1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024:1-43. [PMID: 39361782 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Compe E, Egly JM. The Long Road to Understanding RNAPII Transcription Initiation and Related Syndromes. Annu Rev Biochem 2021; 90:193-219. [PMID: 34153211 DOI: 10.1146/annurev-biochem-090220-112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; ,
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, Université de Strasbourg, 67404 Illkirch CEDEX, Commune Urbaine de Strasbourg, France; , .,College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
3
|
Kunishige R, Kano F, Murata M. The cell resealing technique for manipulating, visualizing, and elucidating molecular functions in living cells. Biochim Biophys Acta Gen Subj 2020; 1864:129329. [DOI: 10.1016/j.bbagen.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/05/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
|
4
|
Noe Gonzalez M, Sato S, Tomomori-Sato C, Conaway JW, Conaway RC. CTD-dependent and -independent mechanisms govern co-transcriptional capping of Pol II transcripts. Nat Commun 2018; 9:3392. [PMID: 30139934 PMCID: PMC6107522 DOI: 10.1038/s41467-018-05923-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/02/2018] [Indexed: 01/11/2023] Open
Abstract
Co-transcriptional capping of RNA polymerase II (Pol II) transcripts by capping enzyme proceeds orders of magnitude more efficiently than capping of free RNA. Previous studies brought to light a role for the phosphorylated Pol II carboxyl-terminal domain (CTD) in activation of co-transcriptional capping; however, CTD phosphorylation alone could not account for the observed magnitude of activation. Here, we exploit a defined Pol II transcription system that supports both CTD phosphorylation and robust activation of capping to dissect the mechanism of co-transcriptional capping. Taken together, our findings identify a CTD-independent, but Pol II-mediated, mechanism that functions in parallel with CTD-dependent processes to ensure optimal capping, and they support a “tethering” model for the mechanism of activation. The co-transcriptional capping of transcripts synthesized by RNA Pol II is substantially more efficient than capping of free RNA, a process that has been shown to depend on CTD phosphorylation. Here the authors demonstrate that a CTD-independent mechanism functions in parallel with CTD-dependent processes to ensure efficient capping.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA
| | - Shigeo Sato
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA
| | - Chieri Tomomori-Sato
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA
| | - Joan W Conaway
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA.,Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA
| | - Ronald C Conaway
- Stowers Institute for Medical Research, 1000 E 50 th Street, Kansas City, MO, 64110, USA. .,Department of Biochemistry and Molecular Biology, Kansas University Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
5
|
Abstract
The transcription initiation factor TFIIH is a remarkable protein complex that has a fundamental role in the transcription of protein-coding genes as well as during the DNA nucleotide excision repair pathway. The detailed understanding of how TFIIH functions to coordinate these two processes is also providing an explanation for the phenotypes observed in patients who bear mutations in some of the TFIIH subunits. In this way, studies of TFIIH have revealed tight molecular connections between transcription and DNA repair and have helped to define the concept of 'transcription diseases'.
Collapse
Affiliation(s)
- Emmanuel Compe
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UdS, BP 163, 67404 Illkirch Cedex, C. U., Strasbourg, France.
| | | |
Collapse
|
6
|
Aygün O, Xu X, Liu Y, Takahashi H, Kong SE, Conaway RC, Conaway JW, Svejstrup JQ. Direct inhibition of RNA polymerase II transcription by RECQL5. J Biol Chem 2009; 284:23197-203. [PMID: 19570979 PMCID: PMC2749093 DOI: 10.1074/jbc.m109.015750] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA helicases of the RECQ family are important for maintaining genome integrity, from bacteria to humans. Although progress has been made in understanding the biochemical role of some human RECQ helicases, that of RECQL5 remains elusive. We recently reported that RECQL5 interacts with RNA polymerase II (RNAPII), pointing to a role for the protein in transcription. Here, we show that RECQL5 inhibits both initiation and elongation in transcription assays reconstituted with highly purified general transcription factors and RNAPII. Such inhibition is not observed with the related, much more active RECQL1 helicase or with a version of RECQL5 that has normal helicase activity but is impaired in its ability to interact with RNAPII. Indeed, RECQL5 helicase activity is not required for inhibition. We discuss our findings in light of the fact that RECQ5−/− mice have elevated levels of DNA recombination and a higher incidence of cancer.
Collapse
Affiliation(s)
- Ozan Aygün
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK, London Research Institute, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
8
|
The right tools for the job. Nat Rev Mol Cell Biol 2005. [DOI: 10.1038/nrm1801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Kong SE, Banks CAS, Shilatifard A, Conaway JW, Conaway RC. ELL-associated factors 1 and 2 are positive regulators of RNA polymerase II elongation factor ELL. Proc Natl Acad Sci U S A 2005; 102:10094-8. [PMID: 16006523 PMCID: PMC1177379 DOI: 10.1073/pnas.0503017102] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In human cells, the ELL family of transcription factors includes at least three members, which are all capable of stimulating the overall rate of elongation by RNA polymerase II by suppressing transient pausing by the enzyme at many sites along DNA. In this report, we identify the ELL-associated factors (EAF)1 and EAF2 as strong positive regulators of ELL elongation activity. Our findings provide insights into the structure and function of ELL family transcription factors, and they bring to light direct roles for the EAF proteins in regulation of RNA polymerase II transcription.
