1
|
Liu Z, Foley JP, Shackman JG, Wang Q, Zhou Y. A simulation-guided approach to the selection of RPLC columns for platform small molecule separations. J Chromatogr A 2024; 1730:465131. [PMID: 39002508 DOI: 10.1016/j.chroma.2024.465131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Simulations were conducted to evaluate the potential of several hundred reversed-phase columns to separate small molecules. By calculating the retention factor of compounds in randomly generated virtual mixtures via the HSM (hydrophobic subtraction model) and applying basic chromatography theory, the simulation can estimate the retention time and peak width of every virtual compound and calculate the resolution between every adjacent pair of compounds. A preferred column set based on the number of successful separations of randomly generated virtual mixtures was developed. The tandem-column liquid chromatography (TC-LC) approach can separate 53.2 % of the 16-compound samples using 20 tandem-column pairs, while a single-column approach can only separate 42.6 % of the 16-compound samples with 20 single columns. The preferred set of columns obtained from the simulation was almost the same as the empirical set of columns previously obtained. In screening applications, TC-LC can achieve a comparably successful separation factor (selectivity) with a smaller column inventory (nine 50-mm columns) compared to the larger inventory needed by single-column LC (twenty-one 100-mm columns).
Collapse
Affiliation(s)
- Zhiyang Liu
- Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA 19104, USA
| | - Joe P Foley
- Bristol Myers Squibb, 1 Squibb Dr, New Brunswick, NJ 08901, USA.
| | | | - Qinggang Wang
- Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA 19104, USA
| | - Yiyang Zhou
- Department of Chemistry, Drexel University, 32 South 32nd St., Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Poole CF. Determination of solvation parameter model compound descriptors by gas chromatography. J Chromatogr A 2024; 1717:464711. [PMID: 38320433 DOI: 10.1016/j.chroma.2024.464711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
The solvation parameter model uses five system independent descriptors to characterize compound properties defined as excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity, A, hydrogen-bond basicity, B, and the gas-liquid partition constant at 25 °C on n-hexadecane, L, to model transfer properties in gas-condensed phase biphasic systems. The E descriptor for compounds liquid at 20 °C is available by calculation using a refractive index value while E for solid compounds at 20 °C and the S, A, B, and L descriptors are determined by experiment. As a single-technique approach, it is shown that with up to 20 retention factor measurements on four columns comprising a poly(siloxane) containing methyloctyl or dimethyldiphenylsiloxane monomers (SPB-Octyl or HP-5), a poly(siloxane) containing methyltrifluoropropylsiloxane monomers (Rtx-OPP or DB-210), a poly(siloxane) containing bis(cyanopropylsiloxane) monomers (HP-88 or SGE BPX-90), and a poly(ethylene glycol) stationary phase (DB-WAXetr or HP-INNOWAX) are suitable for assigning the S, A, and L descriptors. Using the descriptors in the updated WSU compound descriptor database as target values the average absolute error in the descriptor assignments for 52 varied compounds in the temperature range 60-140 °C was 0.072 for E, 0.016 for S, 0.008 for A, and 0.022 for L corresponding to 30 %, 3.5 %, and 0.6 % as a relative average absolute error for E, S, and L, respectively. For the higher temperature range of 160-240 °C and 34 varied compounds that are liquid at 20 °C the average absolute error for the S, A and L descriptors was 0.026, 0.020, and 0.031, respectively, with the largest relative average absolute error for S of 3.2 % (< 1 % for the L descriptor). For 35 varied compounds that are solid at 20 °C the relative absolute error for the E, S, A, and L descriptors in the higher temperature range was 0.068, 0.035, 0.020, and 0.020, respectively, with a relative average absolute error for E (6.5 %), S (3.5 %) and L (0.88 %). The S, A, and L descriptor can be accurately assigned on the four-column system over a wide temperature range. The E descriptor for solid compounds at 20 °C exhibits greater variability than desirable. The B descriptor cannot be assigned by the four-column system, which lack hydrogen-bond acid functional groups, and is only poorly assigned on the weak hydrogen-bond acid ionic liquid column SLB-IL100.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
3
|
