1
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
2
|
Poole CF. Gas chromatography system constant database for 52 wall-coated, open-tubular columns covering the temperature range 60–140 °C. J Chromatogr A 2019; 1604:460482. [DOI: 10.1016/j.chroma.2019.460482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
3
|
Poole CF. Gas chromatography system constant database over an extended temperature range for nine open-tubular columns. J Chromatogr A 2019; 1590:130-145. [DOI: 10.1016/j.chroma.2019.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/07/2018] [Accepted: 01/10/2019] [Indexed: 11/25/2022]
|
4
|
Capillary Gas Chromatographic Separation of Carboxylic Acids Using an Acidic Water Stationary Phase. Chromatographia 2017. [DOI: 10.1007/s10337-017-3333-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Darko E, Thurbide KB. Capillary gas chromatographic separation of organic bases using a pH-adjusted basic water stationary phase. J Chromatogr A 2016; 1465:184-9. [DOI: 10.1016/j.chroma.2016.08.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
|
6
|
Nolvachai Y, Kulsing C, Marriott PJ. In Silico Modeling of Hundred Thousand Experiments for Effective Selection of Ionic Liquid Phase Combinations in Comprehensive Two-Dimensional Gas Chromatography. Anal Chem 2016; 88:2125-31. [DOI: 10.1021/acs.analchem.5b03688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yada Nolvachai
- Australian Centre for Research
on Separation Science, School of Chemistry, Monash University, Wellington
Road, Clayton, Victoria 3800, Australia
| | - Chadin Kulsing
- Australian Centre for Research
on Separation Science, School of Chemistry, Monash University, Wellington
Road, Clayton, Victoria 3800, Australia
| | - Philip J. Marriott
- Australian Centre for Research
on Separation Science, School of Chemistry, Monash University, Wellington
Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Coyle S, Glaser R. Asymmetric Imine N-Inversion in 3-Methyl-4-pyrimidinimine. Molecular Dipole Analysis of Solvation Effects. J Org Chem 2011; 76:3987-96. [DOI: 10.1021/jo200411f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stephanie Coyle
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Rainer Glaser
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
8
|
Castello G, Moretti P, Vezzani S. Retention models for programmed gas chromatography. J Chromatogr A 2009; 1216:1607-23. [DOI: 10.1016/j.chroma.2008.11.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/17/2008] [Accepted: 11/19/2008] [Indexed: 11/29/2022]
|
9
|
Poole CF, Poole SK. Separation characteristics of wall-coated open-tubular columns for gas chromatography. J Chromatogr A 2008; 1184:254-80. [PMID: 17678934 DOI: 10.1016/j.chroma.2007.07.028] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/01/2007] [Accepted: 07/13/2007] [Indexed: 10/23/2022]
Abstract
The application of the solvation parameter model for the classification of wall-coated open-tubular columns for gas chromatography is reviewed. A system constants database for 50 wall-coated open-tubular columns at five equally spaced temperatures between 60 and 140 degrees C is constructed and statistical and chemometric techniques used to identify stationary phases with equivalent selectivity, the effect of monomer chemistry on selectivity, and the selection of stationary phases for method development. The system constants database contains examples of virtually all commercially available common stationary phases.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
10
|
Kiridena W, Qian J, Koziol WW, Poole CF. Evaluation of the separation characteristics of application-specific (fatty acid methyl esters) open-tubular columns for gas chromatography. J Sep Sci 2007; 30:740-5. [PMID: 17461115 DOI: 10.1002/jssc.200600453] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The solvation parameter model is used to characterize the separation properties of the polar stationary phases EC-Wax and PAG with a poly(ethylene oxide) backbone (substituted with propylene oxide in the case of PAG) and the cyanopropyl-substituted polysilphenylene-siloxane stationary phase BPX90 at five equally spaced temperatures between 60 and 140 degrees C. The separation characteristics of these stationary phases are compared to four PEG and two poly(cyanopropylsiloxane) stationary phases (HP-20M, HP-Innowax, SolGel-Wax, DB-WAXetr, HP-88, and SP-2340) characterized in the same way. The database of system constants for these polar stationary phases is used to provide insight into the separation mechanism for fatty acid methyl esters and to determine selectivity differences that can be expected for generically similar stationary phase types. The discussion is not structured to indicate which stationary phase should be used for a particular separation but to provide a general framework to demonstrate the relationship between the retention mechanism and stationary phase chemistry.
