1
|
Bouvier JW, Emms DM, Kelly S. Rubisco is evolving for improved catalytic efficiency and CO 2 assimilation in plants. Proc Natl Acad Sci U S A 2024; 121:e2321050121. [PMID: 38442173 PMCID: PMC10945770 DOI: 10.1073/pnas.2321050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded as inefficient leading many to question whether the enzyme can adapt to become a better catalyst. Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we uncover the evolutionary trajectory of rubisco kinetic evolution in angiosperms. We show that rbcL is among the 1% of slowest-evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 My and one amino acid mutation every 7.2 My. Despite this, rubisco catalysis has been continually evolving toward improved CO2/O2 specificity, carboxylase turnover, and carboxylation efficiency. Consistent with this kinetic adaptation, increased rubisco evolution has led to a concomitant improvement in leaf-level CO2 assimilation. Thus, rubisco has been slowly but continually evolving toward improved catalytic efficiency and CO2 assimilation in plants.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - David M Emms
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
2
|
Bouvier JW, Emms DM, Rhodes T, Bolton JS, Brasnett A, Eddershaw A, Nielsen JR, Unitt A, Whitney SM, Kelly S. Rubisco Adaptation Is More Limited by Phylogenetic Constraint Than by Catalytic Trade-off. Mol Biol Evol 2021; 38:2880-2896. [PMID: 33739416 PMCID: PMC8233502 DOI: 10.1093/molbev/msab079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rubisco assimilates CO2 to form the sugars that fuel life on earth. Correlations between rubisco kinetic traits across species have led to the proposition that rubisco adaptation is highly constrained by catalytic trade-offs. However, these analyses did not consider the phylogenetic context of the enzymes that were analyzed. Thus, it is possible that the correlations observed were an artefact of the presence of phylogenetic signal in rubisco kinetics and the phylogenetic relationship between the species that were sampled. Here, we conducted a phylogenetically resolved analysis of rubisco kinetics and show that there is a significant phylogenetic signal in rubisco kinetic traits. We re-evaluated the extent of catalytic trade-offs accounting for this phylogenetic signal and found that all were attenuated. Following phylogenetic correction, the largest catalytic trade-offs were observed between the Michaelis constant for CO2 and carboxylase turnover (∼21-37%), and between the Michaelis constants for CO2 and O2 (∼9-19%), respectively. All other catalytic trade-offs were substantially attenuated such that they were marginal (<9%) or non-significant. This phylogenetically resolved analysis of rubisco kinetic evolution also identified kinetic changes that occur concomitant with the evolution of C4 photosynthesis. Finally, we show that phylogenetic constraints have played a larger role than catalytic trade-offs in limiting the evolution of rubisco kinetics. Thus, although there is strong evidence for some catalytic trade-offs, rubisco adaptation has been more limited by phylogenetic constraint than by the combined action of all catalytic trade-offs.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Timothy Rhodes
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jai S Bolton
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Amelia Brasnett
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Alice Eddershaw
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Jochem R Nielsen
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Anastasia Unitt
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Miller SR, McGuirl MA, Carvey D. The Evolution of RuBisCO Stability at the Thermal Limit of Photoautotrophy. Mol Biol Evol 2013; 30:752-60. [DOI: 10.1093/molbev/mss327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
4
|
Schwarte S, Tiedemann R. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana. Mol Biol Evol 2011; 28:1861-76. [PMID: 21220760 DOI: 10.1093/molbev/msr008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase; EC 4.1.1.39), the most abundant protein in nature, catalyzes the assimilation of CO(2) (worldwide about 10(11) t each year) by carboxylation of ribulose-1,5-bisphosphate. It is a hexadecamer consisting of eight large and eight small subunits. Although the Rubisco large subunit (rbcL) is encoded by a single gene on the multicopy chloroplast genome, the Rubisco small subunits (rbcS) are encoded by a family of nuclear genes. In Arabidopsis thaliana, the rbcS gene family comprises four members, that is, rbcS-1a, rbcS-1b, rbcS-2b, and rbcS-3b. We sequenced all Rubisco genes in 26 worldwide distributed A. thaliana