved in penicillin biosynthesis (ACV synthetase) forms the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine from the respective L-amino acids and ATP. So far, the energy requirements for the nonribosomal process have not been clearly established. For ACV synthetase we show that ATP consumption depends on the reaction conditions employed. By simultaneously estimating peptide and AMP production by employing fluorescence detection and UV spectroscopy, respectively, we have determined the energy consumption with high accuracy. Under unfavorable reaction conditions more than 20 mol of ATP are consumed/mol of tripeptide formed, while optimal conditions permit the expected energy requirement of one ATP for each carboxyl group activation, corresponding to three ATP for tripeptide formation. The third ATP is required for the activation of L-valine to maintain the valyl-thioester stage for epimerization and peptide bond formation, and this high-energy bond is sacrificed by hydrolytic removal of the product. No extra energy is required for the directed transport in peptide elongation. Additional energy consumed has been traced to hydrolytic loss of activated intermediates, as has been shown by the analysis of incomplete reaction mixtures.
Collapse
Affiliation(s)
- W Kallow
- Institute of Biochemistry and Molecular Biology, Technical University Berlin, Germany
| | | | | |
Collapse
|
27
|
Gröcer D, Floss HG. Chapter 5 Biochemistry of Ergot Alkaloids—Achievements and Challenges**Dedicated to Dr. Dr. h.c.mult. Albert Hofmann, the great pioneer of ergot research, on the occasion of his 90th birthday. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 1998. [DOI: 10.1016/s1099-4831(08)60043-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
28
|
Schofield CJ, Baldwin JE, Byford MF, Clifton I, Hajdu J, Hensgens C, Roach P. Proteins of the penicillin biosynthesis pathway. Curr Opin Struct Biol 1997; 7:857-64. [PMID: 9434907 DOI: 10.1016/s0959-440x(97)80158-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two sequential steps are common to the biosynthesis of all penicillin-derived antibiotics: the reaction of three L-amino acids to give L-delta-(alpha-aminoadipoyl)-L-cysteinyl-D-valine, and the oxidation of this tripeptide to give isopenicillin N. Recent studies on the peptide synthetase and oxidase enzymes responsible for these steps have implications for the mechanisms and structures of related enzymes involved in a range of metabolic processes.
Collapse
|
29
|
Byford MF, Baldwin JE, Shiau CY, Schofield CJ. The Mechanism of ACV Synthetase. Chem Rev 1997; 97:2631-2650. [PMID: 11851475 DOI: 10.1021/cr960018l] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael F. Byford
- The Oxford Centre for Molecular Sciences and Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY U.K
| | | | | | | |
Collapse
|
30
|
Kallow W, Neuhof T, Arezi B, Jungblut P, von Döhren H. Penicillin biosynthesis: intermediates of biosynthesis of delta-L-alpha-aminoadipyl-L-cysteinyl-D-valine formed by ACV synthetase from Acremonium chrysogenum. FEBS Lett 1997; 414:74-8. [PMID: 9305735 DOI: 10.1016/s0014-5793(97)00977-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tripeptide delta-L-alpha-aminoadipyl-L-cysteinyl-D-valine (LLD-ACV) is synthesised by the multifunctional enzyme ACV synthetase integrating four steps of the penicillin and cephalosporin biosynthetic pathway. Peptide synthesis follows the thiotemplate mechanism from intermediates bound as thioesters to the enzyme. The formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-thioester in the absence of L-valine was shown by isolation of the enzyme-substrate complex and cleavage of the covalently bound intermediate with performic acid. The dipeptide was recovered as cysteic acid or cysteic acid oxime and detected by HPLC and MALDI-TOF mass spectrometry. We conclude that the first peptide bond is formed between delta-carboxyl of L-aminoadipic acid and L-cysteine, followed by addition of the dipeptidyl intermediate to L-valine.