Collapse
Affiliation(s)
- Waruna Kiridena
- Flint Group, North America, Analytical and Physical Sciences Laboratory, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
11
|
Poole CF, Qian J, Kiridena W, Dekay C, Koziol WW. Evaluation of the separation characteristics of application-specific (volatile organic compounds) open-tubular columns for gas chromatography. J Chromatogr A 2006; 1134:284-90. [PMID: 16996069 DOI: 10.1016/j.chroma.2006.08.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/25/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
The solvation parameter model is used to characterize the separation characteristics of two application-specific open-tubular columns (Rtx-Volatiles and Rtx-VGC) and a general purpose column for the separation of volatile organic compounds (DB-WAXetr) at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and retention factor correlation plots are then used to determine selectivity differences between the above columns and their closest neighbors in a large database of system constants and retention factors for forty-four open-tubular columns. The Rtx-Volatiles column is shown to have separation characteristics predicted for a poly(dimethyldiphenylsiloxane) stationary phase containing about 16% diphenylsiloxane monomer. The Rtx-VGC column has separation properties similar to the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 14% cyanopropylphenylsiloxane monomer DB-1701 for non-polar and dipolar/polarizable compounds but significantly different characteristics for the separation of hydrogen-bond acids. For all practical purposes the DB-WAXetr column is shown to be selectivity equivalent to poly(ethylene glycol) columns prepared using different chemistries for bonding and immobilizing the stationary phase. Principal component analysis and cluster analysis are then used to classify the system constants for the above columns and a sub-database of eleven open-tubular columns (DB-1, HP-5, DB-VRX, Rtx-20, DB-35, Rtx-50, Rtx-65, DB-1301, DB-1701, DB-200, and DB-624) commonly used for the separation of volatile organic compounds. A rationale basis for column selection based on differences in intermolecular interactions is presented as an aid to method development for the separation of volatile organic compounds.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
12
|
Kiridena W, DeKay C, Patchett CC, Koziol WW, Qian J, Poole CF. Evaluation of the separation characteristics of application-specific (pesticides and dioxins) open-tubular columns for gas chromatography. J Chromatogr A 2006; 1128:228-35. [PMID: 16837002 DOI: 10.1016/j.chroma.2006.06.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/09/2006] [Accepted: 06/14/2006] [Indexed: 11/21/2022]
Abstract
The solvation parameter model is used to characterize the retention properties of four application-specific open-tubular columns (Rtx-CLPesticides, Rtx-OPPesticides, Rtx-Dioxin and Rtx-Dioxin2) at five equally spaced temperatures over the range 60-140 degrees C. Cluster analysis is used to compare the system constants to a database of forty open-tubular columns characterized according to the same method. System constants differences and retention factor correlation plots are then used to determine selectivity differences between the application-specific columns and their nearest neighbors identified by cluster analysis. The Rtx-CLPesticides and Rtx-OPPesticides columns are shown to belong to the selectivity group containing poly(dimethylmethyltrifluoroprpylsiloxane) stationary phases with Rtx-OPPesticides having a similar selectivity to a poly(dimethylmethyltrifluoropropylsiloxane) stationary phase containing 20% methyltrifluoropropylsiloxane monomer (DB-200) and Rtx-CLPesticides separation properties for a stationary phase containing less than 20% methyltrifluoropropylsiloxane monomer. The Rtx-Dioxin and Rtx-Dioxin2 columns are located in the selectivity group dominated by the poly(dimethyldiphenylsiloxane) stationary phases containing less than 20% diphenylsiloxane monomer. The Rtx-Dioxin and Rtx-Dioxin2 columns are shown to be selectivity equivalent to a (5% phenyl) carborane-siloxane copolymer stationary phase (Stx-500) and a second generation silarylene-siloxane copolymer stationary phase containing dimethylsiloxane and diphenylsiloxane monomers (DB-XLB), respectively.