Poole CF. Determination of the hydrogen-bond basicity descriptor by reversed-phase liquid chromatography. J Chromatogr A 2024; 1716:464639. [PMID: 38217960 DOI: 10.1016/j.chroma.2024.464639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Except for alkanes, most organic compounds are hydrogen-bond bases. The B° descriptor of the solvation parameter model provides a convenient measure of the effective (or summation) hydrogen-bond basicity of organic compounds. A fast and convenient method to assign the B° descriptor is required to support studies of hydrogen-bonding in separation systems. A two-column system with acetonitrile-water mobile phase compositions and the measurement of up to eleven isocratic retention factors is proposed for this purpose. Several reversed-phase column chemistries and mobile phases were evaluated with the two-column system consisting of a pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica columns recommended for this purpose. To assess the accuracy of the method values for B° were taken from the Wayne State University (WSU) compound descriptor database, which were assigned using conventional multi-technique methods and large datasets. The two-column systems provided an unbiased assignment of B° with an average deviation of 0.008 and an average absolute deviation of 0.021 compared with the target value for 55 varied compounds. The two-column system is unsuitable for assigning the other descriptors used in the solvation parameter model and results in erroneous assignments of B° for nitrogen-containing compounds capable of electrostatic interactions on silica-based reversed-phase columns.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
4
|
Isik B, Ugraskan V, Yazici O, Cakar F. Thermodynamic Characterization of Polyetherimide/Single-Walled Carbon Nanotube Composites. J Chromatogr Sci 2023; 62:1-7. [PMID: 36808219 DOI: 10.1093/chromsci/bmad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/20/2022] [Indexed: 02/19/2023]
Abstract
The aim of this study is to examine the interactions of composite materials obtained by adding single-walled carbon nanotubes (SWCNT) to polyetherimide (ULTEM) in different weight ratios with various organic solvents, and to evaluate the solubility of composites in these organic solvents. The characterization of prepared composites was performed with SEM analysis. Thermodynamic properties of ULTEM/SWCNT composites were determined by the inverse gas chromatography (IGC) method at 260-285°C in infinite dilution. According to the IGC method, the retention behaviors were examined by passing different organic solvent vapors over the composites used as stationary phase, and retention diagrams were drawn using the obtained retention data. Thermodynamic parameters including Flory-Huggins interaction parameters (${\chi}_{12}^{\infty }$), equation of state interaction parameters (${\chi}_{12}^{\ast }$), weight fraction activity coefficients in infinite dilution (${\Omega}_1^{\infty }$), effective exchange energy parameters (${\chi}_{\mathrm{eff}}$), partial molar sorption enthalpies ($\Delta{\overline{H}}_1^S$), partial molar dissolution enthalpies in infinite dilution ($\Delta{\overline{H}}_1^{\infty }$) and molar evaporation enthalpies ($\Delta{\overline{H}}_v$) were calculated using the linear retention diagrams. According to ${\chi}_{12}^{\infty }$, ${\chi}_{12}^{\ast }$, ${\Omega}_1^{\infty }$ and ${\chi}_{\mathrm{eff}}$ values, organic solvents were found to be poor solvents for composites at all temperatures. Besides, the solubility parameters of composites were determined by IGC method at infinite dilution.
Collapse
Affiliation(s)
- Birol Isik
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Volkan Ugraskan
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Ozlem Yazici
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| | - Fatih Cakar
- Department of Chemistry, Faculty of Arts & Sciences, Yildiz Technical University, Esenler, Istanbul 34220, Turkey
| |
Collapse
|
5
|
Gaida M, Stefanuto PH, Focant JF. Theoretical modeling and machine learning-based data processing workflows in comprehensive two-dimensional gas chromatography-A review. J Chromatogr A 2023; 1711:464467. [PMID: 37871505 DOI: 10.1016/j.chroma.2023.464467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
In recent years, comprehensive two-dimensional gas chromatography (GC × GC) has been gradually gaining prominence as a preferred method for the analysis of complex samples due to its higher peak capacity and resolution power compared to conventional gas chromatography (GC). Nonetheless, to fully benefit from the capabilities of GC × GC, a holistic approach to method development and data processing is essential for a successful and informative analysis. Method development enables the fine-tuning of the chromatographic separation, resulting in high-quality data. While generating such data is pivotal, it does not necessarily guarantee that meaningful information will be extracted from it. To this end, the first part of this manuscript reviews the importance of theoretical modeling in achieving good optimization of the separation conditions, ultimately improving the quality of the chromatographic separation. Multiple theoretical modeling approaches are discussed, with a special focus on thermodynamic-based modeling. The second part of this review highlights the importance of establishing robust data processing workflows, with a special emphasis on the use of advanced data processing tools such as, Machine Learning (ML) algorithms. Three widely used ML algorithms are discussed: Random Forest (RF), Support Vector Machine (SVM), and Partial Least Square-Discriminate Analysis (PLS-DA), highlighting their role in discovery-based analysis.
