1
|
Silveira d'Almeida G, Casius A, Henderson JC, Knuesel S, Aphasizhev R, Aphasizheva I, Manning AC, Lowe TM, Alfonzo JD. tRNA Tyr has an unusually short half-life in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2023; 29:1243-1254. [PMID: 37197826 PMCID: PMC10351884 DOI: 10.1261/rna.079674.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Following transcription, tRNAs undergo a series of processing and modification events to become functional adaptors in protein synthesis. Eukaryotes have also evolved intracellular transport systems whereby nucleus-encoded tRNAs may travel out and into the nucleus. In trypanosomes, nearly all tRNAs are also imported from the cytoplasm into the mitochondrion, which lacks tRNA genes. Differential subcellular localization of the cytoplasmic splicing machinery and a nuclear enzyme responsible for queuosine modification at the anticodon "wobble" position appear to be important quality control mechanisms for tRNATyr, the only intron-containing tRNA in T. brucei Since tRNA-guanine transglycosylase (TGT), the enzyme responsible for Q formation, cannot act on an intron-containing tRNA, retrograde nuclear transport is an essential step in maturation. Unlike maturation/processing pathways, the general mechanisms of tRNA stabilization and degradation in T. brucei are poorly understood. Using a combination of cellular and molecular approaches, we show that tRNATyr has an unusually short half-life. tRNATyr, and in addition tRNAAsp, also show the presence of slow-migrating bands during electrophoresis; we term these conformers: alt-tRNATyr and alt-tRNAAsp, respectively. Although we do not know the chemical or structural nature of these conformers, alt-tRNATyr has a short half-life resembling that of tRNATyr; the same is not true for alt-tRNAAsp We also show that RRP44, which is usually an exosome subunit in other organisms, is involved in tRNA degradation of the only intron-containing tRNA in T. brucei and is partly responsible for its unusually short half-life.
Collapse
Affiliation(s)
- Gabriel Silveira d'Almeida
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ananth Casius
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jeremy C Henderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sebastian Knuesel
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Aidan C Manning
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Juan D Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
2
|
Lyons SM, Fay MM, Ivanov P. The role of RNA modifications in the regulation of tRNA cleavage. FEBS Lett 2018; 592:2828-2844. [PMID: 30058219 DOI: 10.1002/1873-3468.13205] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
Transfer RNA (tRNA) have been harbingers of many paradigms in RNA biology. They are among the first recognized noncoding RNA (ncRNA) playing fundamental roles in RNA metabolism. Although mainly recognized for their role in decoding mRNA and delivering amino acids to the growing polypeptide chain, tRNA also serve as an abundant source of small ncRNA named tRNA fragments. The functional significance of these fragments is only beginning to be uncovered. Early on, tRNA were recognized as heavily post-transcriptionally modified, which aids in proper folding and modulates the tRNA:mRNA anticodon-codon interactions. Emerging data suggest that these modifications play critical roles in the generation and activity of tRNA fragments. Modifications can both protect tRNA from cleavage or promote their cleavage. Modifications to individual fragments may be required for their activity. Recent work has shown that some modifications are critical for stem cell development and that failure to deposit certain modifications has profound effects on disease. This review will discuss how tRNA modifications regulate the generation and activity of tRNA fragments.
Collapse
Affiliation(s)
- Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard and M.I.T., Cambridge, MA, USA
| |
Collapse
|
3
|
Käser S, Glauser I, Rettig J, Schneider A. The pseudo-dimeric tyrosyl-tRNA synthetase of T. brucei aminoacylates cytosolic and mitochondrial tRNATyr and requires both monomeric units for activity. Mol Biochem Parasitol 2018; 221:52-55. [DOI: 10.1016/j.molbiopara.2018.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
|
4
|
Kessler AC, Kulkarni SS, Paulines MJ, Rubio MAT, Limbach PA, Paris Z, Alfonzo JD. Retrograde nuclear transport from the cytoplasm is required for tRNA Tyr maturation in T. brucei. RNA Biol 2017; 15:528-536. [PMID: 28901827 PMCID: PMC6103694 DOI: 10.1080/15476286.2017.1377878] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022] Open
Abstract
Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve. However, in S. cerevisiae tRNA retrograde transport is constitutive and occurs even when nutrient levels are adequate. Constitutive transport is important, at least, for the proper maturation of tRNAPhe, which undergoes cytoplasmic splicing, but requires the action of a nuclear modification enzyme that only acts on a spliced tRNA. A lingering question in retrograde tRNA transport is whether it is relegated to S. cerevisiae and multicellular eukaryotes or alternatively, is a pathway with deeper evolutionary roots. In the early branching eukaryote Trypanosoma brucei, tRNA splicing, like in yeast, occurs in the cytoplasm. In the present report, we have used a combination of cell fractionation and molecular approaches that show the presence of significant amounts of spliced tRNATyr in the nucleus of T. brucei. Notably, the modification enzyme tRNA-guanine transglycosylase (TGT) localizes to the nucleus and, as shown here, is not able to add queuosine (Q) to an intron-containing tRNA. We suggest that retrograde transport is partly the result of the differential intracellular localization of the splicing machinery (cytoplasmic) and a modification enzyme, TGT (nuclear). These findings expand the evolutionary distribution of retrograde transport mechanisms to include early diverging eukaryotes, while highlighting its importance for queuosine biosynthesis.