Collapse
Affiliation(s)
- Waruna Kiridena
- Flint Group, North America, Analytical & Physical Sciences Laboratory, 4600 Arrowhead Drive, Ann Arbor, MI 48105, USA
| | | | | | | | | | | |
Collapse
|
13
|
Niederer C, Goss KU, Schwarzenbach RP. Sorption equilibrium of a wide spectrum of organic vapors in Leonardite humic acid: modeling of experimental data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:5374-9. [PMID: 16999113 DOI: 10.1021/es0602952] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In a recent publication we presented experimental Leonardite humic acid/air partition coefficients for 188 polar and nonpolar organic compounds measured with one consistent method. In this paper these experimental data are evaluated with various model predictions. For the PcKocWIN model some major shortcomings become apparent. The octanol-based Karickhoff-model exhibits a good performance for the nonpolar compounds but not for the polar ones. A good description of the whole data set is achieved with a polyparameter linear free energy relationship (pp-LFER) that explicitly accounts for the nonpolar (van der Waals and cavity formation) and polar (electron donor/acceptor) interactions between the sorbate molecule and the sorbent phase. With this pp-LFER model, most of the humic acid/air partition coefficients could be predicted within a factor of 2. The pp-LFER model also successfully predicts organic-C/water partition coefficients (K(ioc)) collected from the literature when it is combined with a pp-LFER for air/water partition coefficients. This supports our earlier conclusion that the thermodynamic cycle is applicable in the humic acid/water/air system. Based on our experimental data, we present a pp-LFER-model for humic acid/air and humic acid/water partitioning at any ambient temperatures.
Collapse
Affiliation(s)
- Christian Niederer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH-Zurich, Universitätsstrasse 16, CH-8092 Zurich, Switzerland.
| | | | | |
Collapse
|
14
|
Goss KU. Prediction of the temperature dependency of Henry's law constant using poly-parameter linear free energy relationships. CHEMOSPHERE 2006; 64:1369-74. [PMID: 16466767 DOI: 10.1016/j.chemosphere.2005.12.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 12/13/2005] [Accepted: 12/19/2005] [Indexed: 05/06/2023]
Abstract
The ability to predict the temperature dependence of air/water partitioning is important for the environmental fate modeling of organic pollutants. Here, literature data for the temperature dependence of air/water partitioning of some 200 compounds have been used to derive poly-parameter linear free energy relationships (pp-LFER) for predicting air/water partition coefficients at temperatures between 0 and 45 degrees C. The compounds used for calibrating the pp-LFERs span a range of almost 10 orders of magnitude in the partition constants and they cover a large variety of functional groups. Very good fits (r(2)>0.99) were obtained at all temperatures. Hence, these pp-LFERs should serve as a valuable tool for integrating the temperature dependence of air/water partitioning into fate modeling of organic compounds. In the environment one will quite often encounter a situation where water and air do not have the same temperatures. This situation is shortly discussed in the appendix.
Collapse
Affiliation(s)
- Kai-Uwe Goss
- Department of Environmental Sciences, Swiss Federal Institute of Technology, ETH, Universitätsstr. 16, 8092 Zürich, Switzerland.