Collapse
Affiliation(s)
- W Kallow
- Institut für Biochemie und Molekulare Biologie, Technische Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
31
|
Etchegaray A, Dieckmann R, Kennedy J, Turner G, von Döhren H. ACV synthetase: expression of amino acid activating domains of the Penicillium chrysogenum enzyme in Aspergillus nidulans. Biochem Biophys Res Commun 1997; 237:166-9. [PMID: 9266851 DOI: 10.1006/bbrc.1997.7107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fragments of ACV synthetase of Penicillium chrysogenum carrying partial activities of amino acid activation were expressed under the alcA promoter in an acvA-deletion mutant of Aspergillus nidulans. The 210 kDa domain A-beta-galactosidase fusion protein was partially cleaved to fragments of 200 and 97 kDa. The domain A fragment and the 312 kDa domain BC construct were identified by peptide specific antibodies and shown to catalyze alpha-aminoadipate-, cysteine-, and valine-dependent ATP/[32P]PPi exchange activity. Substrate specificities were investigated using amino acid analogues. Unexpectedly neither alpha-aminoadipate nor valine activation was exclusive, implying possible misactivations and proof reading functions. Both fragments were only expressed in limited amounts and found to be unstable.
Collapse
Affiliation(s)
- A Etchegaray
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, University of Sheffield, Western Bank, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Shiau CY, Byford MF, Aplin RT, Baldwin JE, Schofield CJ. L-delta-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine synthetase: thioesterification of valine is not obligatory for peptide bond formation. Biochemistry 1997; 36:8798-806. [PMID: 9220966 DOI: 10.1021/bi962932e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
L-delta-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine (ACV) synthetase is probably the simplest known peptide synthetase in terms of the number of reactions catalyzed. In the "thiol-template" proposal for nonribosomal peptide synthesis, a key step is transfer of aminoacyl groups derived from the substrates to enzyme-bound thiols prior to peptide bond formation. No incorporation of 18O was seen in AMP isolated from the reaction mixture when di[18O]valine was incubated with relatively large amounts of active synthetase and MgATP. We therefore utilized di[18O]valine as a substrate for the biosynthesis of the diastereomeric dipeptides L-O-(methylserinyl)-L-valine and L-O-(methylserinyl)-D-valine [Shiau, C.-Y., Baldwin, J. E., Byford, M. F., Sobey, W. J., & Schofield, C. J. (1995) FEBS Lett. 358, 97-100]. In the L-O-(methylserinyl)-L-valine product, no significant loss of 18O was observed. However, in the L-O-(methylserinyl)-D-valine product, a significant loss of one or both 18O labels was observed. Thus, both peptide bond formation and the epimerization of the valine residue can both occur before formation of any thioester bond to the valine carboxylate in the biosynthesis of these dipeptides. The usual qualitative test for thioesterification of substrates to the synthetase, lability of enzyme-bound radiolabeled amino acid to performic acid, proved inconclusive in our hands. These results require a new mechanism for the enzymic synthesis of L-O-(methylserinyl)-L-valine and L-O-(methylserinyl)-D-valine and imply that a revised mechanism for ACV synthesis is also required.
Collapse
Affiliation(s)
- C Y Shiau
- Oxford Centre for Molecular Sciences and The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, U.K
| | | | | | | | | |
Collapse
|
33
|
Fitzmaurice AM, Kolattukudy PE. Open reading frame 3, which is adjacent to the mycocerosic acid synthase gene, is expressed as an acyl coenzyme A synthase in Mycobacterium bovis BCG. J Bacteriol 1997; 179:2608-15. [PMID: 9098059 PMCID: PMC179010 DOI: 10.1128/jb.179.8.2608-2615.1997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to test for expression of a 900-bp open reading frame (ORF), ORF3, located at the 5' end of the mycocerosic acid synthase gene in Mycobacterium bovis BCG and to determine the nature of the ORF3 protein. ORF3 was expressed as a 61-kDa C-terminal fusion protein with glutathione S-transferase in Escherichia coli. Polyclonal rabbit antiserum, prepared against this fusion protein, cross-reacted with a 65-kDa protein in M. bovis BCG crude extracts. Since this protein was larger than that predicted from the nucleotide sequence (32 kDa), ORF3 was resequenced, revealing an ORF of 1,749 bp that encodes a 64.8-kDa protein containing 583 amino acids. Reverse transcription-PCR revealed that ORF3 is expressed in M. bovis BCG. The ORF3 product has a high degree of similarity to the acyladenylate family of enzymes. Immunoaffinity absorption chromatography was used to isolate the 65-kDa cross-reacting protein from M. bovis BCG. This purified protein catalyzed coenzyme A (CoA) ester synthesis of n-C10 to n-C18 fatty acids but not mycocerosic acids. ORF3 antibodies severely inhibited acyl-CoA synthase activities of the purified protein and extracts of M. bovis BCG, Mycobacterium smegmatis, and E. coli. They also showed immunological cross-reactivity with proteins in these extracts. Both the ORF3 protein and the acyl-CoA synthase activity were located in the cell cytosol or were loosely associated with the cell membrane. These results indicate that ORF3 encodes an acyl-CoA synthase-like protein.