Collapse
Affiliation(s)
- Stephanie E Kong
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
10
|
Moon WJ, Apostol JA, McBride AJ, Shukla LI, Dvir A, Burton ZF. Efficient production of recombinant human transcription factor IIE. Protein Expr Purif 2004; 34:317-23. [PMID: 15003267 DOI: 10.1016/j.pep.2003.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2003] [Revised: 12/10/2003] [Indexed: 11/17/2022]
Abstract
Transcription factor IIE (TFIIE) is a general initiation and promoter escape factor for RNA polymerase II composed of p56 (TFIIE-alpha) and p34 (TFIIE-beta) subunits. Our laboratories experienced difficulty producing adequate quantities of recombinant human TFIIE-alpha for in vitro studies using available clones. We therefore re-engineered the TFIIE subunit production vectors and tested various Escherichia coli host strains to optimize expression. We report a much-improved system for production of pure, soluble, and active TFIIE complex for in vitro studies.
Collapse
Affiliation(s)
- Woo J Moon
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824-1319, USA
| | | | | | | | | | | |
Collapse
|
11
|
Dvir A, Conaway JW, Conaway RC. Assays for investigating the mechanism of promoter escape by RNA polymerase II. Methods Enzymol 2004; 370:733-40. [PMID: 14712687 DOI: 10.1016/s0076-6879(03)70059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Arik Dvir
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | | | |
Collapse
|
12
|
Kong SE, Shilatifard A, Conaway RC, Conaway JW. Preparation and assay of RNA polymerase II elongation factors elongin and ELL. Methods Enzymol 2004; 371:276-83. [PMID: 14712707 DOI: 10.1016/s0076-6879(03)71020-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Stephanie E Kong
- Stowers Institute Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
Collapse
Affiliation(s)
- Stephen T Smale
- Howard Hughes Medical Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
14
|
Wang X, Spangler L, Dvir A. Promoter escape by RNA polymerase II. Downstream promoter DNA is required during multiple steps of early transcription. J Biol Chem 2003; 278:10250-6. [PMID: 12527757 DOI: 10.1074/jbc.m210848200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence, obtained in a reconstituted RNA polymerase II transcription system, indicated that the promoter escape stage of transcription requires template DNA located downstream of the elongating polymerase. In the absence of downstream DNA, very early elongation complexes are unable to synthesize transcripts longer than approximately 10-14 nucleotides. In contrast, once transcripts longer than approximately 15 nucleotides have been synthesized, an extended region of downstream DNA is no longer required (Dvir, A., Tan, S., Conaway, J. W., and Conaway, R. C. (1997) J. Biol. Chem. 272, 28175-28178). In this work, we sought to define precisely when, during the synthesis of the first 10-15 phosphodiester bonds, downstream DNA is required. We report that, for complete promoter escape, downstream DNA extending to position 40/42 is required. The polymerase can be forced to arrest at several points prior to the completion of promoter escape by removing downstream DNA proximally to positions 40/42. The positions at which the polymerase arrests appear to be determined by the length of available downstream DNA, with arrest occurring at a relatively fixed position of approximately 28 nucleotides to the distal end of the template. A similar requirement is observed for transcription initiation, i.e. the formation of the first phosphodiester bond of nascent transcripts. In addition, we show that the requirement for a downstream region is independent of downstream DNA sequence, suggesting that the requirement reflects a general mechanism. Taken together, our results indicate (i) that downstream DNA is required continuously through the synthesis of the first 14-15 phosphodiester bonds of nascent transcripts, and (ii) that a major conformational change in the transcription complex likely occurs only after the completion of promoter escape.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | | | |
Collapse
|
15
|
Sanders SL, Garbett KA, Weil PA. Molecular characterization of Saccharomyces cerevisiae TFIID. Mol Cell Biol 2002; 22:6000-13. [PMID: 12138208 PMCID: PMC133964 DOI: 10.1128/mcb.22.16.6000-6013.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Revised: 02/27/2002] [Accepted: 05/21/2002] [Indexed: 11/20/2022] Open
Abstract
We previously defined Saccharomyces cerevisiae TFIID as a 15-subunit complex comprised of the TATA binding protein (TBP) and 14 distinct TBP-associated factors (TAFs). In this report we give a detailed biochemical characterization of this general transcription factor. We have shown that yeast TFIID efficiently mediates both basal and activator-dependent transcription in vitro and displays TATA box binding activity that is functionally distinct from that of TBP. Analyses of the stoichiometry of TFIID subunits indicated that several TAFs are present at more than 1 copy per TFIID complex. This conclusion was further supported by coimmunoprecipitation experiments with a systematic family of (pseudo)diploid yeast strains that expressed epitope-tagged and untagged alleles of the genes encoding TFIID subunits. Based on these data, we calculated a native molecular mass for monomeric TFIID. Purified TFIID behaved in a fashion consistent with this calculated molecular mass in both gel filtration and rate-zonal sedimentation experiments. Quite surprisingly, although the TAF subunits of TFIID cofractionated as a single complex, TBP did not comigrate with the TAFs during either gel filtration chromatography or rate-zonal sedimentation, suggesting that TBP has the ability to dynamically associate with the TFIID TAFs. The results of direct biochemical exchange experiments confirmed this hypothesis. Together, our results represent a concise molecular characterization of the general transcription factor TFIID from S. cerevisiae.