| |
Collapse
|
15
|
Tello AM, Lebrón-Aguilar R, Quintanilla-López JE, Pérez-Parajón JM, Santiuste JM. Application of the solvation parameter model to poly(methylcyanopropylsiloxane) stationary phases. J Chromatogr A 2006; 1122:230-41. [PMID: 16701680 DOI: 10.1016/j.chroma.2006.04.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/17/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
The solvation parameter model has been applied to the specific retention volumes of 65 solutes of varied polarity on glass capillary columns coated with commercial and synthesized poly(methylcyanopropyl)siloxanes (CNPXX) with eight different percentages of cyanopropyl group (CNP). Their system constants were determined at 75, 90, 105 and 120 degrees C. The polymers examined do not either show any acidity (b = 0) or interact with solute pi/n electrons (e = 0); the prominent constants, dipolarity/polarizability and hydrogen-bond basicity, are of the same order (s approximately a), and the cavity formation/dispersive forces have normal values. Constants s, l and a decrease linearly with temperature for each cyanopropyl percentage. At each temperature, the constants s and a increase with polarity of polymer according to a curve, while the constant l decreases slightly. Cluster analysis shows that six CNPXX with medium to high cyanopropyl substitution integrate into a group with other high-polarity cyano-containing stationary phases taken from the literature, while the other three CNPXX with low CNP percentage form a group with other low-polarity stationary phases of different chemical nature. These clusters are supported by the dendrogram of 52 stationary phases made with the nine polymers presented here and other 43 taken from the literature.
Collapse
Affiliation(s)
- A M Tello
- Department of Molecular Structure and Dynamics, Institute of Physical Chemistry Rocasolano (CSIC), Serrano 119, 28006-Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Poole CF, Ahmed H, Kiridena W, Patchett CC, Koziol WW. Revised solute descriptors for characterizing retention properties of open-tubular columns in gas chromatography and their application to a carborane–siloxane copolymer stationary phase. J Chromatogr A 2006; 1104:299-312. [PMID: 16343516 DOI: 10.1016/j.chroma.2005.11.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/15/2005] [Accepted: 11/18/2005] [Indexed: 11/21/2022]
Abstract
An iteration procedure is used to calculate revised solute descriptors for 103 varied compounds suitable for characterizing the retention properties of stationary phases for gas chromatography using the solvation parameter model. The iteration procedure utilizes a database of retention factors obtained on up to 39 open-tubular columns and up to five temperatures in the range 60-140 degrees C for the 103 solutes. The average of the standard deviation [Sigma(logk(exp)-logk(calc))(2)/(n(c)-1)](0.5) where logk(exp) is the experimental retention factor, logk(calc) the model predicted retention factor, and n(c) the total number of retention factors) on all columns is 0.018 for the revised solute descriptors compared with 0.045 for the original values. When used to characterize the retention properties of six open-tubular columns selected to represent different selectivity groups the revised solute descriptors afford improved values for the multiple correlation coefficient and standard deviations of the system constants, and about a three-fold improvement in the standard error of the estimate compared with the original solute descriptors. The revised solute descriptors were used to model retention on the carborane-siloxane copolymer stationary phase Stx-500. This phase has low cohesion, is weakly electron lone pair repulsive, weakly dipolar/polarizable, and weakly hydrogen-bond basic. It has no hydrogen-bond acidity. Its separation properties are similar to those of the poly(diphenyldimethylsiloxane) stationary phases containing 5% diphenylsiloxane monomer, but it is not selectivity equivalent to these phases, being more dipolar/polarizable and a weaker hydrogen-bond base.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
17
|
Kiridena W, Patchett CC, Koziol WW, Ahmed H, Poole CF. Separation characteristics of phenyl-containing stationary phases for gas chromatography based on silarylene-siloxane copolymer chemistries. J Sep Sci 2006; 29:211-7. [PMID: 16524094 DOI: 10.1002/jssc.200500274] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The solvation parameter model is used to characterize the retention properties of five open-tubular column stationary phases (ZB-5 ms, DB-5 ms, DB-XLB, DB-17 ms, and DB-35 ms) based on silarylene-siloxane copolymer chemistries at five equally spaced temperatures over the range 60-140 degrees C. System constant differences and regression models for varied compounds are used to establish the selectivity equivalence of the silarylene-siloxane copolymer stationary phases and to compare their separation characteristics with poly(dimethyldiphenylsiloxane) stationary phases containing a nominally similar concentration of phenyl groups. These studies demonstrate that ZB-5 ms and DB-5 ms are selectivity equivalent. DB-XLB is significantly more dipolar and polarizable than DB-5 ms. In general terms, the silarylenesiloxane copolymer stationary phases are slightly less cohesive and more dipolar and polarizable with similar hydrogen-bond basicity to the poly(dimethyldiphenylsiloxane) stationary phases they were designed to replace. None of the silarylenesiloxane copolymer or poly(dimethyldiphenylsiloxane) stationary phases are hydrogen-bond acidic. Selectivity differences between the two types of stationary phase are temperature dependent and tend to be smaller at higher temperatures within the temperature range studied. Consequently, selectivity differences cannot be globalized without reference to the temperature for the comparison.
