1
|
Suwa M, Imamura N, Awano P, Nakata E, Takashima H. Photoinduced electron-transfer reactions of tris(2,2′-bipyridine)ruthenium(II)-based carbonic anhydrase inhibitors tethering plural binding sites. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mikiko Suwa
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Narumi Imamura
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Pirika Awano
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| | - Eiji Nakata
- Institute of Advanced Energy; Kyoto University; Kyoto Japan
| | - Hiroshi Takashima
- Department of Chemistry, Faculty of Science; Nara Women's University; Nara Japan
| |
Collapse
|
2
|
Takashima H, Fukuda M, Nakagaki F, Ogata T, Tsukahara K. Photoinduced Electron-Transfer Reactions of Carbonic Anhydrase Inhibitor Containing Tris(2,2′-bipyridine)ruthenium(II) Analogue. J Phys Chem B 2013; 117:2625-35. [DOI: 10.1021/jp310604w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Misa Fukuda
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Fumie Nakagaki
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Tomoko Ogata
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| | - Keiichi Tsukahara
- Department of Chemistry, Faculty of Science, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
3
|
Takashima H, Kitano M, Hirai C, Murakami H, Tsukahara K. Photophysical and DNA-binding properties of cytochrome c modified with a platinum(II) complex. J Phys Chem B 2011; 114:13889-96. [PMID: 20936831 DOI: 10.1021/jp106121n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c (cyt c) derivatives modified with a platinum(II) complex at the lysine residue, cyt c(III)-[Pt(bpy)(dapap)](1) {bpy = 2,2'-bipyridine, and dapap = 3-(2,3-diaminopropionylamino)propionic acid}, have been prepared. The modified residues are Lys8, Lys13, Lys55, Lys60, Lys73, and Lys88. In the case of the cyt c(III)-[Pt(bpy)(dapap)](1) dyad, the photoexcited singlet state of (1)([Pt(bpy)(dapap)](1))* was quenched by the heme Fe(III) moiety through the intramolecular photoinduced energy-transfer reaction via a through-space mechanism. Next, in the presence of calf thymus (CT)-DNA, the DNA-responsive fluorescence properties of cyt c(III)-[Pt(bpy)(dapap)](1) isomers were investigated. The order of the obtained binding constants between the cyt c(III)-[Pt(bpy)(dapap)](1) isomer and CT-DNA in an aqueous solution suggested that the electrostatic interaction is one of the important factors to stabilize the cyt c-DNA complex. Finally, we discussed the rotational motion of the [Pt(bpy)(dapap)](2+) moiety at the surface of cyt c by fluorescence anisotropy measurement. The increase in the anisotropy parameter, r, for each cyt c isomer clearly revealed that the noncovalent recognition of the [Pt(bpy)(dapap)](2+) moiety by CT-DNA is an essential event in the formation of the cyt c-DNA complex and generation of DNA-sensitive fluorescence signals.
Collapse
Affiliation(s)
- Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara, 630-8506 Japan.
| | | | | | | | | |
Collapse
|
4
|
Takashima H, Kawahara H, Kitano M, Shibata S, Murakami H, Tsukahara K. Metal ion-dependent fluorescent dynamics of photoexcited zinc-porphyrin and zinc-myoglobin modified with ethylenediaminetetraacetic acid. J Phys Chem B 2009; 112:15493-502. [PMID: 18991435 DOI: 10.1021/jp807692w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reconstituted zinc-myoglobin (ZnMb) dyads, ZnMb-[M(II)(edta)], have been prepared by incorporating a zinc-porphyrin (ZnP) cofactor modified with ethylenediaminetetraacetic acid (H(4)edta) into apo-Mb. In case of the monomeric ZnP(edta) cofactor coordinated by one pyridine molecule, ZnP(py)(edta), a spontaneous 1:1 complex with a transient metal ion was formed in an aqueous solvent, and the photoexcited singlet state of ZnP, (1)(ZnP)*, was quenched by the [Cu(II)(edta)] moiety through intramolecular photoinduced electron-transfer (ET) reaction. The rate constant for the intramolecular quenching ET (k(q)) at 25 degrees C was successfully obtained as k(q) = 5.1 x 10(9) s(-1). In the case of Co(2+), Ni(2+), and Mn(2+), intersystem crossing by paramagnetic effect was mainly considered between (1)(ZnP)* and the [M(II)(edta)] complex. For the ZnMb-[M(II)(edta)] systems, the intramolecular ET reaction between the excited singlet state of (1)(ZnMb)* and the [Cu(II)(edta)] moieties provided the slower quenching rate constant, k(q) = 2.1 x 10(8) s(-1), compared with that of the ZnP(py)(edta) one. Kinetic studies also presented the efficient fluorescence quenching of the (1)(ZnMb)*-[Co(II)(edta)] dyad. Our study clearly demonstrates that wrapping of the ZnP cofactor by the apoprotein matrix and synthetic manipulation at the Mb surface ensure metal ion-sensitive fluorescent dynamics of ZnMb and provides valuable information to elucidate the complicated mechanism of the biological photoinduced ET reactions of hemoproteins.