Collapse
Affiliation(s)
- A M Fitzmaurice
- Department of Medical Biochemistry, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
34
|
Wessels P, von Döhren H, Kleinkauf H. Biosynthesis of acylpeptidolactones of the daptomycin type. A comparative analysis of peptide synthetases forming A21978C and A54145. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:665-73. [PMID: 9022695 DOI: 10.1111/j.1432-1033.1996.0665r.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A21978C and A54145 are antibacterial 13-residue peptides with a medium-chain-acylated amino terminus and a 10-residue lactone ring; they are produced by strains of Streptomyces roseosporus and Streptomyces fradiae, respectively. The structural differences in their peptide chains, which include amino acid replacements and modifications (L-Glu2-->L-Asn, L-Asn(OH)3-->L-Asp, Sar5-->Gly, L-Ala6-->L-Orn, L-Lys8-->D-Ala, L-Asp(OMe)9-->L-Asp, L-Asn11-->D-Ser, and L-lle13-->L-Kyn; Sar = sarcosine; L-Orn = L-ornithine, L-Kyn = L-kynurenine), reside in the multienzymatic templates directing their biosynthesis. We have examined the peptide synthetases employing immunodetection and substrate activation detected by the amino-acid-dependent ATP-PP1-exchange reaction. Two different antibodies specific for actinomycin synthetase 2 and a peptide sequence characteristic of acyl-CoA-synthetases/peptide synthetases were applied. For the A21978 system two peptide synthetases of 670 and 240 kDa were detected, together with two similar proteins of 630 and 440 kDa occurring in varying amounts. The latter are suggested to be degradation products of an unstable multienzyme. Activation of L-Asp, L-Thr, Gly, L-Orn, L-Ala and L-Ser were assigned to the high-molecular-mass components of 670, 630 and 440 kDa. The 240-kDa protein was purified to homogeneity and shown to catalyse activation of L-kynurenine. The A54145 system consisted of three peptide synthetases of 690, 590 and 250 kDa. Activations of L-Asn. L-Thr and Gly were found. The 250-kDa synthetase was capable of activating isoleucine and valine. Both systems thus show a comparable organisation; implications for the modular construction of their peptide synthetases are discussed.
Collapse
Affiliation(s)
- P Wessels
- Institut für Biochemie und Molekulare Biologie, Technische Universität Berlin, Germany
| | | | | |
Collapse
|
35
|
Coque JJ, de la Fuente JL, Liras P, Martín JF. Overexpression of the Nocardia lactamdurans alpha-aminoadipyl-cysteinyl-valine synthetase in Streptomyces lividans. The purified multienzyme uses cystathionine and 6-oxopiperidine 2-carboxylate as substrates for synthesis of the tripeptide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:264-70. [PMID: 8973642 DOI: 10.1111/j.1432-1033.1996.0264r.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Formation of the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (Aad-Cys-Val) is catalyzed by a multienzyme peptide synthetase encoded by the pcbAB gene in producers of beta-lactam antibiotics. The pcbAB gene of Nocardia lactamdurans was overexpressed in Streptomyces lividans giving a high Aad-Cys-Val synthetase activity. The synthetase was purified 2785-fold to near homogeneity showing a molecular mass of 430 kDa by SDS/PAGE. The protein was identified in the gels with antibodies to Aad-Cys-Val synthetase and by the formation of aminoacyl-synthetase thioester complex with [14C]valine. The purified synthetase used alpha-aminoadipic acid or its lactam 6-oxopiperidine 2-carboxylic acid but was unable to use piperideine 6-carboxylic acid or pipecolic acid as substrates to form Aad-Cys-Val. L-Cystathionine, (2-amino-2-carboxyethyl)-L-homocysteine, was used as substrate and formed Aad-Cys-Val with the same efficiency as L-cysteine. The product of the reaction eluted with authentic Aad-Cys-Val. The synthetase preparation was able to hydrolyze L-cystathionine by a pyridoxal-phosphate-independent mechanism which is not inhibited by propargylglycine, to form Aad-Cys-Val.