Collapse
Affiliation(s)
- Waruna Kiridena
- Flint Ink Corporation, Analytical Division, Ann Arbor, Ml 48105, USA
| | | | | | | | | |
Collapse
|
18
|
Lebrón-Aguilar R, Quintanilla-López JE, Tello AM, Pérez-Parajón JM, Santiuste JM. System constants of synthesized poly(methyl-3,3,3-trifluoropropyl) siloxanes. J Chromatogr A 2005; 1100:208-17. [PMID: 16236288 DOI: 10.1016/j.chroma.2005.09.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
The method of solvation model has been applied to five poly (methyl-trifluoropropyl) siloxanes (TFPSXX) prepared in our laboratories, at five trifluoropropyl (TFP) group contents, XX = 0, 11.5, 26.3, 35.5 and 50.0%, at 80, 100, 120 and 140 degrees C. Previously, specific retention volumes of 60-odd solutes of varied polarities were measured upon each of these stationary phases within the above temperature range. Constant s prevails over all other constants, TFPSXX stationary phases showing strong dipole/induced dipole forces with the solutes, moderate acidity and no basicity at all. Constant e is zero in the stationary phase without TFP groups, but has negative low-medium values for the other fluorine contents, XX from 11.5 to 50.0%, hinting at repulsive forces, as expected. Normal values for constant l, decreasing from the less cohesive TFPS00 to the more cohesive TFPS50, were found. For each TFP content constants s, a and l show a negative temperature dependence, while constant e increases as temperature increases. Constant c also decreases with increasing temperature. At each temperature, constants s and a increase with increasing %TFP (or increasing stationary phase polarity), whereas constants e and l show the opposite trend, diminishing with increasing polarity of the stationary phase. Principal component analysis shows that the five stationary phases presented in this work conform a group with other earlier synthesized trifluoropropyl siloxanes and other fluorinated stationary phases taken from literature: VB-210, QF-1, DB-200, DB-210 and PFS6, showing the same selectivity which only the fluorine atom confers. A dendrogram of 38 stationary phases supports these results.
Collapse
Affiliation(s)
- R Lebrón-Aguilar
- Institute of Physical Chemistry Rocasolano, Department of Molecular Structure and Dynamics, Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Laffort P, Chauvin F, Dallos A, Callegari P, Valentin D. Solvation parameters. J Chromatogr A 2005; 1100:90-107. [PMID: 16226761 DOI: 10.1016/j.chroma.2005.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 08/26/2005] [Accepted: 09/09/2005] [Indexed: 11/23/2022]
Abstract
An improvement in the characterization and the determination of the solvation parameters allows, not only a better knowledge of solutions, but also of some biological phenomena. In this paper, we test several published data and approaches in the field of solubility and solvation parameters in two ways: (i) the mutual independence of the parameters and (ii) their ability to take into account recently published gas-liquid chromatographic data. From this enquiry it arises that the most suitable published values are those of Abraham concerning 314 solutes. It also arises that the parameters of dispersion and orientation of this published data set are appreciably improved using two simple equations. In addition, a new set of optimized values for 133 solutes is given, by derivation from retention indices in gas-liquid chromatography (GLC) on five selected stationary phases, published by Kováts and co-workers and in the present study. The two sets have a total of 373 defined compounds.