Collapse
Affiliation(s)
- Alan C. Kessler
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Sneha S. Kulkarni
- Institute of Parasitology, Biology Centre, South Bohemia, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice, South Bohemia, Czech Republic
| | - Mellie J. Paulines
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Anne T. Rubio
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Patrick A. Limbach
- Department of Chemistry, Rieveschl Laboratories for Mass Spectrometry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, South Bohemia, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice, South Bohemia, Czech Republic
| | - Juan D. Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Lopes RRS, Silveira GDO, Eitler R, Vidal RS, Kessler A, Hinger S, Paris Z, Alfonzo JD, Polycarpo C. The essential function of the Trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNATyr. RNA (NEW YORK, N.Y.) 2016; 22:1190-9. [PMID: 27284166 PMCID: PMC4931112 DOI: 10.1261/rna.056242.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/20/2016] [Indexed: 05/27/2023]
Abstract
Trypanosoma brucei, the etiologic agent of sleeping sickness, encodes a single intron-containing tRNA, tRNA(Tyr), and splicing is essential for its viability. In Archaea and Eukarya, tRNA splicing requires a series of enzymatic steps that begin with intron cleavage by a tRNA-splicing endonuclease and culminates with joining the resulting tRNA exons by a splicing tRNA ligase. Here we explored the function of TbTrl1, the T. brucei homolog of the yeast Trl1 tRNA ligase. We used a combination of RNA interference and molecular biology approaches to show that down-regulation of TbTrl1 expression leads to accumulation of intron-containing tRNA(Tyr) and a concomitant growth arrest at the G1 phase. These defects were efficiently rescued by expression of an "intronless" version of tRNA(Tyr) in the same RNAi cell line. Taken together, these experiments highlight the crucial importance of the TbTrl1 for tRNA(Tyr) maturation and viability, while revealing tRNA splicing as its only essential function.
Collapse
Affiliation(s)
- Raphael R S Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| | - Gilbert de O Silveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| | - Roberta Eitler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil
| | - Raphael S Vidal
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil
| | - Alan Kessler
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Scott Hinger
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zdeněk Paris
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 České Budějovice (Budweis), Czech Republic
| | - Juan D Alfonzo
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Carla Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Caixa Postal 68041, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Caixa Postal 68041, Brazil
| |
Collapse
|
6
|
Lyda TA, Joshi MB, Andersen JF, Kelada AY, Owings JP, Bates PA, Dwyer DM. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania. Mol Cell Biochem 2015; 404:53-77. [PMID: 25763714 DOI: 10.1007/s11010-015-2366-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/21/2015] [Indexed: 11/26/2022]
Abstract
Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts.
Collapse
Affiliation(s)
- Todd A Lyda
- , 105 Collings Street BRC 216, Clemson, SC, 29634, USA,
| | | | | | | | | | | | | |
Collapse
|
7
|
Militello KT, Chen LM, Ackerman SE, Mandarano AH, Valentine EL. A map of 5-methylcytosine residues in Trypanosoma brucei tRNA revealed by sodium bisulfite sequencing. Mol Biochem Parasitol 2014; 193:122-6. [PMID: 24389163 DOI: 10.1016/j.molbiopara.2013.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/10/2023]
Abstract
In protozoan parasites, there is little information on the presence of covalent RNA modifications which comprise the epitranscriptome. Therefore, we determined if T. brucei tRNA(Asp(GUC)), tRNA(Gly(GCC)), tRNA(Val(AAC)), and tRNA(Tyr(GUA)) contain 5-methylcytosines via RNA bisulfite sequencing. Most tRNAs examined have at least one 5-methylcytosine at the variable region-TψC junction. Only tRNA(Gly(GCC)) displayed methylation of C40 in the anticodon stem, and there was partial methylation at this site. There is no evidence for methylation of C38 in the anticodon loop in the tRNAs analyzed. Analysis of tRNA(Tyr(GUA)) demonstrates that both unspliced and spliced molecules contain C48 methylation, indicating tRNA cytosine methylation can precede tRNA splicing. Overall, our data indicate that T. brucei tRNAs contain 5-methylcytosine residues in some, but potentially not all standard eukaryotic positions. The levels of cytosine methylation of different T. brucei tRNAs vary, suggesting the presence of a mechanism for methylation control.