Collapse
Affiliation(s)
- J J Coque
- Faculty of Biology, Department of Ecology, Genetics and Microbiology, University of León, Spain
| | | | | | | |
Collapse
|
36
|
Kimura H, Miyashita H, Sumino Y. Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. Appl Microbiol Biotechnol 1996; 45:490-501. [PMID: 8737573 DOI: 10.1007/bf00578461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Lysobacter lactamgenus YK90 pcbAB gene encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase is located immediately upstream of the pcbC gene in the same orientation in the gene cluster involved in cephalosporin biosynthesis. The pcbAB gene encodes a large polypeptide composed of 3722 amino acid residues with a molecular mass of 411593 Da. The predicted amino acid sequence has a high degree of similarity with those of known ACV synthetases from fungi and actinomycetes. Within the pcbAB amino acid sequence, three conserved and repeated domains of about 600 amino acids were identified. the domains also share a high degree of similarity with non-ribosomal peptide synthetases such as gramicidin synthetase 2 of Bacillus brevis. The pcbAB gene was expressed under the control of the lac promoter in Pseudomonas putida. Expression of the gene cluster involved in cephalosporin biosynthesis in P. putida led to the accumulation of beta-lactam antibiotics. Deletion analysis of an open-reading frame located between the cefE and cefD genes from the gene cluster revealed that it encoded deacetylcephalosporin C synthetase (cefF). From the results presented here and those of previous studies, the genes involved in cephalosporin biosynthesis in L. lactamgenus appear to be clustered in the order pcbAB-pcbC- cefE-cefF-cefD-bla in the same orientation within a 17-kb region of DNA.
Collapse
Affiliation(s)
- H Kimura
- Fermentation Center, Takeda Chemical Industries Ltd., Osaka, Japan
| | | | | |
Collapse
|
37
|
Kleinkauf H, Von Döhren H. A nonribosomal system of peptide biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:335-51. [PMID: 8612601 DOI: 10.1111/j.1432-1033.1996.00335.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This review covers peptide structures originating from the concerted action of enzyme systems without the direct participation of nucleic acids. Biosynthesis proceeds by formation of linear peptidyl intermediates which may be enzymatically modified as well as transformed into specific cyclic structures. The respective enzyme systems are constructed of biosynthetic modules integrated into multienzyme structures. Genetic and DNA-sequence analysis of biosynthetic gene clusters have revealed extensive similarities between prokaryotic and eukaryotic systems, conserved principles of organisation, and a unique mechanism of transport of intermediates during elongation and modification steps involving 4'-phospho-pantetheine. These similarities permit the identification of peptide synthetases and related aminoacyl-ligases and acyl-ligases from sequence data. Similarities to other biosynthetic systems involved in the assembly of polyketide metabolites are discussed.