Collapse
Affiliation(s)
- Meriem Gaida
- Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
| | - Pierre-Hugues Stefanuto
- Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
| | - Jean-François Focant
- Organic and Biological Analytical Chemistry Group (OBiAChem), MolSys Research Unit, Liège University, Belgium
| |
Collapse
|
6
|
Poole CF. Selectivity evaluation of extraction systems. J Chromatogr A 2023; 1695:463939. [PMID: 36996617 DOI: 10.1016/j.chroma.2023.463939] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Extraction is the most common sample preparation technique prior to chromatographic analysis for samples which are too complex, too dilute, or contain matrix components incompatible with the further use of the separation system or interfere in the detection step. The most important extraction techniques are biphasic systems involving the transfer of target compounds from the sample to a different phase ideally accompanied by no more than a tolerable burden of co-extracted matrix compounds. The solvation parameter model affords a general framework to characterize biphasic extraction systems in terms of their relative capability for solute-phase intermolecular interactions (dispersion, dipole-type, hydrogen bonding) and within phase solvent-solvent interactions for cavity formation (cohesion). The approach is general and allows the comparison of liquid and solid extraction phases using the same terms and is used to explain the features important for the selective enrichment of target compounds by a specific extraction phase using solvent extraction, liquid-liquid extraction, and solid-phase extraction for samples in a gas, liquid, or solid phase. Hierarchical cluster analysis with the system constants of the solvation parameter model as variables facilitates the selection of solvents for extraction, the identification of liquid-liquid distribution systems with non-redundant selectivity, and evaluation of different approaches using liquids and solids for the isolation of target compounds from different matrices.
Collapse
|
7
|
Fekete S, Lauber M. Studying effective column lengths in liquid chromatography of large biomolecules. J Chromatogr A 2023; 1692:463848. [PMID: 36758491 DOI: 10.1016/j.chroma.2023.463848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Based on their nature, large molecules tend to exhibit on-off elution such that only a small segment of a column bed participates in their separation. We were intrigued to investigate empirical data on this behavior and to apply a simple method to estimate the length of column bed that is needed to produce an effective separation. Models were derived by rearranging the linear solvent strength (LSS) model equations, and data sets from almost 100 different separation conditions were treated to illustrate effects for various types of solutes as separated by reversed phase (RP), ion-pair reversed phase (IP-RP), ion-exchange (IEX), hydrophobic interaction (HIC) and hydrophilic interaction (HILIC) chromatography. By empirically measuring S parameters (S is a solute dependent model parameter, it describes how sensitive is the solute retention to mobile phase composition), and calculating for an exit retention factor of 0.5, we have determined that there is little to no benefit to separating moderately sized solutes (5 - 10 kDa) with a column bed that is longer than 3 cm, particularly when a less than 20 min gradient is desired. Moreover, even shorter columns would be predicted to be adequate for 100 - 150 kDa molecules. Interpretations of this sort have become possible because there is some correlation between a solute's molecular weight and its S parameter. That is, empirical observations on retention behavior are not needed to select appropriate column lengths; molecular weight provides a sufficient approximation. With these insights, we suggest reconsidering the routine use of 5 - 15 cm long columns for >10 kDa biomolecule separations and instead propose that a new focus be placed on 1-2 cm long columns.