Collapse
Affiliation(s)
- Steven L Sanders
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
16
|
Elmendorf BJ, Shilatifard A, Yan Q, Conaway JW, Conaway RC. Transcription factors TFIIF, ELL, and Elongin negatively regulate SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates. J Biol Chem 2001; 276:23109-14. [PMID: 11259417 DOI: 10.1074/jbc.m101445200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIF, ELL, and Elongin belong to a class of RNA polymerase II transcription factors that function similarly to activate the rate of elongation by suppressing transient pausing by polymerase at many sites along DNA templates. SII is a functionally distinct RNA polymerase II elongation factor that promotes elongation by reactivating arrested polymerase. Studies of the mechanism of SII action have shown (i) that arrest of RNA polymerase II results from irreversible displacement of the 3'-end of the nascent transcript from the polymerase catalytic site and (ii) that SII reactivates arrested polymerase by inducing endonucleolytic cleavage of the nascent transcript by the polymerase catalytic site thereby creating a new transcript 3'-end that is properly aligned with the catalytic site and can be extended. SII also induces nascent transcript cleavage by paused but non-arrested RNA polymerase II elongation intermediates, leading to the proposal that pausing may result from reversible displacement of the 3'-end of nascent transcripts from the polymerase catalytic site. On the basis of evidence consistent with the model that TFIIF, ELL, and Elongin suppress pausing by preventing displacement of the 3'-end of the nascent transcript from the polymerase catalytic site, we investigated the possibility of cross-talk between SII and transcription factors TFIIF, ELL, and Elongin. These studies led to the discovery that TFIIF, ELL, and Elongin are all capable of inhibiting SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates. Here we present these findings, which bring to light a novel activity associated with TFIIF, ELL, and Elongin and suggest that these transcription factors may expedite elongation not only by increasing the forward rate of nucleotide addition by RNA polymerase II, but also by inhibiting SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates.
Collapse
Affiliation(s)
- B J Elmendorf
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
17
|
Spangler L, Wang X, Conaway JW, Conaway RC, Dvir A. TFIIH action in transcription initiation and promoter escape requires distinct regions of downstream promoter DNA. Proc Natl Acad Sci U S A 2001; 98:5544-9. [PMID: 11331764 PMCID: PMC33249 DOI: 10.1073/pnas.101004498] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2001] [Indexed: 11/18/2022] Open
Abstract
TFIIH is a multifunctional RNA polymerase II general initiation factor that includes two DNA helicases encoded by the Xeroderma pigmentosum complementation group B (XPB) and D (XPD) genes and a cyclin-dependent protein kinase encoded by the CDK7 gene. Previous studies have shown that the TFIIH XPB DNA helicase plays critical roles not only in transcription initiation, where it catalyzes ATP-dependent formation of the open complex, but also in efficient promoter escape, where it suppresses arrest of very early RNA polymerase II elongation intermediates. In this report, we present evidence that ATP-dependent TFIIH action in transcription initiation and promoter escape requires distinct regions of the DNA template; these regions are well separated from the promoter region unwound by the XPB DNA helicase and extend, respectively, approximately 23-39 and approximately 39-50 bp downstream from the transcriptional start site. Taken together, our findings bring to light a role for promoter DNA in TFIIH action and are consistent with the model that TFIIH translocates along promoter DNA ahead of the RNA polymerase II elongation complex until polymerase has escaped the promoter.
Collapse
Affiliation(s)
- L Spangler
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | | | | | | | | |
Collapse
|
18
|
Yan Q, Moreland RJ, Conaway JW, Conaway RC. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J Biol Chem 1999; 274:35668-75. [PMID: 10585446 DOI: 10.1074/jbc.274.50.35668] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor (TF) IIF is a multifunctional RNA polymerase II transcription factor that has well established roles in both transcription initiation, where it functions as a component of the preinitiation complex and is required for formation of the open complex and synthesis of the first phosphodiester bond of nascent transcripts, and in transcription elongation, where it is capable of interacting directly with the ternary elongation complex and stimulating the rate of transcription. In this report, we present evidence that TFIIF is also required for efficient promoter escape by RNA polymerase II. Our findings argue that TFIIF performs dual roles in this process. We observe (i) that TFIIF suppresses the frequency of abortive transcription by very early RNA polymerase II elongation intermediates by increasing their processivity and (ii) that TFIIF cooperates with TFIIH to prevent premature arrest of early elongation intermediates. In addition, our findings argue that two TFIIF functional domains mediate TFIIF action in promoter escape. First, we observe that a TFIIF mutant selectively lacking elongation activity supports TFIIH action in promoter escape, but is defective in suppressing the frequency of abortive transcription by very early RNA polymerase II elongation intermediates. Second, a TFIIF mutant selectively lacking initiation activity is more active than wild type TFIIF in increasing the processivity of very early elongation intermediates, but is defective in supporting TFIIH action in promoter escape. Taken together, our findings bring to light a function for TFIIF in promoter escape and support a role for TFIIF elongation activity in this process.
Collapse
Affiliation(s)
- Q Yan
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
19
|
Moreland RJ, Tirode F, Yan Q, Conaway JW, Egly JM, Conaway RC. A role for the TFIIH XPB DNA helicase in promoter escape by RNA polymerase II. J Biol Chem 1999; 274:22127-30. [PMID: 10428772 DOI: 10.1074/jbc.274.32.22127] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIH is an RNA polymerase II transcription factor that performs ATP-dependent functions in both transcription initiation, where it catalyzes formation of the open complex, and in promoter escape, where it suppresses arrest of the early elongation complex at promoter-proximal sites. TFIIH possesses three known ATP-dependent activities: a 3' --> 5' DNA helicase catalyzed by its XPB subunit, a 5' --> 3' DNA helicase catalyzed by its XPD subunit, and a carboxyl-terminal domain (CTD) kinase activity catalyzed by its CDK7 subunit. In this report, we exploit TFIIH mutants to investigate the contributions of TFIIH DNA helicase and CTD kinase activities to efficient promoter escape by RNA polymerase II in a minimal transcription system reconstituted with purified polymerase and general initiation factors. Our findings argue that the TFIIH XPB DNA helicase is primarily responsible for preventing premature arrest of early elongation intermediates during exit of polymerase from the promoter.