Collapse
Affiliation(s)
- Kevin T Militello
- State University of New York at Geneseo, Department of Biology, 1 College Circle, Geneseo, NY 14454, United States.
| | - Leanne M Chen
- State University of New York at Geneseo, Department of Biology, 1 College Circle, Geneseo, NY 14454, United States
| | - Sarah E Ackerman
- State University of New York at Geneseo, Department of Biology, 1 College Circle, Geneseo, NY 14454, United States
| | - Alexandra H Mandarano
- State University of New York at Geneseo, Department of Biology, 1 College Circle, Geneseo, NY 14454, United States
| | - Erika L Valentine
- State University of New York at Geneseo, Department of Biology, 1 College Circle, Geneseo, NY 14454, United States
| |
Collapse
|
8
|
Rubio MAT, Paris Z, Gaston KW, Fleming IMC, Sample P, Trotta CR, Alfonzo JD. Unusual noncanonical intron editing is important for tRNA splicing in Trypanosoma brucei. Mol Cell 2013; 52:184-92. [PMID: 24095278 DOI: 10.1016/j.molcel.2013.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/16/2013] [Accepted: 08/20/2013] [Indexed: 02/01/2023]
Abstract
In cells, tRNAs are synthesized as precursor molecules bearing extra sequences at their 5' and 3' ends. Some tRNAs also contain introns, which, in archaea and eukaryotes, are cleaved by an evolutionarily conserved endonuclease complex that generates fully functional mature tRNAs. In addition, tRNAs undergo numerous posttranscriptional nucleotide chemical modifications. In Trypanosoma brucei, the single intron-containing tRNA (tRNA(Tyr)GUA) is responsible for decoding all tyrosine codons; therefore, intron removal is essential for viability. Using molecular and biochemical approaches, we show the presence of several noncanonical editing events, within the intron of pre-tRNA(Tyr)GUA, involving guanosine-to-adenosine transitions (G to A) and an adenosine-to-uridine transversion (A to U). The RNA editing described here is required for proper processing of the intron, establishing the functional significance of noncanonical editing with implications for tRNA processing in the deeply divergent kinetoplastid lineage and eukaryotes in general.
Collapse
Affiliation(s)
- Mary Anne T Rubio
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Shakarian AM, McGugan GC, Joshi MB, Stromberg M, Bowers L, Ganim C, Barowski J, Dwyer DM. Identification, characterization, and expression of a unique secretory lipase from the human pathogen Leishmania donovani. Mol Cell Biochem 2010; 341:17-31. [PMID: 20349119 PMCID: PMC4014072 DOI: 10.1007/s11010-010-0433-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/26/2010] [Indexed: 11/29/2022]
Abstract
Lipases have been implicated to be of importance in the life cycle development, virulence, and transmission of a variety of parasitic organisms. Potential functions include the acquisition of host resources for energy metabolism and as simple building blocks for the synthesis of complex parasite lipids important for membrane remodeling and structural purposes. Using a molecular approach, we identified and characterized the structure of an LdLip3-lipase gene from the primitive trypanosomatid pathogen of humans, Leishmania donovani. The LdLip3 encodes a approximately 33 kDa protein, with a well-conserved substrate-binding and catalytic domains characteristic of members of the serine lipase-protein family. Further, we showed that LdLip3 mRNA is constitutively expressed by both the insect vector (i.e., promastigote) and mammalian (i.e., amastigote) life cycle developmental forms of this protozoan parasite. Moreover, a homologous episomal expression system was used to express an HA epitope-tagged LdLip3 chimeric construct (LdLip3::HA) in these parasites. Expression of the LdLip3 chimera was verified in these transfectants by Western blots and indirect immuno-fluorescence analyses. Results of coupled immuno-affinity purification and enzyme activity experiments demonstrated that the LdLip3::HA chimeric protein was secreted/released by transfected L. donovani parasites and that it possessed functional lipase enzyme activity. Taken together these observations suggest that this novel secretory lipase might play essential role(s) in the survival, growth, and development of this important group of human pathogens.