Collapse
Affiliation(s)
- Szabolcs Fekete
- Waters Corporation, located in CMU-Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Matthew Lauber
- Waters Corporation, 34 Maple Street, Milford, MA 01757, United States
| |
Collapse
|
8
|
Poole CF. The influence of descriptor database selection on the solvation parameter model for separation processes. J Chromatogr A 2023; 1692:463851. [PMID: 36773399 DOI: 10.1016/j.chroma.2023.463851] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
The distribution of neutral compounds in biphasic separation systems can be described by the solvation parameter model using six solute properties, or descriptors. These descriptors characterize the size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. McGowan's characteristic volume and the excess molar refraction for liquids are available by calculation (E requires and experimental refractive index). The other descriptors and excess molar refraction for solids are experimental quantities and subject to greater variation or are estimated using computational or empirical models. Solute descriptors for several thousand compounds are available in the Abraham descriptor database and for several hundred compounds in the WSU descriptor database. These publicly accessible databases were developed independently using different approaches and for many compounds provide different descriptor values. In this report we evaluate the effect of mixing descriptors from the two databases on modeling chromatographic retention factors and liquid-liquid partition constants. It is shown that the two descriptor databases are not interchangeable. The WSU descriptor database consistently demonstrates improved model quality as determined by statistical parameters. Model system constants exhibit a general dependence on database selection with an approximately linear trend as a function of the fraction of compounds assigned descriptors from either database. There is no general model performance advantage to using mixed descriptor datasets and no real cause for concern for relatively large datasets containing < 15 % of compounds with descriptors assigned from the other database. For small datasets, descriptor quality is an important variable for adequate model performance.
Collapse
Affiliation(s)
- Colin F Poole
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
9
|
Recent advances for estimating environmental properties for small molecules from chromatographic measurements and the solvation parameter model. J Chromatogr A 2023; 1687:463682. [PMID: 36502643 DOI: 10.1016/j.chroma.2022.463682] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
The transfer of neutral compounds between immiscible phases in chromatographic or environmental systems can be described by six solute properties (solute descriptors) using the solvation parameter model. The solute descriptors are size (McGowan's characteristic volume), V, excess molar refraction, E, dipolarity/polarizability, S, hydrogen-bond acidity and basicity, A and B, and the gas-liquid partition constant on n-hexadecane at 298.15 K, L. V and E for liquids are accessible by calculation but the other descriptors and E for solids are determined experimentally by chromatographic, liquid-liquid partition, and solubility measurements. These solute descriptors are available for several thousand compounds in the Abraham solute descriptor databases and for several hundred compounds in the WSU experimental solute descriptor database. In the first part of this review, we highlight features important in defining each descriptor, their experimental determination, compare descriptor quality for the two organized descriptor databases, and methods for estimating Abraham solute descriptors. In the second part we focus on recent applications of the solvation parameter model to characterize environmental systems and its use for the identification of surrogate chromatographic models for estimating environmental properties.
Collapse
|
10
|
Poole CF, Atapattu SN. Analysis of the solvent strength parameter (linear solvent strength model) for isocratic separations in reversed-phase liquid chromatography. J Chromatogr A 2022; 1675:463153. [DOI: 10.1016/j.chroma.2022.463153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
11
|
Poole CF. Applications of the solvation parameter model in thin-layer chromatography. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Investigating the effect of systematically modifying the molar ratio of hydrogen bond donor and acceptor on solvation characteristics of deep eutectic solvents formed using choline chloride salt and polyalcohols. J Chromatogr A 2022; 1667:462871. [DOI: 10.1016/j.chroma.2022.462871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 01/18/2023]
|
13
|
Gaida M, Franchina FA, Stefanuto PH, Focant JF. Modeling approaches for temperature-programmed gas chromatographic retention times under vacuum outlet conditions. J Chromatogr A 2021; 1651:462300. [PMID: 34134077 DOI: 10.1016/j.chroma.2021.462300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022]
Abstract
This contribution evaluates the performance of two predictive approaches in calculating temperature-programmed gas chromatographic retention times under vacuum outlet conditions. In the first approach, the predictions are performed according to a thermodynamic-based model, while in the second approach the predictions are conducted by using the temperature-programmed retention time equation. These modeling approaches were evaluated on 47 test compounds belonging to different chemical classes, under different experimental conditions, namely, two modes of gas flow regulation (i.e., constant inlet pressure and constant flow rate), and different temperature programs (i.e., 7 °C/min, 5 °C/min, and 3 °C/min). Both modeling approaches gave satisfactory results and were able to accurately predict the elution profiles of the studied test compounds. The thermodynamic-based model provided more satisfying results under constant flow rate mode, with average modeling errors of 0.43%, 0.33%, and 0.15% across all the studied temperature programs. Nevertheless, under constant inlet pressure mode, lower modeling errors were achieved when using the temperature-programmed retention time equation, with average modeling errors of 0.18%, 0.18%, and 0.31% across the used temperature programs.