Collapse
Affiliation(s)
- R J Moreland
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | |
Collapse
|
20
|
Conaway JW, Dvir A, Moreland RJ, Yan Q, Elmendorf BJ, Tan S, Conaway RC. Mechanism of promoter escape by RNA polymerase II. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:357-64. [PMID: 10384300 DOI: 10.1101/sqb.1998.63.357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J W Conaway
- Howard Hughes Medical Institute, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Brower CS, Shilatifard A, Mather T, Kamura T, Takagi Y, Haque D, Treharne A, Foundling SI, Conaway JW, Conaway RC. The elongin B ubiquitin homology domain. Identification of Elongin B sequences important for interaction with Elongin C. J Biol Chem 1999; 274:13629-36. [PMID: 10224134 DOI: 10.1074/jbc.274.19.13629] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mammalian Elongin B is a 118-amino acid protein composed of an 84-amino acid amino-terminal ubiquitin-like domain and a 34-amino acid carboxyl-terminal tail. Elongin B is found in cells as a subunit of the heterodimeric Elongin BC complex, which was originally identified as a positive regulator of RNA polymerase II elongation factor Elongin A and subsequently as a component of the multiprotein von Hippel-Lindau tumor suppressor and suppressor of cytokine signaling complexes. As part of our effort to understand how the Elongin BC complex regulates the activity of Elongin A, we are characterizing Elongin B functional domains. In this report, we show that the Elongin B ubiquitin-like domain is necessary and sufficient for interaction with Elongin C and for positive regulation of Elongin A transcriptional activity. In addition, by site-directed mutagenesis of the Elongin B ubiquitin-like domain, we identify a short Elongin B region that is important for its interaction with Elongin C. Finally, we observe that both the ubiquitin-like domain and carboxyl-terminal tail are conserved in Drosophila melanogaster and Caenorhabditis elegans Elongin B homologs that efficiently substitute for mammalian Elongin B in reconstitution of the transcriptionally active Elongin ABC complex, suggesting that the carboxyl-terminal tail performs an additional function not detected in our assays.
Collapse
Affiliation(s)
- C S Brower
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Moreland RJ, Hanas JS, Conaway JW, Conaway RC. Mechanism of action of RNA polymerase II elongation factor Elongin. Maximal stimulation of elongation requires conversion of the early elongation complex to an Elongin-activable form. J Biol Chem 1998; 273:26610-7. [PMID: 9756900 DOI: 10.1074/jbc.273.41.26610] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified and purified Elongin by its ability to stimulate the rate of elongation by RNA polymerase II in vitro (Bradsher, J. N., Jackson, K. W., Conaway, R. C., and Conaway, J. W. (1993) J. Biol. Chem. 268, 25587-25593). In this report, we present evidence that stimulation of elongation by Elongin requires that the early RNA polymerase II elongation complex undergoes conversion to an Elongin-activable form. We observe (i) that Elongin does not detectably stimulate the rate of promoter-specific transcription initiation by the fully assembled preinitiation complex and (ii) that early RNA polymerase II elongation intermediates first become susceptible to stimulation by Elongin after synthesizing 8-9-nucleotide-long transcripts. Furthermore, we show that the relative inability of Elongin to stimulate elongation by early elongation intermediates correlates not with the lengths of their associated transcripts but, instead, with the presence of transcription factor IIF (TFIIF) in transcription reactions. By exploiting adenovirus 2 major late promoter derivatives that contain premelted transcriptional start sites and do not require TFIIF, TFIIE, or TFIIH for transcription initiation, we observe (i) that Elongin is capable of strongly stimulating the rate of synthesis of trinucleotide transcripts by a subcomplex of RNA polymerase II, TBP, and TFIIB and (ii) that the ability of Elongin to stimulate synthesis of these short transcripts is substantially reduced by addition of TFIIF to transcription reactions. Here we present these findings, which are consistent with the model that maximal stimulation of elongation by Elongin requires that early elongation intermediates undergo a structural transition that includes loss of TFIIF.
Collapse
Affiliation(s)
- R J Moreland
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
23
|
Dvir A, Tan S, Conaway JW, Conaway RC. Promoter escape by RNA polymerase II. Formation of an escape-competent transcriptional intermediate is a prerequisite for exit of polymerase from the promoter. J Biol Chem 1997; 272:28175-8. [PMID: 9353262 DOI: 10.1074/jbc.272.45.28175] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Shortly after initiating promoter-specific transcription in vitro, mammalian RNA polymerase II becomes highly susceptible to arrest in a promoter-proximal region 9-13 base pairs downstream of the transcriptional start site (Dvir, A., Conaway, R. C., and Conaway, J. W. (1996) J. Biol. Chem. 271, 23352-23356). Arrest by polymerase in this region is suppressed by TFIIH in an ATP-dependent reaction (Dvir, A., Conaway, R. C., and Conaway, J. W. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9006-9010). In this report, we present evidence that, in addition to TFIIH and an ATP cofactor, efficient transcription by RNA polymerase II through this promoter-proximal region requires formation of an "escape-competent" transcriptional intermediate. Formation of this intermediate requires template DNA 40-50 base pairs downstream of the transcriptional start site. This requirement for downstream DNA is transient, since template DNA downstream of +40 is dispensable for assembly of the preinitiation complex, for initiation and synthesis of the first 10-12 phosphodiester bonds of nascent transcripts and for further extension of transcripts longer than approximately 14 nucleotides. Thus, promoter escape requires that the RNA polymerase II transcription complex undergoes a critical structural transition, likely driven by interaction of one or more components of the transcriptional machinery with template DNA 40-50 base pairs downstream of the transcriptional start site.