Collapse
Affiliation(s)
- H Kleinkauf
- Institute of Biochemistry and Molecular Biology, Technical University Berlin, Germany
| | | |
Collapse
|
38
|
Tercero JA, Espinosa JC, Lacalle RA, Jiménez A. The biosynthetic pathway of the aminonucleoside antibiotic puromycin, as deduced from the molecular analysis of the pur cluster of Streptomyces alboniger. J Biol Chem 1996; 271:1579-90. [PMID: 8576156 DOI: 10.1074/jbc.271.3.1579] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pur cluster which encodes the puromycin biosynthetic pathway from Streptomyces alboniger was subcloned as a 13-kilobase fragment in plasmid pIJ702 and expressed in an apparently regulated manner in the heterologous host Streptomyces lividans. The sequencing of a 9.1-kilobase DNA fragment completed the sequence of pur. This permitted identification of seven new open reading frames in the order: napH, pur7, pur10, pur6, pur4, pur5, and pur3. The latter is followed by the known pac, dmpM, and pur8 genes. Nine open reading frames are transcribed rightward as a unit in opposite direction to that of the pur8 gene which is expressed as a monocistronic transcript from the right-most end. napH encodes the known N-acetylpuromycin N-acetylhydrolase. The deduced products from other open reading frames present similarities to: NTP pyrophosphohydrolases (pur7), several oxidoreductases (pur10), the putative LmbC protein of the lincomycin biosynthetic pathway from Streptomyces lincolnensis (pur6), S-adenosylmethionine-dependent methyltransferases (pur5), a variety of presumed aminotransferases (pur4), and several monophosphatases (pur3). According to these similarities and to previous biochemical work, a puromycin biosynthetic pathway has been deduced. No cluster-associated regulatory gene was found. However, both pur10 and pur6 genes contain a TTA codon, which suggests that they are translationally controlled by the bldA gene product, a specific tRNA(Leu).
Collapse
Affiliation(s)
- J A Tercero
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Lal R, Khanna R, Kaur H, Khanna M, Dhingra N, Lal S, Gartemann KH, Eichenlaub R, Ghosh PK. Engineering antibiotic producers to overcome the limitations of classical strain improvement programs. Crit Rev Microbiol 1996; 22:201-55. [PMID: 8989512 DOI: 10.3109/10408419609105481] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Improvement of the antibiotic yield of industrial strains is invariably the main target of industry-oriented research. The approaches used in the past were rational selection, extensive mutagenesis, and biochemical screening. These approaches have their limitations, which are likely to be overcome by the judicious application of recombinant DNA techniques. Efficient cloning vectors and transformation systems have now become available even for antibiotic producers that were previously difficult to manipulate genetically. The genes responsible for antibiotic biosynthesis can now be easily isolated and manipulated. In the first half of this review article, the limitations of classical strain improvement programs and the development of recombinant DNA techniques for cloning and analyzing genes responsible for antibiotic biosynthesis are discussed. The second half of this article addresses some of the major achievements, including the development of genetically engineered microbes, especially with reference to beta-lactams, anthracyclines, and rifamycins.
Collapse
Affiliation(s)
- R Lal
- Department of Zoology, University of Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Di Giulio M. The origin of protein synthesis: on some molecular fossils identified through comparison of protein sequences. Biosystems 1996; 39:159-69. [PMID: 8866053 DOI: 10.1016/0303-2647(96)01614-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sequence data, even if only marginally significant, and evolutionary arguments suggest that a similarity may exist between class II aminoacyl-tRNA synthetases and proteins involved in the nonribosomal biosynthesis of peptide antibiotics, and more in general, those belonging to the family of adenylate-forming enzymes. If correct, this hypothesis of homology may imply that the first peptide syntheses might have occurred on phosphopantetheine molecules in a thioester world and/or on a variant of the coenzyme A (CoA) in an RNA world. Therefore, peptide synthesis probably evolved on tRNA-like molecules from the CoA (or a variant CoA molecule) that had the potential for nucleotide extension, that made possible the evolution to the current mechanism of protein synthesis. Our hypothesis on the existence of such homology implies that a series of evolutionary steps such as the existence of a primitive catalytic domain with poor substrate specificity towards both (amino acids + ATP + pre-CoA (and/or CoA)) and (amino acids + ATP + tRNA-like) molecules may have occurred. Therefore, the pre-CoA (and/or CoA) and the tRNA-like molecules were able to use this enzyme ambiguity for a certain period, thus giving weight to the scheme of evolutionary transitions mentioned above.