Collapse
Affiliation(s)
- Meriem Gaida
- University of Liège, Molecular Systems, Organic & Biological Analytical Chemistry Group, 11 Allée du Six Août, 4000 Liège, Belgium
| | - Flavio A Franchina
- University of Liège, Molecular Systems, Organic & Biological Analytical Chemistry Group, 11 Allée du Six Août, 4000 Liège, Belgium; University of Ferrara, Department of Chemistry, Pharmaceutical, and Agricultural Sciences, via L. Borsari 46, 44121 Ferrara, Italy.
| | - Pierre-Hugues Stefanuto
- University of Liège, Molecular Systems, Organic & Biological Analytical Chemistry Group, 11 Allée du Six Août, 4000 Liège, Belgium
| | - Jean-François Focant
- University of Liège, Molecular Systems, Organic & Biological Analytical Chemistry Group, 11 Allée du Six Août, 4000 Liège, Belgium
| |
Collapse
|
14
|
Abbasi NM, Farooq MQ, Anderson JL. Modulating solvation interactions of deep eutectic solvents formed by ammonium salts and carboxylic acids through varying the molar ratio of hydrogen bond donor and acceptor. J Chromatogr A 2021; 1643:462011. [PMID: 33799072 DOI: 10.1016/j.chroma.2021.462011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Deep eutectic solvents (DESs) have gained increasing popularity in separation science due to the fact that their physico-chemical properties can be easily fine-tuned by varying the type or ratio of hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD). While it is well-known that the molar ratio of HBA/HBD affects the melting point of a eutectic mixture, much less is understood regarding its effect on the magnitude of individual solvation interactions. This is largely due to the fact that established solvatochromic dye methods lack sensitivity when the HBA/HBD ratio is varied slightly in a eutectic mixture. Herein, this study is the first to measure the variation of DES solvation interactions with small changes in the molar ratio of HBA/HBD using inverse gas chromatography (IGC). Solute-solvent interactions of three different DES systems comprised of ammonium salts and organic acids were examined. The probe molecules were studied for 18 eutectic mixtures of varied HBA and HBD composition. DES hydrogen bond basicity, hydrogen bond acidity, and dispersive-type interactions exhibited the greatest change when the molar ratio of HBA/HBD was varied in the eutectic mixture. Results from this study demonstrate that the HBA/HBD ratio can be used to modulate the solvation characteristics for this class of DESs in separations and that the stoichiometric ratio of the HBA/HBD is important in ensuring their reproducible preparation.
Collapse
Affiliation(s)
- Nabeel Mujtaba Abbasi
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Muhammad Qamar Farooq
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jared L Anderson
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States.
| |
Collapse
|
15
|
Determination of physicochemical properties of ionic liquids by gas chromatography. J Chromatogr A 2021; 1644:461964. [PMID: 33741140 DOI: 10.1016/j.chroma.2021.461964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/31/2021] [Indexed: 12/27/2022]
Abstract
Over the years room temperature ionic liquids have gained attention as solvents with favorable environmental and technical features. Both chromatographic and conventional methods afford suitable tools for the study of their physicochemical properties. Use of gas chromatography compared to conventional methods for the measurement of physicochemical properties of ionic liquids have several advantages; very low sample concentrations, high accuracy, faster measurements, use of wider temperature range and the possibility to determine physicochemical properties of impure samples. Also, general purpose gas chromatography instruments are widely available in most laboratories thus alleviating the need to purchase more specific instruments for less common physiochemical measurements. Some of the main types of physicochemical properties of ionic liquids accessible using gas chromatography include gas-liquid partition constants, infinite dilution activity coefficients, partial molar quantities, solubility parameters, system constants of the solvation parameter model, thermal stability, transport properties, and catalytic and other surface properties.