Collapse
Affiliation(s)
- A Dvir
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401, USA
| | | | | | | |
Collapse
|
24
|
Shilatifard A, Haque D, Conaway RC, Conaway JW. Structure and function of RNA polymerase II elongation factor ELL. Identification of two overlapping ELL functional domains that govern its interaction with polymerase and the ternary elongation complex. J Biol Chem 1997; 272:22355-63. [PMID: 9268387 DOI: 10.1074/jbc.272.35.22355] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human ELL gene on chromosome 19p13.1 undergoes frequent translocations with the trithorax-like MLL gene on chromosome 11q23 in acute myeloid leukemia. Recently, the human ELL gene was shown to encode an RNA polymerase II elongation factor that activates elongation by suppressing transient pausing by polymerase at many sites along the DNA. In this report, we identify and characterize two overlapping ELL functional domains that govern its interaction with RNA polymerase II and the ternary elongation complex. Our findings reveal that, in addition to its elongation activation domain, ELL contains a novel type of RNA polymerase II interaction domain that is capable of negatively regulating polymerase activity in promoter-specific transcription initiation in vitro. Notably, the MLL-ELL translocation results in deletion of a portion of this functional domain, and ELL mutants lacking sequences deleted by the translocation bind RNA polymerase II and are fully active in elongation, but fail to inhibit initiation. Taken together, these results raise the possibility that the MLL-ELL translocation could alter ELL-RNA polymerase II interactions that are not involved in regulation of elongation.
Collapse
Affiliation(s)
- A Shilatifard
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
25
|
Dvir A, Conaway RC, Conaway JW. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc Natl Acad Sci U S A 1997; 94:9006-10. [PMID: 9256425 PMCID: PMC23002 DOI: 10.1073/pnas.94.17.9006] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/1997] [Indexed: 02/05/2023] Open
Abstract
TFIIH is a multifunctional RNA polymerase II transcription factor that possesses DNA-dependent ATPase, DNA helicase, and protein kinase activities. Previous studies have established that TFIIH enters the preinitiation complex and fulfills a critical role in initiation by catalyzing ATP-dependent formation of the open complex prior to synthesis of the first phosphodiester bond of nascent transcripts. In this report, we present direct evidence that TFIIH also controls RNA polymerase II activity at a postinitiation stage of transcription, by preventing premature arrest by very early elongation complexes just prior to their transition to stably elongating complexes. Unexpectedly, we observe that TFIIH is capable of entering the transcription cycle not only during assembly of the preinitiation complex but also after initiation and synthesis of as many as four to six phosphodiester bonds. These findings shed new light on the role of TFIIH in initiation and promoter escape and reveal an unanticipated flexibility in the ability of TFIIH to interact with RNA polymerase II transcription intermediates prior to, during, and immediately after initiation.
Collapse
Affiliation(s)
- A Dvir
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
26
|
Tanese N. Small-scale density gradient sedimentation to separate and analyze multiprotein complexes. Methods 1997; 12:224-34. [PMID: 9237167 DOI: 10.1006/meth.1997.0475] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription factor TFIID is a multisubunit complex that is required for promoter recognition and accurate initiation of transcription by RNA polymerase II. To dissect the molecular architecture and the biochemical properties of TFIID, a small-scale density gradient sedimentation method is employed to separate related complexes through differences in their sedimentation properties. A small amount of starting material is sufficient to obtain readily assayable amounts of separated proteins after centrifugation for 8 to 12 h in a benchtop ultracentrifuge. Gradient fractions are analyzed by immunoblotting for the presence of specific components of TFIID. Sucrose gradient sedimentation is performed to separate a mixture of multiprotein complexes from a crude nuclear extract immunoprecipitation of the proteins present in each fraction with an anti-TBP antibody reveals multiple TBP-containing complexes of different sizes. Density gradient sedimentation permits separation of specific components in a complex mixture and preserves activity, allowing functional assays.
Collapse
Affiliation(s)
- N Tanese
- Department of Microbiology, New York University Medical Center, New York 10016, USA.
| |
Collapse
|
27
|
Conaway RC, Conaway JW. General transcription factors for RNA polymerase II. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:327-46. [PMID: 9187058 DOI: 10.1016/s0079-6603(08)61009-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R C Conaway
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
28
|
Takagi Y, Conaway RC, Conaway JW. Characterization of elongin C functional domains required for interaction with elongin B and activation of elongin A. J Biol Chem 1996; 271:25562-8. [PMID: 8810329 DOI: 10.1074/jbc.271.41.25562] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Elongin (SIII) complex stimulates the rate of elongation by RNA polymerase II by suppressing transient pausing by polymerase at many sites along DNA templates. The Elongin (SIII) complex is composed of a transcriptionally active A subunit, a chaperone-like B subunit, which promotes assembly and enhances stability of the Elongin (SIII) complex, and a regulatory C subunit, which (i) functions as a potent activator of Elongin A transcriptional activity, (ii) interacts specifically with Elongin B to form an isolable Elongin BC complex, and (iii) is bound and negatively regulated in vitro by the product of the von Hippel-Lindau tumor suppressor gene. As part of our effort to understand how Elongin C regulates the activity of the Elongin (SIII) complex, we are characterizing Elongin C functional domains. In this report, we identify Elongin C mutants that fall into multiple functional classes based on their abilities to bind Elongin B and to bind and activate Elongin A under our assay conditions. Characterization of these mutants suggests that Elongin C is composed of multiple overlapping regions that mediate functional interactions with Elongin A and B.