accessions. In three of these accessions, we detected a gene duplication/loss event, where rbcS-1b was lost and substituted by a duplicate of rbcS-2b (called rbcS-2b*). By screening 74 additional accessions using a specific polymerase chain reaction assay, we detected five additional accessions with this duplication/loss event. In summary, we found the gene duplication/loss in 8 of 100 A. thaliana accessions, namely, Bch, Bu, Bur, Cvi, Fei, Lm, Sha, and Sorbo. We sequenced an about 1-kb promoter region for all Rubisco genes as well. This analysis revealed that the gene duplication/loss event was associated with promoter alterations (two insertions of 450 and 850 bp, one deletion of 730 bp) in rbcS-2b and a promoter deletion (2.3 kb) in rbcS-2b* in all eight affected accessions. The substitution of rbcS-1b by a duplicate of rbcS-2b (i.e., rbcS-2b*) might be caused by gene conversion. All four Rubisco genes evolve under purifying selection, as expected for central genes of the highly conserved photosystem of green plants. We inferred a single positive selected site, a tyrosine to aspartic acid substitution at position 72 in rbcS-1b. Exactly the same substitution compromises carboxylase activity in the cyanobacterium Anacystis nidulans. In A. thaliana, this substitution is associated with an inferred recombination. Functional implications of the substitution remain to be evaluated.
Collapse
Affiliation(s)
- Sandra Schwarte
- Evolutionary Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
5
|
Genkov T, Spreitzer RJ. Highly conserved small subunit residues influence rubisco large subunit catalysis. J Biol Chem 2009; 284:30105-12. [PMID: 19734149 PMCID: PMC2781565 DOI: 10.1074/jbc.m109.044081] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/20/2009] [Indexed: 11/06/2022] Open
Abstract
The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.
Collapse
Affiliation(s)
- Todor Genkov
- From the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Robert J. Spreitzer
- From the Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
6
|
Hartman FC, Harpel MR. Chemical and genetic probes of the active site of D-ribulose-1,5-bisphosphate carboxylase/oxygenase: a retrospective based on the three-dimensional structure. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:1-75. [PMID: 8322615 DOI: 10.1002/9780470123133.ch1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- F C Hartman
- Biology Division, Oak Ridge National Laboratory, TN
| | | |
Collapse
|
7
|
Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 2003; 414:130-40. [PMID: 12781764 DOI: 10.1016/s0003-9861(03)00164-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the enzyme assimilating CO2 in biology. Despite serious efforts, using many different methods, a detailed understanding of activity and regulation in Rubisco still eludes us. New results in X-ray crystallography may provide a structural framework on which to base experimental approaches for more detailed analyses of the function of Rubisco at the molecular level. This article gives a critical review of the field and summarizes recent results from structural studies of Rubisco.
Collapse
|
8
|
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis, but O2 competes with CO2 for substrate ribulose 1,5-bisphosphate, leading to the loss of fixed carbon. Interest in genetically engineering improvements in carboxylation catalytic efficiency and CO2/O2 specificity has focused on the chloroplast-encoded large subunit because it contains the active site. However, there is another type of subunit in the holoenzyme of plants, which, like the large subunit, is present in eight copies. The role of these nuclear-encoded small subunits in Rubisco structure and function is poorly understood. Small subunits may have originated during evolution to concentrate large-subunit active sites, but the extensive divergence of structures among prokaryotes, algae, and land plants seems to indicate that small subunits have more-specialized functions. Furthermore, plants and green algae contain families of differentially expressed small subunits, raising the possibility that these subunits may regulate the structure or function of Rubisco. Studies of interspecific hybrid enzymes have indicated that small subunits are required for maximal catalysis and, in several cases, contribute to CO2/O2 specificity. Although small-subunit genetic engineering remains difficult in land plants, directed mutagenesis of cyanobacterial and green-algal genes has identified specific structural regions that influence catalytic efficiency and CO2/O2 specificity. It is thus apparent that small subunits will need to be taken into account as strategies are developed for creating better Rubisco enzymes.