Collapse
Affiliation(s)
- Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara, 630-8506 Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Takashima H, Fujimoto E, Hirai C, Tsukahara K. Synthesis and Spectroscopic Properties of Reconstituted ZincMyoglobin Appending a DNA-Binding Platinum(II) Complex. Chem Biodivers 2008; 5:2101-2112. [DOI: 10.1002/cbdv.200890191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Takashima H, Tara C, Namikawa S, Kato T, Araki Y, Ito O, Tsukahara K. Photoinduced Intramolecular Electron-Transfer Reactions of Reconstituted Met- and Zinc-Myoglobins Appending Acridine and Methylacridinium Ion as DNA-Binders. J Phys Chem B 2006; 110:26413-23. [PMID: 17181301 DOI: 10.1021/jp0655571] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three types of reconstituted met- and zinc-myoglobin (metMb and ZnMb) dyads, ZnMbAc(4)Me+, ZnMbAc(6)Me+, and metMbAc(6) have been prepared by incorporating chemically modified metalloporphyrin cofactor appending an acridine (Ac) or a methylacridinium ion ([AcMe]+) into apo-Mb. In the bimolecular system between ZnMb and [AcMe]+, the photoexcited triplet state of ZnMb, 3(ZnMb)*, was successfully quenched by [AcMe]+ to form the radical pair of ZnMb cation (ZnMb*+) and reduced methylacridine ([AcMe]*), followed by a thermal back ET reaction. The rate constants for the intermolecular quenching ET (kq) and the back ET reaction (kb) at 25 degrees C were successfully obtained as kq = (8.8 +/- 0.4) x 10(7) M(-1) s(-1) and kb = (1.2 +/- 0.1) x 10(8) M(-1) s(-1), respectively. On the other hand, in case of the intramolecular photoinduced ET reactions of ZnMbAc(4)Me+ and ZnMbAc(6)Me+ dyads, the first-order quenching rate constants (kET) of 3(ZnMb)* by [AcMe]+ moiety were determined to be kET = 2.6 x 10(3) and 2.5 x 10(3) s(-1), respectively. When such ET occurs along the alkyl spacer via through-bond mechanism at the surface of Mb, the obtained kET is reasonable to provide decay constant of beta (1.0-1.3 A(-1)). Upon photoirradiation of [AcMe]+ moiety, kinetic studies also presented the intramolecular quenching reactions from the excited singlet state, 1([AcMe]+)*, whose likely process is the photoinduced energy-transfer reaction. For metMbAc(6) dyad, steady-state fluorescence was almost quenched, while the signal around 440 nm gradually appeared in the presence of various concentrations of DNA. Our study implies that synthetic manipulation at the Mb surface, by using an artificial DNA-binder coupled with photoinduced reaction, may provide valuable information to construct new Mb-DNA complex and sensitive fluorescent for DNA.
Collapse
Affiliation(s)
- Hiroshi Takashima
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara, 630-8506 Japan.
| | | | | | | | | | | | | |
Collapse
|
7
|
Jovanović N, Bouchard A, Hofland GW, Witkamp GJ, Crommelin DJA, Jiskoot W. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying. Eur J Pharm Sci 2006; 27:336-45. [PMID: 16338123 DOI: 10.1016/j.ejps.2005.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/28/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
Supercritical fluid (SCF) drying has been proposed as an alternative for freeze-drying to stabilize proteins. Here we studied the influence of sucrose and trehalose during SCF drying on the protein stability and the physical powder characteristics of lysozyme and myoglobin formulations. The results obtained with SCF drying were compared with the results after freeze-drying of the same solutions. Aqueous protein solutions, with or without sugar, were sprayed into a SCF mixture of carbon dioxide and ethanol. The dried products were analyzed by residual water measurements, scanning electron microscopy, X-ray powder diffraction and differential scanning calorimetry. After reconstitution the protein structure was studied by UV/VIS, circular dichroism and fluorescence spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis and bioactivity assay (lysozyme). The SCF dried and freeze-dried formulations showed comparable water contents, but their physical properties were substantially different. All freeze-dried cakes were amorphous with fully preserved protein structure. SCF dried sucrose-containing formulations showed agglomerated crystalline particles, whereas SCF dried trehalose-containing formulations appeared to consist of amorphous spherical particles. Particle morphology of excipients-free proteins was protein specific. Nearly all SCF dried lysozyme could be readily reconstituted, but for myoglobin significant fractions of SCF protein did not dissolve, especially in the absence of sugars. Covalent aggregation was not observed for the two proteins. For the recovered soluble fractions, the secondary protein structure was preserved. The tertiary structure was preserved for lysozyme, but not entirely for myoglobin. Surprisingly, during SCF drying trehalose was less protective than sucrose for myoglobin.
Collapse
Affiliation(s)
- Natasa Jovanović
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
Matsuo T, Tsuruta T, Maehara K, Sato H, Hisaeda Y, Hayashi T. Preparation and O2 Binding Study of Myoglobin Having a Cobalt Porphycene. Inorg Chem 2005; 44:9391-6. [PMID: 16323925 DOI: 10.1021/ic0513639] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sperm whale myoglobin, an oxygen-storage hemoprotein, was reconstituted with 2,7-diethyl-3,6,12,17-tetramethyl-13,16-bis(carboxyethyl)porphycenatocobalt(II) in order to investigate the reactivities of a cobalt porphycene in a protein matrix. Similar to the previously reported finding for the myoglobin with the iron porphycene, the reconstituted myoglobin with the cobalt porphycene was also found to have an O2 affinity 2 orders of magnitude greater than that of the myoglobin possessing cobalt protoporphyrin IX. The EPR spectra of the deoxy and oxy myoglobins having the cobalt porphycene at 77 K also have features similar to those of the myoglobin with cobalt protoporphyrin IX. These spectra suggest that the porphycene cobalt in the deoxy form is coordinated by one nitrogenous ligand postulated to be the imidazole ring of His93, and that the bond configuration of CoII-O2 is regarded as the CoIII-Omicron2*- species.
Collapse
Affiliation(s)
- Takashi Matsuo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Trynda L. Complexes of iron, cobalt and copper tetrasulfonated phthalocyanines with apomyoglobin. Inorganica Chim Acta 1983. [DOI: 10.1016/s0020-1693(00)86518-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|