Collapse
Affiliation(s)
- Alison M Shakarian
- The Department of Biology and Biomedical Sciences, Salve Regina University, Newport, RI 02840, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Joshi MB, Dwyer DM. Molecular and functional analyses of a novel class I secretory nuclease from the human pathogen, Leishmania donovani. J Biol Chem 2007; 282:10079-10095. [PMID: 17276983 DOI: 10.1074/jbc.m610770200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primitive protozoan pathogen of humans, Leishmania donovani, resides and multiplies in highly restricted micro-environments within their hosts (i.e. as promastigotes in the gut lumen of their sandfly vectors and as amastigotes in the phagolysosomal compartments of infected mammalian macrophages). Like other trypanosomatid parasites, they are purine auxotrophs (i.e. lack the ability to synthesize purines de novo) and therefore are totally dependent upon salvaging these essential nutrients from their hosts. In that context, in this study we identified a unique 35-kDa, dithiothreitol-sensitive nuclease and showed that it was constitutively released/secreted by both promastigote and amastigote developmental forms of this parasite. By using several different molecular approaches, we identified and characterized the structure of LdNuc(s), a gene that encodes this new 35-kDa class I nuclease family member in these organisms. Homologous episomal expression of an epitope-tagged LdNuc(s) chimeric construct was used in conjunction with an anti-LdNuc(s) peptide antibody to delineate the functional and biochemical properties of this unique 35-kDa parasite released/secreted enzyme. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that this "secretory" enzyme could hydrolyze a variety of synthetic polynucleotides as well as several natural nucleic acid substrates, including RNA and single- and double-stranded DNA. Based on these cumulative observations, we hypothesize that within the micro-environments of its host, this leishmanial "secretory" nuclease could function at a distance away from the parasite to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine requirements of these organisms. Thus, this enzyme might play an important role(s) in facilitating the survival, growth, and development of this important human pathogen.
Collapse
Affiliation(s)
- Manju B Joshi
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425
| | - Dennis M Dwyer
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425.
| |
Collapse
|
11
|
Arhin GK, Shen S, Pérez IF, Tschudi C, Ullu E. Downregulation of the essential Trypanosoma brucei La protein affects accumulation of elongator methionyl-tRNA. Mol Biochem Parasitol 2005; 144:104-8. [PMID: 16055205 DOI: 10.1016/j.molbiopara.2005.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/29/2022]
Affiliation(s)
- George K Arhin
- Department of Internal Medicine, Yale University Medical School, BCMM 136D, 295 Congress Avenue, Box 9812, New Haven, CT 06536-8012, USA
| | | | | | | | | |
Collapse
|
12
|
Arhin GK, Shen S, Irmer H, Ullu E, Tschudi C. Role of a 300-kilodalton nuclear complex in the maturation of Trypanosoma brucei initiator methionyl-tRNA. EUKARYOTIC CELL 2005; 3:893-9. [PMID: 15302822 PMCID: PMC500872 DOI: 10.1128/ec.3.4.893-899.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
tRNAs are transcribed as precursors containing 5' leader and 3' extensions that are removed by a series of posttranscriptional processing reactions to yield functional mature tRNAs. Here, we examined the maturation pathway of tRNA(Met) in Trypanosoma brucei, an early divergent unicellular eukaryote. We identified an approximately 300-kDa complex located in the nucleus of T. brucei that is required for trimming the 5' leader of initiator tRNA(Met) precursors. One of the subunits of the complex (T. brucei MT40 [TbMT40]) is a putative methyltransferase and a homolog of Saccharomyces cerevisiae Gcd14, which is essential for 1-methyladenosine modification in tRNAs. Down-regulation of TbMT40 by RNA interference resulted in the accumulation of precursor initiator tRNA(Met) containing 5' extensions but processed 3' ends. In addition, immunoprecipitations with anti-La antibodies revealed initiator tRNA(Met) molecules with 5' and 3' extensions in TbMT40-silenced cells, albeit at a much lower level. Interestingly, silencing of TbMT40, as well as of TbMT53, a second subunit of the complex, led to an increase in the levels of mature elongator tRNA(Met). Taken together, our data provide a glance at the maturation of tRNAs in parasitic protozoa and suggest that at least for initiator tRNA(Met), 3' trimming precedes 5' processing.