Collapse
Affiliation(s)
- M Di Giulio
- International Institute of Genetics and Biophysics, CNR, Naples, Napoli, Italy.
| |
Collapse
|
41
|
Affiliation(s)
- K Balakrishnan
- Biotechnology Unit, Council of Scientific and Industrial Research, Trivandrum, India
| | | |
Collapse
|
42
|
Affiliation(s)
- R Zocher
- Institut für Biochemie und Molekulare Biologie, Technische Universität Berlin, Berlin-Charlottenburg, Germany
| | | |
Collapse
|
43
|
Lawen A. Biosynthesis and mechanism of action of cyclosporins. PROGRESS IN MEDICINAL CHEMISTRY 1996; 33:53-97. [PMID: 8776941 DOI: 10.1016/s0079-6468(08)70303-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Lawen
- Monash University, Department of Biochemistry and Molecular Biology, Clayton, Victoria, Australia
| |
Collapse
|
44
|
Shiau CY, Baldwin JE, Byford MF, Schofield CJ. Delta-L-(alpha-aminoadipoyl)-L-cysteinyl-D-valine synthetase: isolation of L-cysteinyl-D-valine, a 'shunt' product, and implications for the order of peptide bond formation. FEBS Lett 1995; 373:303-6. [PMID: 7589488 DOI: 10.1016/0014-5793(95)01045-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
L-Cysteinyl-D-valine was isolated from incubations of L-glutamate, L-cysteine and L-valine with delta-L-(alpha-aminoadipoyl)-L-cysteinyl-D-valine synthetase and identified by 1H NMR and electrospray ionization MS. This is entirely consistent with our prior proposal (Shiau, C.-Y., Baldwin, J.E., Byford, M.F., Sobey, W.J. and Schofield, C.J. (1995) FEBS Lett. 358, 97-100) that the alpha-peptide bond between cysteine and valine is formed before the delta-peptide bond between alpha-aminoadipate and cysteine. The inclusion of L-glutamate, an analogue of L-alpha-aminoadipate, did not result in a detectable amount of tripeptide product, but did increase apparent yields of L-cysteinyl-D-valine. Conceivably, formation of the L-glutamyladenylate stimulates synthesis of the cysteinyl-valine dipeptide indirectly via a conformational change in the enzyme.
Collapse
Affiliation(s)
- C Y Shiau
- Dyson Perrins Laboratory, Oxford, UK
| | | | | | | |
Collapse
|
45
|
Abstract
This review presents the progress and some aspects achieved during recent years with cyclosporin sources, chemistry, biological activities, side effects, biosynthesis and metabolism. Although incomplete the results indicate future research trends and some white spots to be studied in the near future to afford unique insights into cell biology and to improve the search for similar and even more specific agents based on rational drug design.
Collapse
|
46
|
Shiau CY, Baldwin JE, Byford MF, Sobey WJ, Schofield CJ. delta-L-(alpha-aminoadipoyl)-L-cysteinyl-D-valine synthetase: the order of peptide bond formation and timing of the epimerisation reaction. FEBS Lett 1995; 358:97-100. [PMID: 7821439 DOI: 10.1016/0014-5793(94)01320-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
delta-L-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine (ACV) synthetase catalyses the formation of the common precursor tripeptide of both the penicillin and cephalosporin antibiotics from the L-enantiomers of its constituent amino acids. Replacement of cysteine with L-O-methylserine in preparative-scale incubations led to the isolation of both L-O-methylserinyl-L-valine and L-O-methylserinyl-D-valine dipeptides. The dipeptides were characterized with the aid of authentic synthetic standards by both 1H NMR and electrospray ionization MS. A revised mechanism for ACV biosynthesis involving formation of the cysteinyl-valine peptide bond before the epimerisation of valine and subsequent condensation with the delta-carboxyl of L-alpha-aminoadipate is therefore proposed.