Collapse
|
9
|
|
10
|
Horken KM, Tabita FR. Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities. Arch Biochem Biophys 1999; 361:183-94. [PMID: 9882445 DOI: 10.1006/abbi.1998.0979] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deduced primary sequence (cbbL and cbbS) of form I ribulose 1, 5-bisphosphate carboxylase/oxygenase (rubisco) from Bradyrhizobium japonicum places this enzyme within the Type IC subgroup of red-like rubisco enzymes. In addition, B. japonicum appears to organize most of the structural genes of the Calvin-Benson-Bassham (CBB) pathway in at least one major operon. Functional expression and characterization of the B. japonicum and Xanthobacter flavus enzymes from this group revealed that these molecules exhibit diverse kinetic properties despite their relatively high degree of sequence relatedness. Of prime importance was the fact that these closely related enzymes exhibited CO2 and O2 substrate specificities that varied from relatively low values [tau = (VcKo)/(VoKc) = 45] to values that approximated those obtained for higher plants (tau = 75). These results, combined with the metabolic and genetic versatility of the organisms from which these enzymes were derived, suggest a potential rich resource for future biological selection and structure-function studies aimed at elucidating structural features that govern key enzymological properties of rubisco.
Collapse
Affiliation(s)
- K M Horken
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210-1292, USA
| | | |
Collapse
|
11
|
Li LA, Tabita FR. Maximum activity of recombinant ribulose 1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene. J Bacteriol 1997; 179:3793-6. [PMID: 9171433 PMCID: PMC179181 DOI: 10.1128/jb.179.11.3793-3796.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Filamentous cyanobacteria of the genus Anabaena contain a unique open reading frame, rbcX, which is juxtaposed and cotranscribed with the genes (rbcL and rbcS) encoding form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Plasmid constructions containing the genes from Anabaena sp. strain CA were prepared, and expression studies in Escherichia coli indicated that the product of the rbcX gene mimicked the ability of chaperonin proteins to facilitate the proper folding of recombinant RubisCO proteins. The purified recombinant Anabaena sp. strain CA RubisCO, much like the RubisCO enzymes from other cyanobacteria, was shown not to undergo inhibition of activity during a time course experiment, and the properties of this chaperoned recombinant protein appear to be consistent with those of the enzyme isolated from the native organism.
Collapse
Affiliation(s)
- L A Li
- Department of Microbiology, The Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
12
|
Khrebtukova I, Spreitzer RJ. Elimination of the Chlamydomonas gene family that encodes the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci U S A 1996; 93:13689-93. [PMID: 8942995 PMCID: PMC19392 DOI: 10.1073/pnas.93.24.13689] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/ oxygenase (EC 4.1.1.39) is the key photosynthetic enzyme that catalyzes the first step of CO2 fixation. The chloroplast-localized holoenzyme of plants and green algae contains eight nuclear-encoded small subunits and eight chloroplast-encoded large subunits. Although much has been learned about the enzyme active site that resides within each large subunit, it has been difficult to assess the role of eukaryotic small subunits in holoenzyme function and expression. Small subunits are coded by a family of genes, precluding genetic screening or nuclear transformation approaches for the recovery of small-subunit mutants. In this study, the two small-subunit mutants. In this study, the two small-subunit genes of the green alga Chlamydomonas reinhardtii were eliminated during random insertional mutagenesis. The photosynthesis-deficient deletion mutant can be complemented with either of the two wild-type small-subunit genes or with a chimeric gene that contains features of both. Thus, either small subunit is sufficient for holoenzyme assembly and function. In the absence of small subunits, expression of chloroplast-encoded large subunits appears to be inhibited at the level of translation.