Collapse
Affiliation(s)
- Y Takagi
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
29
|
Dvir A, Conaway RC, Conaway JW. Promoter escape by RNA polymerase II. A role for an ATP cofactor in suppression of arrest by polymerase at promoter-proximal sites. J Biol Chem 1996; 271:23352-6. [PMID: 8798537 DOI: 10.1074/jbc.271.38.23352] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It is well established that TFIIH-dependent transcription by RNA polymerase II requires a hydrolyzable ATP cofactor for synthesis of the first phosphodiester bond of nascent transcripts. Whether an ATP cofactor is also required after initiation for escape of RNA polymerase II from the promoter has, however, been controversial. We have now addressed this question directly by investigating the ability of RNA polymerase II transcription complexes containing short, approximately 5-8-nucleotide transcripts synthesized in the presence of limiting nucleotides to escape the promoter in the absence of an ATP cofactor in a basal transcription system reconstituted with purified RNA polymerase II and general initiation factors. Depletion of ATP had a profound effect on the ability of initiated complexes to progress into the elongation phase: whereas in the presence of ATP, the majority of transcription complexes could be chased away from the promoter-proximal region, most complexes deprived of ATP catalyzed synthesis of only a few phosphodiester bonds and then ceased elongation after synthesizing transcripts less than 10-14 nucleotides in length. A significant fraction of these transcripts could be extended following addition of ATP, indicating that they were contained in arrested, but potentially active elongation complexes. Like the ATP-requiring step in initiation, ATP-dependent suppression of arrest by RNA polymerase II at promoter-proximal sites is inhibited by adenosine 5'-O-(thio)triphosphate. Transcription complexes containing transcripts longer than 9-10 nucleotides are insensitive to inhibition by ATPgammaS, indicating that susceptibility to ATP-sensitive arrest is a property of very early elongation complexes. Taken together, our findings reveal a novel role for an ATP cofactor in transcription by RNA polymerase II.
Collapse
Affiliation(s)
- A Dvir
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
30
|
Kaufmann J, Verrijzer CP, Shao J, Smale ST. CIF, an essential cofactor for TFIID-dependent initiator function. Genes Dev 1996; 10:873-86. [PMID: 8846923 DOI: 10.1101/gad.10.7.873] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The core promoters for mammalian protein-coding genes often contain a TATA box, an initiator (Inr) element, or both of these control elements. The TFIID complex is essential both for TATA activity and for the activity of a common class of Inr elements characterized by an approximate consensus sequence PyPyA+1NT/APyPy. Although the complete set of proteins required for basal TATA-mediated transcription has been established, the requirements for TFIID-dependent Inr activity remain undefined. In this study we set out to reconstitute Inr activity with purified and recombinant general transcription factors. For this analysis, Inr activity was measured as the ability of an Inr to enhance the strength of a core promoter containing an upstream TATA box. Inr activity was not detected in reactions containing TFIIB, RAP30, RAP74, RNA polymerase II, and either TBP or TFIID, even though these factors were sufficient for TATA-mediated transcription from supercoiled templates. By use of a complementation assay, a factor that imparts Inr activity was identified. This factor, named CIF, stimulated Inr activity in reactions containing the TFIID complex, but activity was not detected with TBP. Further characterization of CIF suggested that it contains multiple components. Functional and immunological experiments demonstrated that one of the CIF components is the mammalian homolog of Drosophila TAF(II)150, which is not tightly associated with mammalian TFIID. These results reveal significant differences in the factor requirements for basal TATA and Inr activity. Further elucidation of these differences is likely to explain the need for the core promoter heterogeneity found within protein-coding genes.
Collapse
Affiliation(s)
- J Kaufmann
- Howard Hughes Medical Institute, University of California, Los Angeles School of Medicine 90095-1662, USA
| | | | | | | |
Collapse
|
31
|
Dvir A, Garrett KP, Chalut C, Egly JM, Conaway JW, Conaway RC. A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation. J Biol Chem 1996; 271:7245-8. [PMID: 8631733 DOI: 10.1074/jbc.271.13.7245] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A requirement for an ATP cofactor in synthesis of the first 8-10 bonds of promoter-specific transcripts by RNA polymerase II is well established. Whether ATP is required for synthesis of the first phosphodiester bond or at a slightly later stage in synthesis of nascent transcripts, however, remains controversial. Goodrich and Tjian (Goodrich, J.A., and Tjian, R. (1994) Cell 77, 145-156) recently proposed that synthesis of the first phosphodiester bond of promoter-specific transcripts by RNA polymerase II is independent of ATP and general transcription factors TFIIE and TFIIH. Here we investigate this model. Taken together, our findings indicate that ATP, TFIIE, and TFIIH can have a profound effect on the efficiency of transcription initiation. First, we observe that synthesis of the first phosphodiester bond of transcripts initiated at the adenovirus 2 major late promoter depends strongly on ATP, TFIIE, and TFIIH in a transcription system reconstituted with RNA polymerase II, TFIIH, and recombinant TBP, TFIIB, TFIIE, and TFIIF. Second, we demonstrate that, in this enzyme system, ATP-dependent activation of transcription initiation can occur immediately prior to synthesis of the first phosphodiester bond of nascent transcripts. Finally, we demonstrate that the activated initiation complex is unstable and decays rapidly to an inactive state in the presence of the inhibitor ATP-gammaS (adenosine 5'-O-(thio)triphosphate), even during reiterative synthesis of abortive transcripts.