Collapse
Affiliation(s)
- C Y Shiau
- Dyson Perrins Laboratory, Oxford Centre for Molecular Sciences, UK
| | | | | | | | | |
Collapse
|
47
|
Abstract
The genes pcbAB, pcbC and penDE encoding enzymes involved in the biosynthesis of penicillin have been cloned from Penicillium chrysogenum and Aspergillus nidulans. They are clustered in chromosome I (10.4 Mb) of P. chrysogenum, but they are located in chromosome II of Penicillium notatum (9.6 Mb) and in chromosome VI (3.0 Mb) of A. nidulans. Expression studies have shown that each gene is expressed as a single transcript from separate promoters. Enzyme regulation studies and gene expression analysis have provided useful information to understand the control of gene expression leading to overexpression of the genes involved in penicillin biosynthesis. Cephalosporin genes have been studied in Cephalosporium acremonium and also in cephalosporin-producing bacteria. In C. acremonium the genes involved in cephalosporin biosynthesis are separated in at least two clusters. Cluster I (pcbAB-pcbC) encodes the first two enzymes of the cephalosporin pathway which are very similar to those involved in penicillin biosynthesis. Cluster II (cefEF-cefG), encodes the last three enzymatic activities of the cephalosporin pathway. It is unknown, at this time, if the cefD gene encoding isopenicillin epimerase is linked to any of the two clusters. In cephamycin producing bacteria the genes encoding the entire biosynthetic pathway are located in a single cluster extending for about 30 kb in Nocardia lactamdurans, and in Streptomyces clavuligerus. The cephamycin clusters of N. lactamdurans and S. clavuligerus include a gene lat which encodes lysine-6-aminotransferase an enzyme involved in formation of the precursor alpha-aminoadipic acid. The N. lactamdurans cephamycin cluster includes, in addition, a beta-lactamase (bla) gene, a penicillin binding protein (pbp), and a transmembrane protein gene (cmcT) that is probably involved in secretion of the cephamycin. Little is known however about the mechanism of control of gene expression in the different beta-lactam producers. The availability of most of the structural genes provides a good basis for further studies on gene expression. This knowledge should lead in the next decade to a rational design of strain improvement procedures. The origin and evolution of beta-lactam genes is intriguing since their nucleotide sequences are extremely conserved despite their restricted distribution in the microbial world.
Collapse
Affiliation(s)
- J F Martín
- Department of Ecology, Genetics and Microbiology, Faculty of Biology, University of León, Spain
| | | |
Collapse
|
48
|
Kadima TA, Jensen SE, Pickard MA. Production of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine by entrapped ACV-synthetase from Streptomyces clavuligerus. JOURNAL OF INDUSTRIAL MICROBIOLOGY 1995; 14:35-40. [PMID: 7766065 DOI: 10.1007/bf01570064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine (ACV)-synthetase from Streptomyces clavuligerus was studied under conditions that enabled the reuse of the enzyme. Coupling of ACV-synthetase to DEAE-Trisacryl and aminopropyl-glass resulted in an immobilized enzyme product of little or no catalytic activity. However, an enzyme reactor was designed by physical confinement of partially-purified ACV-synthetase in an ultrafiltration cell. This system was stimulated by phosphoenolpyruvate at lower concentrations of ATP, an effect not observed with purified enzyme. Up to 30% conversion of the limiting substrate, cysteine, to ACV occurred under semi-continuous conditions. Reaction products were investigated as potential inhibitors: AMP was the most inhibitory, but only when used at concentrations in excess of those produced in reaction mixtures. Under a nitrogen atmosphere, both product and enzyme stabilities were greatly improved and the enzyme retained 45-65% of its initial activity after five uses at room temperature during a 24-h period. Extrapolations based on these data suggest that 1.3 g partially purified enzyme (0.13 U g-1) would be capable of producing 411 mg of ACV in a 1-L reaction mixture in this period.
Collapse
Affiliation(s)
- T A Kadima
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
49
|
Affiliation(s)
- S E Jensen
- Department of Microbiology, University of Alberta Edmonton, Canada
| | | |
Collapse
|
50
|
Use of Hydrolytic Enzymes: Amidases, Proteases, Esterases, Lipases, Nitrilases, Phosphatases, Epoxide Hydrolases. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-08-035941-0.50009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|