Collapse
Affiliation(s)
- George K Arhin
- Department of Epidemiology and Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | | | | | | | | |
Collapse
|
13
|
Foldynová-Trantírková S, Paris Z, Sturm NR, Campbell DA, Lukes J. The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal. Int J Parasitol 2005; 35:359-66. [PMID: 15777912 DOI: 10.1016/j.ijpara.2004.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
By virtue of its preferential binding to poly(U) tails on small RNA precursors and nuclear localisation motif, the La protein has been implicated for a role in the stabilisation and nuclear retention of processing intermediates for a variety of small RNAs in eukaryotic cells. As the universal substrate for trans-splicing, the spliced leader RNA is transcribed as a precursor with just such a tail. La protein was targeted for selective knockdown by inducible RNA interference in Trypanosoma brucei. Of three RNA interference strategies employed, a p2T7-177 vector was the most effective in reducing both the La mRNA as well as the protein itself from induced cells. In the relative absence of La protein T. brucei cells were not viable, in contrast to La gene knockouts in yeast. A variety of potential small RNA substrates were examined under induction, including spliced leader RNA, spliced leader associated RNA, the U1, U2, U4, and U6 small nuclear RNAs, 5S ribosomal RNA, U3 small nucleolar RNA, and tRNATyr. None of these molecules showed significant variance in size or abundance in their mature forms, although a discrete subset of intermediates appear for spliced leader RNA and tRNATyr intron splicing under La depletion conditions. 5'-end methylation in the spliced leader RNA and U1 small nuclear RNA was unaffected. The immediate cause of lethality in T. brucei was not apparent, but may represent a cumulative effect of multiple defects including processing of spliced leader RNA, tRNATyr and other unidentified RNA substrates. This study indicates that La protein binding is not essential for maturation of the spliced leader RNA, but does not rule out the presence of an alternative processing pathway that could compensate for the absence of normally-associated La protein.
Collapse
Affiliation(s)
- Silvie Foldynová-Trantírková
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, 37005 Ceské Budejovice, Czech Republic
| | | | | | | | | |
Collapse
|
14
|
Joshi MB, Rogers ME, Shakarian AM, Yamage M, Al-Harthi SA, Bates PA, Dwyer DM. Molecular characterization, expression, and in vivo analysis of LmexCht1: the chitinase of the human pathogen, Leishmania mexicana. J Biol Chem 2004; 280:3847-61. [PMID: 15561707 PMCID: PMC2839926 DOI: 10.1074/jbc.m412299200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chitinases have been implicated to be of importance in the life cycle development and transmission of a variety of parasitic organisms. Using a molecular approach, we identified and characterized the structure of a single copy LmexCht1-chitinase gene from the primitive trypanosomatid pathogen of humans, Leishmania mexicana. The LmexCht1 encodes an approximately 50 kDa protein, with well conserved substrate binding and catalytic domains characteristic of members of the chitinase-18 protein family. Further, we showed that LmexCht1 mRNA is constitutively expressed by both the insect vector (i.e. promastigote) and mammalian (i.e. amastigote) life cycle developmental forms of this protozoan parasite. Interestingly, however, amastigotes were found to secrete/release approximately >2-4-fold higher levels of chitinase activity during their growth in vitro than promastigotes. Moreover, a homologous episomal expression system was devised and used to express an epitope-tagged LmexCht1 chimeric construct in these parasites. Expression of the LmexCht1 chimera was verified in these transfectants by reverse transcription-PCR, Western blots, and indirect immunofluorescence analyses. Further, results of coupled immunoprecipitation/enzyme activity experiments demonstrated that the LmexCht1 chimeric protein was secreted/released by these transfected L. mexicana parasites and that it possessed functional chitinase enzyme activity. Such transfectants were also evaluated for their infectivity both in human macrophages in vitro and in two different strains of mice. Results of those experiments demonstrated that the LmexCht1 transfectants survived significantly better in human macrophages and also produced significantly larger lesions in mice than control parasites. Taken together, our results indicate that the LmexCht1-chimera afforded a definitive survival advantage to the parasite within these mammalian hosts. Thus, the LmexCht1 could potentially represent a new virulence determinant in the mammalian phase of this important human pathogen.
Collapse
Affiliation(s)
- Manju B. Joshi
- Cell Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | - Matthew E. Rogers
- Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Alison M. Shakarian
- Cell Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | - Mat Yamage
- Cell Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
| | - Saeed A. Al-Harthi
- Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Paul A. Bates
- Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dennis M. Dwyer
- Cell Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA
- Corresponding Author: Phone: (301) 496-5969; Fax: (301) 402-0079;
| |
Collapse
|
15
|
Tan THP, Pach R, Crausaz A, Ivens A, Schneider A. tRNAs in Trypanosoma brucei: genomic organization, expression, and mitochondrial import. Mol Cell Biol 2002; 22:3707-17. [PMID: 11997507 PMCID: PMC133840 DOI: 10.1128/mcb.22.11.3707-3716.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial genome of Trypanosoma brucei does not encode tRNAs. Consequently, all mitochondrial tRNAs are imported from the cytosol and originate from nucleus-encoded genes. Analysis of all currently available T. brucei sequences revealed that its genome carries 50 tRNA genes representing 40 different isoacceptors. The identified set is expected to be nearly complete since all but four codons are accounted for. The number of tRNA genes in T. brucei is very low for a eukaryote and lower than those of many prokaryotes. Using quantitative Northern analysis we have determined the absolute abundance in the cell and the mitochondrion of a group of 15 tRNAs specific for 12 amino acids. Except for the initiator type tRNA(Met), which is cytosol specific, the cytosolic and the mitochondrial sets of tRNAs were qualitatively identical. However, the extent of mitochondrial localization was variable for the different tRNAs, ranging from 1 to 7.5% per cell. Finally, by using transgenic cell lines in combination with quantitative Northern analysis it was shown that import of tRNA(Leu)(CAA) is independent of its 5'-genomic context, suggesting that the in vivo import substrate corresponds to the mature, fully processed tRNA.