Collapse
Affiliation(s)
- I Khrebtukova
- Department of Biochemistry, University of Nebraska, Lincoln 68588-0664, USA
| | | |
Collapse
|
13
|
Adam Z. A mutation in the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase that reduces the rate of its incorporation into holoenzyme. PHOTOSYNTHESIS RESEARCH 1995; 43:143-7. [PMID: 24306747 DOI: 10.1007/bf00042971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/1994] [Accepted: 01/12/1995] [Indexed: 05/20/2023]
Abstract
A mutant of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), in which Arg53 is replaced by Glu, was synthesized and imported into isolated chloroplasts. The mutant protein was efficiently imported into the chloroplast and correctly processed to the mature size. Like the wild type protein, it was stable over a period of at least 2 h. Unlike the wilk-type protein however, most of the mutant protein was not assembled with holo-Rubisco at the end of a 10-min import reaction. It migrated instead as a diffused band on a non-denaturing gel, slower than the precursor protein, but faster than the holoenzyme. The level of the unassembled mutant protein in the stroma decreased with time, while its level in the assembled fraction has increased, indicating that this protein is a slowly-assembled, rather than a non-assembled, mutant of the small suubunit of Rubisco. Accumulation of the mutant protein in the holoenzyme fraction was dependent on ATP and light. The transient species, migrating faster than the holoenzyme but slower than the precursor protein, may represent an intermediate in the assembly process of the small subunit of Rubisco.
Collapse
Affiliation(s)
- Z Adam
- Department of Agricultural Botany, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| |
Collapse
|
14
|
Lee BG, Read BA, Tabita FR. Catalytic properties of recombinant octameric, hexadecameric, and heterologous cyanobacterial/bacterial ribulose- 1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 1991; 291:263-9. [PMID: 1952939 DOI: 10.1016/0003-9861(91)90133-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The recent isolation of a catalytically competent recombinant octameric core of the hexadecameric ribulose-1,5-bisphosphate carboxylase/oxygenase from the cyanobacterium Anacystis nidulans (Synechococcus) (B. Lee and F. R. Tabita, 1990, Biochemistry 29, 9352-9357) has provided a useful system for examining the properties of this enzyme in the absence of small subunits. Unlike most sources of hexadecameric ribulose bisphosphate carboxylase, the nonactivated Anacystis holoenzyme was not inhibited markedly by preincubation with ribulose 1,5-bisphosphate. This was also true for the Anacystis octameric core and a heterologous recombinant enzyme that comprised large subunits from Anacystis and small subunits from the bacterium Alcaligenes eutrophus, suggesting that substrate-mediated inactivation is not influenced by small subunits. In addition, the CO2/O2 specificity factor was not affected by the source of the small subunits incorporated into the structure of the hexadecameric protein, in agreement with previous in vitro heterologous reconstitution studies. The activated octameric Anacystis enzyme, however, was significantly more sensitive to inhibition by the phosphorylated effector 6-phosphogluconate than were the hexadecameric Alcaligenes and Anacystis enzymes and the heterologous Anacystis-Alcaligenes hybrid.
Collapse
Affiliation(s)
- B G Lee
- Department of Microbiology, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
15
|
Pulgar V, Gaete L, Allende J, Orellana O, Jordana X, Jedlicki E. Isolation and nucleotide sequence of the Thiobacillus ferrooxidans genes for the small and large subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase. FEBS Lett 1991; 292:85-9. [PMID: 1959634 DOI: 10.1016/0014-5793(91)80840-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The genes encoding for the large (rbcL) and small (rbcS) subunits of ribulose-1,5-bisphosphate carboxylase (RuBisCO) were cloned from the obligate autotroph Thiobacillus ferrooxidans, a bacterium involved in the bioleaching of minerals. Nucleotide sequence analysis of the cloned DNA showed that the two coding regions are separated by a 30-bp intergenic region, the smallest described for the RuBisCO genes. The rbcL and rbcS genes encode polypeptides of 473 and 118 amino acids, respectively. Comparison of the nucleotide and amino acid sequences with those of the genes for rbcL and rbcS found in other species demonstrated that the T. ferrooxidans genes have the closest degree of identity with those of Chromatium vinosum and of Alvinoconcha hessleri endosymbiont. Both T. ferrooxidans enzyme subunits contain all the conserved amino acids that are known to participate in the catalytic process or in holoenzyme assembly.
Collapse
Affiliation(s)
- V Pulgar
- Departamento de Bioquimica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|