Collapse
Affiliation(s)
- A Dvir
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, 73104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pause A, Aso T, Linehan WM, Conaway JW, Conaway RC, Klausner RD. Interaction of von Hippel-Lindau tumor suppressor gene product with elongin. Methods Enzymol 1996; 274:436-41. [PMID: 8902823 DOI: 10.1016/s0076-6879(96)74035-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Pause
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
33
|
Conaway RC, Reines D, Garrett KP, Powell W, Conaway JW. Purification of RNA polymerase II general transcription factors from rat liver. Methods Enzymol 1996; 273:194-207. [PMID: 8791613 PMCID: PMC3618461 DOI: 10.1016/s0076-6879(96)73020-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eukaryotic messenger RNA synthesis is a complex biochemical process requiring the concerted action of multiple “general” transcription factors (TFs) that control the activity of RNA polymerase II at both the initiation1 and elongation2,3 stages of transcription. Because the general transcription factors are present at low levels in mammalian cells, their purification is a formidable undertaking. For this reason we explored the feasibility of using rat liver as a source for purification of the general factors. Rat liver has proven to be an ideal model system for biochemical studies of transcription initiation and elongation by RNA polymerase II (Figs. 1 and 2). In our hands the yield of general transcription factors per gram of rat liver is roughly equivalent to their yield per gram of cultured HeLa cells. Moreover, we have been able to develop convenient and reproducible methods for preparation of rat liver extracts from as much as 1 kg of liver per day. Because it is both technically difficult and expensive to obtain such quantities of cultured cells on a daily basis, rat liver provides a significant logistic advantage for purification of the general transcription factors.
Collapse
Affiliation(s)
- R C Conaway
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | | | |
Collapse
|
34
|
Takagi Y, Conaway JW, Conaway RC. A novel activity associated with RNA polymerase II elongation factor SIII. SIII directs promoter-independent transcription initiation by RNA polymerase II in the absence of initiation factors. J Biol Chem 1995; 270:24300-5. [PMID: 7592640 DOI: 10.1074/jbc.270.41.24300] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
General transcription factor SIII, a heterotrimer of 110-, 18-, and 15-kDa subunits, was shown previously to stimulate the overall rate of RNA chain elongation by RNA polymerase II by suppressing transient pausing by polymerase at many sites along DNA templates (Bradsher, J. N., Jackson, K. W., Conaway, R. C., and Conaway, J. W. (1993) J. Biol. Chem. 268, 25587-25593). In this report, SIII is shown to possesses the novel ability to direct robust but promiscuous transcription by RNA polymerase II on duplex DNA templates in the absence of initiation factors. Mechanistic studies reveal that SIII promotes RNA synthesis by substantially increasing the efficiency with which RNA polymerase II initiates promoter-independent transcription from the ends of duplex DNA. Remarkably, SIII appears to have a negligible effect on de novo synthesis of end-to-end transcripts. Instead, analysis of reaction products indicates that SIII is capable of promoting a dramatic increase in the ability of RNA polymerase II to extend the 3'-hydroxyl termini of duplex DNA fragments, in a template-directed reaction exhibiting no strong preference for 3'-protruding, 3'-recessed, or blunt DNA ends. Although RNA polymerase II has been shown previously to catalyze primer-dependent transcription, SIII is the first eukaryotic transcription factor found to promote this reaction. Based on these findings, we propose that SIII may suppress transient pausing by RNA polymerase II by helping to maintain the 3'-hydroxyl terminus of the nascent RNA chain in its proper position in the polymerase active site.
Collapse
Affiliation(s)
- Y Takagi
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | |
Collapse
|
35
|
Kwon H, Green MR. The RNA polymerase I transcription factor, upstream binding factor, interacts directly with the TATA box-binding protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43788-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Role of core promoter structure in assembly of the RNA polymerase II preinitiation complex. A common pathway for formation of preinitiation intermediates at many TATA and TATA-less promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47233-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
37
|
An oligomeric form of the large subunit of transcription factor (TF) IIE activates phosphorylation of the RNA polymerase II carboxyl-terminal domain by TFIIH. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32056-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Kaufmann J, Smale ST. Direct recognition of initiator elements by a component of the transcription factor IID complex. Genes Dev 1994; 8:821-9. [PMID: 7926770 DOI: 10.1101/gad.8.7.821] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A core promoter element called an initiator (Inr) overlaps the transcription start site of numerous mammalian protein-coding genes. In promoters that lack a TATA box, the Inr is functionally analogous to TATA, in that it is capable of directing basal transcription by RNA polymerase II and of determining the precise site of transcription initiation. In promoters that contain a TATA box, the Inr can greatly enhance promoter strength. Mammalian Inr consensus sequences have been defined through functional studies and sequence comparisons of the start site regions of protein-coding genes. Here, we show that, in a DNase I footprinting assay with synthetic promoters, the purified TATA-binding protein complex TFIID specifically contacted the Inr. The TFIID-Inr interaction relies on the precise nucleotides needed for Inr function. Detection of the interaction was dependent either on a TATA box or on Sp1 bound to upstream sites. Furthermore, recombinant TFIIB appeared to influence the TFIID-Inr interaction, whereas TFIIA stabilized the TFIID-TATA interaction. These results demonstrate that distinct components of TFIID interact with the TATA boxes and Inr elements of core promoters for RNA polymerase II.