Collapse
Affiliation(s)
- Paul Laffort
- Centre Européen des Sciences du Goût, CNRS, UMR 5170, Dijon, France.
| | | | | | | | | |
Collapse
|
20
|
Kiridena W, Patchett CC, Koziol WW, Poole CF. System constants for the bis(cyanopropylsiloxane)-co-methylsilarylene HP-88 and poly(siloxane) Rtx-440 stationary phases. J Chromatogr A 2005; 1081:248-54. [PMID: 16038217 DOI: 10.1016/j.chroma.2005.05.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The solvation parameter model is used to characterize the retention properties of the bis(cyanopropylsiloxane)-co-methylsilarylene, HP-88, and poly(siloxane), Rtx-440, stationary phases over the temperature range 60-140 degrees C. HP-88 is among the most cohesive, dipolar/polarizable and hydrogen-bond basic of stationary phases for open-tubular column gas chromatography. It has no hydrogen-bond acidity or capacity for electron lone pair interactions. It exhibits similar selectivity to the poly(cyanopropylsiloxane) stationary phase SP-2340. Rtx-440 is a low-polarity, low-cohesion stationary phase with a moderate capacity for dipolar/polarizable and hydrogen-bond base interactions. It has no hydrogen-bond acidity and possesses weak electron lone pair interactions. It has unique selectivity when compared against a system constants database for 28 common stationary phase compositions. Cluster analysis indicated that the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer, DB-1301, the poly(dimethyldiphenylsiloxane) stationary phase containing 20% diphenylsiloxane monomer, Rtx-20, the poly(siloxane) stationary phase of unknown composition, DB-624, and DX-1 [a mixture of poly(dimethylsiloxane) and poly(ethylene glycol) 9:1] are the closest selectivity matches in the database. The selectivity of DB-1301 and Rtx-440 are very similar for solutes with weak hydrogen-bond acidity allowing one stationary phase to be substituted for the other with likely success. For strong hydrogen-bond acids, such as phenols, DB-1301 and Rtx-440 exhibit different selectivity.
Collapse
Affiliation(s)
- Waruna Kiridena
- Flint Ink Corporation, Analytical Division, 4600 Arrowhead Drive, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
21
|
Kiridena W, Patchett CC, Koziol WW, Poole CF. Assessment of the selectivity equivalence of DB-608 and DB-624 open-tubular columns for gas chromatography. J Sep Sci 2004; 27:1333-8. [PMID: 15587283 DOI: 10.1002/jssc.200401862] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The solvation parameter model is used to characterize the selectivity of DB-608 and DB-624 open-tubular columns at five equally spaced temperatures over the range 60 to 140 degrees C. The system constants for the DB-608 and DB-624 columns were used as selectivity parameters to search a database of open-tubular columns to identify columns with similar selectivity. The search was refined using the absolute deviation of the system constants and retention factor regression models for varied compounds. For method development it is shown that the selectivity of the poly(cyanopropylphenyldimethylsiloxane) stationary phase containing 6% cyanopropylphenylsiloxane monomer (DB-1301) is equivalent to DB-624 and the poly(dimethyldiphenylsiloxane) stationary phases containing either 50 or 65% diphenylsiloxane monomer (Rtx-50 and Rtx-65) are suitable choices for DB-608.
Collapse
Affiliation(s)
- Waruna Kiridena
- Flint Ink Corporation, Analytical Division, Ann Arbor, Ml 48105, USA
| | | | | | | |
Collapse
|
22
|
Nawas MI, Poole CF. Evaluation of a structure-driven retention model for temperature-programmed gas chromatography. J Chromatogr A 2004; 1023:113-21. [PMID: 14760855 DOI: 10.1016/j.chroma.2003.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The solvation parameter model is suitable for describing the retention properties of compounds of varied structure in temperature-programmed gas chromatography. An empirical second-order model provides a good account of the change in system constants as a function of program rate. These relationships codify the reduction in retention time at higher program rates and changes in elution order (selectivity) with program rate. The prediction of retention times from structure, while quite good, is probably adversely affected by descriptor quality and the possibility of a mixed retention mechanism on polar stationary phases. Plots of experimental against predicted temperature-programmed retention times for varied compounds are linear but generally contain a small bias from an ideal model (slope of one and an intercept of zero). The average absolute deviation in temperature-programmed retention times on three columns (DB-210, DB-1701 and EC-Wax) varied from 0.15 to 0.89 min with the best results obtained at higher program rates on the columns of lower polarity.