Collapse
Affiliation(s)
- Timothy H P Tan
- Department of Biology/Zoology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | | | | |
Collapse
|
16
|
Sopwith WF, Debrabant A, Yamage M, Dwyer DM, Bates PA. Developmentally regulated expression of a cell surface class I nuclease in Leishmania mexicana. Int J Parasitol 2002; 32:449-59. [PMID: 11849641 DOI: 10.1016/s0020-7519(01)00372-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leishmania mexicana, like other trypanosomatid parasites, is a purine auxotroph and must obtain these essential nutrients from its sandfly and mammalian hosts. A single copy gene encoding its unique externally oriented, surface membrane, purine salvage enzyme 3'-nucleotidase/nuclease, was isolated. Structural features of the deduced protein included: an endoplasmic reticulum-directed signal peptide, several conserved class I catalytic and metal co-factor (Zn(2+)) binding domains, transmembrane anchor sequence and a C-terminal cytoplasmic tail. 3'-Nucleotidase/nuclease gene (mRNA) and protein (enzyme activity) expression were examined in three different L. mexicana developmental forms: procyclic promastigotes, metacyclic promastigotes and amastigotes. Results of both approaches demonstrated that the 3'-nucleotidase/nuclease was a stage-specific enzyme, being expressed by promastigote forms (stages restricted to the insect vector), but not by amastigotes (which produce disease in mammalian hosts). Starvation of these parasites for purines resulted in the significant up-regulation of both 3'-nucleotidase/nuclease mRNA and enzyme activity in promastigotes, but not in amastigotes. These results underscore the critical role that the 3'-nucleotidase/nuclease must play in purine salvage during the rapid multiplicative expansion of the parasite population within its insect vector. To our knowledge, the L. mexicana 3'-nucleotidase/nuclease is the first example of a nutrient-induced and developmentally regulated enzyme in any parasitic protozoan.
Collapse
Affiliation(s)
- William F Sopwith
- Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | | | | | | |
Collapse
|
17
|
Yamage M, Debrabant A, Dwyer DM. Molecular characterization of a hyperinducible, surface membrane-anchored, class I nuclease of a trypanosomatid parasite. J Biol Chem 2000; 275:36369-79. [PMID: 10945983 DOI: 10.1074/jbc.m004036200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 3'-nucleotidase/nuclease (3'-NT/NU) is a surface enzyme unique to trypanosomatid parasites. These organisms lack the pathway for de novo purine biosynthesis and thus are entirely dependent upon their hosts to supply this nutrient for their survival, growth, and multiplication. The 3'-NT/NU is involved in the salvage of preformed purines via the hydrolysis of either 3'-nucleotides or nucleic acids. In Crithidia luciliae, this enzyme is highly inducible. For example, in these organisms purine starvation triggers an approximately 1000-fold up-expression of 3'-NT/NU activity. In the present study, we cloned and characterized a gene encoding this intriguing enzyme from C. luciliae (Cl). Sequence analysis showed that the Cl 3'-NT/NU deduced protein possessed five regions, which we defined here as being characteristic of members of the class I nuclease family. Further, we demonstrated that the Cl 3'-NT/NU-expressed protein possessed both 3'-nucleotidase and nuclease activities. Moreover, we showed that the dramatic up-expression of 3'-NT/NU activity in response to purine starvation of C. luciliae was concomitant with the approximately 100-fold elevation in steady-state mRNA specific for this gene. Finally, results of our nuclear run-on analyses demonstrated that such up-regulation in 3'-NT/NU enzyme activity was mediated at the posttranscriptional level.