Collapse
Affiliation(s)
- J Kaufmann
- Howard Hughes Medical Institute, University of California, Los Angeles School of Medicine 90024-1662
| | | |
Collapse
|
39
|
Bradsher JN, Jackson KW, Conaway RC, Conaway JW. RNA polymerase II transcription factor SIII. I. Identification, purification, and properties. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74431-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Bradsher JN, Tan S, McLaury HJ, Conaway JW, Conaway RC. RNA polymerase II transcription factor SIII. II. Functional properties and role in RNA chain elongation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74432-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Abstract
Molecular matchmakers are a class of proteins that use the energy released from the hydrolysis of adenosine triphosphate to cause a conformational change in one or both components of a DNA binding protein pair to promote formation of a metastable DNA-protein complex. After matchmaking the matchmaker dissociates from the complex, permitting the matched protein to engage in other protein-protein interactions to bring about the effector function. Matchmaking is most commonly used under circumstances that require targeted, high-avidity DNA binding without relying solely on sequence specificity. Molecular matchmaking is an extensively used mechanism in repair, replication, and transcription and most likely in recombination and transposition reactions, too.
Collapse
Affiliation(s)
- A Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
42
|
Zawel L, Reinberg D. Initiation of transcription by RNA polymerase II: a multi-step process. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 44:67-108. [PMID: 8434126 DOI: 10.1016/s0079-6603(08)60217-2] [Citation(s) in RCA: 287] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- L Zawel
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | |
Collapse
|
43
|
Lobo SM, Tanaka M, Sullivan ML, Hernandez N. A TBP complex essential for transcription from TATA-less but not TATA-containing RNA polymerase III promoters is part of the TFIIIB fraction. Cell 1992; 71:1029-40. [PMID: 1458534 DOI: 10.1016/0092-8674(92)90397-u] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The TATA box-binding protein TBP directs transcription by all three eukaryotic RNA polymerases. In mammalian cells, TBP is found in at least three different complexes: SL1, D-TFIID, and B-TFIID. While SL1 and D-TFIID are involved in RNA polymerase I and II transcription, respectively, no unique function has been assigned to the B-TFIID complex. Here we show that the TFIIIB fraction required for RNA polymerase III transcription contains two separable components, one of which is a TBP-containing complex that may correspond to B-TFIID. For transcription of TATA-less RNA polymerase III genes such as the VAI, 5S, and 7SL genes, this complex cannot be replaced by either TBP alone or the D-TFIID complex. In contrast, TBP alone is active for basal transcription from the TATA-containing U6 promoter. This indicates different requirements for recruiting TBP to TATA-less and TATA-containing RNA polymerase III promoters.
Collapse
Affiliation(s)
- S M Lobo
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
44
|
Chen H, Flint S. Mutational analysis of the adenovirus 2 IVa2 initiator and downstream elements. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74063-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Purification and properties of Saccharomyces cerevisiae RNA polymerase II general initiation factor a. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50102-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
Garrett K, Serizawa H, Hanley J, Bradsher J, Tsuboi A, Arai N, Yokota T, Arai K, Conaway R, Conaway J. The carboxyl terminus of RAP30 is similar in sequence to region 4 of bacterial sigma factors and is required for function. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35928-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Henry N, Sayre M, Kornberg R. Purification and characterization of yeast RNA polymerase II general initiation factor g. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50103-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
48
|
Zhou Q, Lieberman PM, Boyer TG, Berk AJ. Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev 1992; 6:1964-74. [PMID: 1398073 DOI: 10.1101/gad.6.10.1964] [Citation(s) in RCA: 334] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Transcription factor IID (TFIID) binds to TATA boxes, nucleating the assembly of initiation complexes containing several general transcription factors and RNA polymerase II. Recently, TFIID was shown to be a multisubunit complex containing a TATA box-binding polypeptide (TBP) and several tightly associated polypeptides (TAFs), which are required for transcriptional stimulation by activator proteins. Here, we report the development of a human cell line expressing an epitope-tagged TBP and the immunopurification of a native, high-molecular-weight form of TFIID that supports transcriptional stimulation by several different classes of activation domains. Recovery of basal and activated TFIID transcriptional specific activity was close to approximately 100%. Electrophoretic mobility-shift analysis demonstrated a single major DNA-protein complex. This holo-TFIID contains TAFs of approximately 250, 125, 95, 78, and 50 kD and sediments at 17S. Holo-TFIID produced an extended footprint over the adenovirus major late promoter TATA box and initiator sequence and supported transcriptional activation from a promoter lacking a TATA box. These results lead us to hypothesize that a single multisubunit TFIID protein supports transcriptional stimulation by diverse activation domains and from a TATA-less promoter.
Collapse
Affiliation(s)
- Q Zhou
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024-1570
| | | | | | | |
Collapse
|
49
|
Mechanism of assembly of the RNA polymerase II preinitiation complex. Transcription factors delta and epsilon promote stable binding of the transcription apparatus to the initiator element. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50211-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Conaway R, Bradsher J, Conaway J. Mechanism of assembly of the RNA polymerase II preinitiation complex. Evidence for a functional interaction between the carboxyl-terminal domain of the largest subunit of RNA polymerase II and a high molecular mass form of the TATA factor. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42467-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|