Collapse
Affiliation(s)
- Mohamed I Nawas
- Department of Chemistry, Wayne State University, Rm. 180, Detroit, MI 48202, USA
| | | |
Collapse
|
23
|
Kiridena W, Poole CF, Nawas MI, Koziol WW. Non-specific retention characteristics of dissolved β-cyclodextrin derivatives in open tubular column gas chromatography. J Sep Sci 2003. [DOI: 10.1002/jssc.200301518] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Abstract
The solvation parameter model is a useful tool for delineating the contribution of defined intermolecular interactions to retention of neutral molecules in separation systems based on a solute equilibrium between a gas, liquid or fluid mobile phase and a liquid or solid stationary phase. The free energy for this process is decomposed into contributions for cavity formation and the set up of intermolecular interactions identified as dispersion, electron lone pair, dipole-type and hydrogen bonding. The relative contribution of these interactions is indicated by a series of system constants determined by the difference of the defined interaction in the two phases. The interpretation of these system constants as a function of experimental factors that affect retention in the chromatographic system provides the connection between relative retention (selectivity) and the control variables for the separation system. To aid in the understanding of these processes we perform an analysis of system constants for gas chromatography, liquid chromatography, supercritical fluid chromatography and micellar electrokinetic chromatography as a function of different experimental variables as a step towards gaining a theoretical understanding of selectivity optimization for method development.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
25
|
Poole CF, Kiridena W, Nawas MI, Koziol WW. Influence of composition and temperature on the selectivity of stationary phases containing either mixtures of poly(ethylene glycol) and poly(dimethylsiloxane) or copolymers of cyanopropylphenylsiloxane and dimethylsiloxane for open-tubular column gas chromatography. J Sep Sci 2002. [DOI: 10.1002/1615-9314(20020801)25:12<749::aid-jssc749>3.0.co;2-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Solute-solvent interactions between a range of solutes and trifluoropropyl siloxane stationary phases in terms of gas-liquid chromatography activity coefficients. Chromatographia 2002. [DOI: 10.1007/bf02490251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Affiliation(s)
- Gary A Eiceman
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces 88003-0001, USA
| | | | | | | | | |
Collapse
|
28
|
Kiridena W, Koziol WW, Poole CF, Nawas MI. Influence of diphenylsiloxane composition on the selectivity of poly(dimethyldiphenylsiloxane) stationary phases for open-tubular column gas chromatography. Chromatographia 2001. [DOI: 10.1007/bf02492494] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Kiridena W, Koziola WW, Poole CF. Selectivity assessment of DB-200 and DB-VRX open-tubular capillary columns. J Chromatogr A 2001; 932:171-7. [PMID: 11695864 DOI: 10.1016/s0021-9673(01)01236-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The solvation parameter model is used to study the influence of composition and temperature on the selectivity of two poly(siloxane) stationary phases used for open-tubular capillary column gas chromatography. The poly(methyltrifluoropropyldimethylsiloxane) stationary phase, DB-200, has low cohesion, intermediate dipolarity/polarizability, low hydrogen-bond basicity, no hydrogen-bond acidity, and repulsive electron lone pair interactions. The DB-VRX stationary phase has low cohesion, low dipolarity/polarizability, low hydrogen-bond basicity and no hydrogen-bond acidity and no capacity for electron lone pair interactions. The selectivity of the two stationary phases is complementary to those in a database of 11 stationary phase chemistries determined under the same experimental conditions.
Collapse
Affiliation(s)
- W Kiridena
- Flint Ink North America, Analytical Division, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|