Collapse
Affiliation(s)
- M Yamage
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
18
|
Abstract
Despite the advances of modern medicine, the threat of chronic illness, disfigurement, or death that can result from parasitic infection still affects the majority of the world population, retarding economic development. For most parasitic diseases, current therapeutics often leave much to be desired in terms of administration regime, toxicity, or effectiveness and potential vaccines are a long way from market. Our best prospects for identifying new targets for drug, vaccine, and diagnostics development and for dissecting the biological basis of drug resistance, antigenic diversity, infectivity and pathology lie in parasite genome analysis, and international mapping and gene discovery initiatives are under way for a variety of protozoan and helminth parasites. These are far from ideal experimental organisms, and the influence of biological and genomic characteristics on experimental approaches is discussed, progress is reviewed and future prospects are examined.
Collapse
Affiliation(s)
- D A Johnston
- Department of Zoology, Natural History Museum, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Sbicego S, Nabholz CE, Hauser R, Blum B, Schneider A. In vivo import of unspliced tRNATyr containing synthetic introns of variable length into mitochondria of Leishmania tarentolae. Nucleic Acids Res 1998; 26:5251-5. [PMID: 9826745 PMCID: PMC147993 DOI: 10.1093/nar/26.23.5251] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mitochondrial genomes of trypanosomatids lack tRNA genes. Instead, mitochondrial tRNAs are encoded and synthesized in the nucleus and are then imported into mitochondria. This also applies for tRNATyr, which in trypanosomatids contains an 11 nt intron. Previous work has defined an exon mutation which leads to accumulation of unspliced precursor tRNATyr. In this study we have used the splicing-deficient tRNATyr as a vehicle to introduce foreign sequences into the mitochondrion of Leishmania tarentolae. The naturally occurring intron was replaced by synthetic sequences of increasing length and the resulting tRNATyr precursors were expressed in transgenic cell lines. Whereas stable expression of precursor tRNAsTyr was obtained for introns up to a length of 76 nt, only precursors having introns up to 38 nt were imported into mitochondria. These results demonstrate that splicing-deficient tRNATyr can be used to introduce short synthetic sequences into mitochondria in vivo. In addition, our results show that one factor which limits the efficiency of import is the length of the molecule.
Collapse
Affiliation(s)
- S Sbicego
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Suyama Y, Wong S, Campbell DA. Regulated tRNA import in Leishmania mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1396:138-42. [PMID: 9540827 DOI: 10.1016/s0167-4781(97)00197-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The genes for three new tRNA and a 5S RNA were identified from a genomic DNA clone of 917 nucleotide pairs from the protozoon Leishmania tarentolae. They were encoded in the following order. The transcriptional directions and anticodons are in parentheses: tRNA(Val) (CAC-->)-5SRNA (-->)-tRNA(His) (<--GUG)-tRNA(Phe) (GAA-->). The tRNA(His) and tRNA(Phe) sequences have not been reported previously in trypanosomatid organisms. By northern analysis, tRNA(Val) and tRNA(Phe) were equally distributed between the cytosol and mitochondria, while tRNA(His) was less abundant in mitochondria than in the cytosol. Accordingly, the latter tRNA is classified as Import restricted (Impr). As shown before, 5S RNA was not imported. Recently, Mahapatra and Adhya [S. Mahapatra, T. Ghosh, S. Adhya, Nucl. Acids Res. 22 (1994) 3381-3386; S. Mahapatra, S. Adhya, J. Biol. Chem. 271 (1996) 20432-20437] have developed an in vitro import system in Leishmania and suggested that the D-loop sequence could serve as the import determinant. We examined all available tRNA gene sequences in trypanosomatids but found no apparent consensus within the D-loop that might account for tRNA-import regulation.
Collapse
Affiliation(s)
- Y Suyama
- Department of Biology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
21
|
Akama K, Nass A, Junker V, Beier H. Characterization of nuclear tRNA(Tyr) introns: their evolution from red algae to higher plants. FEBS Lett 1997; 417:213-8. [PMID: 9395298 DOI: 10.1016/s0014-5793(97)01288-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously isolated numerous intron-containing nuclear tRNA(Tyr) genes derived from either monocotyledonous (Triticum) or dicotyledonous (Arabidopsis, Nicotiana) plants by screening the corresponding genomic phage libraries with a synthetic tRNA(Tyr)-specific oligonucleotide. Here we have characterized additional tRNA(Tyr) genes from phylogenetically divergent plant species representing red algae (Champia), brown algae (Cystophyllum), green algae (Ulva), stonewort (Chara), liverwort (Marchantia), moss (Polytrichum), fern (Rumohra) and gymnosperms (Ginkgo) using amplification of the coding sequences from the corresponding genomic DNAs by polymerase chain reaction (PCR). All novel tRNA(Tyr) genes contain intervening sequences of variable sequence and length ranging in size from 11 to 21 bp. However, two features are conserved in all plant pre-tRNA(Tyr) introns: they possess a uridine and less frequently an adenosine at the 5' boundary and can adopt similar intron secondary structures in which an extended anticodon helix of 4-5 bp is formed by base-pairing between nucleotides of the intron and the anticodon loop. In order to elucidate the potential role of the highly conserved uridine at the first intron position, we have replaced it by all other nucleosides in an Arabidopsis pre-tRNA(Tyr) and have studied in wheat germ extract its effect on splicing and on conversion of U to psi in the GpsiA anticodon. Furthermore, we discuss the putative acquisition of tRNA(Tyr) introns at an early step of evolution after the separation of Archaea and Eucarya.
Collapse
Affiliation(s)
- K Akama
- Department of Biological Science, Shimane University, Matsue, Japan
| | | | | | | |
Collapse
|
22
|
Abstract
Trypanosoma brucei and Trypanosoma cruzi cause different human diseases. As strategies for immune evasion, T. brucei undergone antigenic variation whereas T. cruzi becomes an intracellular organism. This fundamental difference is reflected by major differences in their genome organizations. Recent comparisons of their gene sequences indicate that these two trypanosome species are highly divergent evolutionarily.
Collapse
Affiliation(s)
- J E Donelson
- Department of Biochemistry, University of Iowa, Iowa City, USA
| |
Collapse
|
23
|
Akama K, Kashihara M. Plant nuclear tRNA(Met) genes are ubiquitously interrupted by introns. PLANT MOLECULAR BIOLOGY 1996; 32:427-434. [PMID: 8980491 DOI: 10.1007/bf00019094] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have isolated three independent clones for nuclear elongator tRNA(Met) genes from an Arabidopsis DNA library using a tRNA(Met)-specific probe generated by PCR. Each of the coding sequences for tRNAMet in these clones is identical and is interrupted by an identical 11 bp long intervening sequence at the same position in the anticodon loop of the tRNA. Their sequences differ at two positions from the intron in a soybean counterpart. Southern analysis of Arabidopsis DNA demonstrates that a gene family coding for tRNA(Met) is dispersed at at least eight loci in the genome. The unspliced precursor tRNA(Met) intermediate was detected by RNA analysis using an oligonucleotide probe complementary to the putative intron sequence. In order to know whether introns commonly interrupt plant tRNA(Met) genes, their coding sequences were PCR-amplified from the DNAs of eight phylogenetically separate plant species. All 53 sequences determined contain 10 to 13 bp long intervening sequences, always positioned one base downstream from the anticodon. They can all be potentially folded into the secondary structure characteristic for plant intron-containing precursor tRNAs. Surprisingly, GC residues are always present at the 5'-distal end of each intron.
Collapse
Affiliation(s)
- K Akama
- Department of Biology, Faculty of Science, Shimane University, Matsue, Japan
| | | |
Collapse
|
24
|
el-Sayed NM, Alarcon CM, Beck JC, Sheffield VC, Donelson JE. cDNA expressed sequence tags of Trypanosoma brucei rhodesiense provide new insights into the biology of the parasite. Mol Biochem Parasitol 1995; 73:75-90. [PMID: 8577350 DOI: 10.1016/0166-6851(95)00098-l] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A total of 518 expressed sequence tags (ESTs) have been generated from clones randomly selected from a cDNA library and a spliced leader sub-library of a Trypanosoma brucei rhodesiense bloodstream clone. 205 (39%) of the clones were identified based on matches to 113 unique genes in the public databases. Of these, 71 cDNAs display significant similarities to genes in unrelated organisms encoding metabolic enzymes, signal transduction proteins, transcription factors, ribosomal proteins, histones, a proliferation-associated protein and thimet oligopeptidase, among others. 313 of the cDNAs are not related to any other sequences in the databases. These cDNA ESTs provide new avenues of research for exploring both the novel trypanosome-specific genes and the genome organization of this parasite, as well as a resource for identifying trypanosome homologs to genes expressed in other organisms.
Collapse
Affiliation(s)
- N M el-Sayed
- Department of Biochemistry, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
RNAs that function in mitochondria, in contrast to the majority of mitochondrial proteins, are generally encoded by the mitochondrial genome. However, evidence has been presented for transport of nucleus-encoded tRNAs into mitochondria in diverse organisms. While mitochondrial protein import has been characterized in great detail, virtually nothing is known about the pathway of RNA import into mitochondria. Only very recently have in vivo systems for RNA import been established, and these are now providing some insight into this intriguing process.
Collapse
Affiliation(s)
- A Schneider
- Biozentrum, Department of Biochemistry, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|