Collapse
|
16
|
Si‐Hung L, Bamba T. A review of retention mechanism studies for packed column supercritical fluid chromatography. ANALYTICAL SCIENCE ADVANCES 2021; 2:47-67. [PMID: 38715740 PMCID: PMC10989630 DOI: 10.1002/ansa.202000144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/13/2024]
Abstract
The packed column supercritical fluid chromatography has risen as a promising alternative separation technique to the conventional liquid chromatography and gas chromatography. Although the packed column supercritical fluid chromatography has many advantages compared to other chromatographic techniques, its separation mechanism is not fully understood due to the complex combination effects of many chromatographic parameters on separation quality and the lacking of global strategies for studying separation mechanisms. This review aims to provide recent information regarding the chromatographic behaviors and the effects of the parameters on the separation, discuss the results, and point out the remaining bottlenecks in the packed column supercritical fluid chromatography retention mechanism studies.
Collapse
Affiliation(s)
- Le Si‐Hung
- Division of Metabolomics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| |
Collapse
|
17
|
Spelling V, Stefansson M. Evaluation of chromatographic parameters in supercritical fluid chromatography of amino acids as model polar analytes and extended to polypeptide separations. J Chromatogr A 2020; 1633:461646. [PMID: 33166744 DOI: 10.1016/j.chroma.2020.461646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022]
Abstract
Chromatographic parameters have been evaluated regarding the supercritical fluid chromatography of amino acids as model compounds for polar and chargeable substances of biochemical and biopharmaceutical interest. Their inherent hydrophilicity requires suitable chromatographic conditions regarding stationary and mobile phase to obtain suitable solubility and peak performance. Ten stationary phases differing in polarity and type of ligands including neutral and charged ones were investigated regarding selectivity, peak performance and complementarity/orthogonality. The mobile phase composition regarding solvent and type of buffer additives by varying the degree of hydrophobicity of the acids and bases and degree of substitution in case of the basic amines. Addition of water to the methanol solvent was furthermore found crucial for obtaining a high peak performance. Some complementary selectivity could be obtained depending on a choice of column. Temperature and pressure variations basically only influenced retention with no selectivity changes. Suitable conditions obtained for the amino acids were then successfully applied to oligo- and polypeptides enabling a separation of 4 polypeptides and differing in only one of the 39 amino acids, thereby mimicking analysis of biotransformation reaction products. The utilization of water as mobile phase additive and sulfonic acids as buffer agents could serve as a generic methodology for polar and charged compounds such as amino containing biomolecules.
Collapse
Affiliation(s)
- Victor Spelling
- Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden; Present address: Early Chemical Development, Innovative New Medicines, AstraZeneca, Gothenburg, Sweden
| | - Morgan Stefansson
- Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
18
|
Poole CF, Atapattu SN. Selectivity evaluation of core-shell silica columns for reversed-phase liquid chromatography using the solvation parameter model. J Chromatogr A 2020; 1634:461692. [DOI: 10.1016/j.chroma.2020.461692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
|
19
|
Selection of calibration compounds for selectivity evaluation of siloxane-bonded silica columns for reversed-phase liquid chromatography by the solvation parameter model. J Chromatogr A 2020; 1633:461652. [DOI: 10.1016/j.chroma.2020.461652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 02/02/2023]
|
20
|
Klimek-Turek A, Misiołek B, Dzido TH. Comparison of the Retention and Separation Selectivity of Aromatic Hydrocarbons with Polar Groups in RP-HPLC Systems with Different Stationary Phases and Eluents. Molecules 2020; 25:molecules25215070. [PMID: 33139630 PMCID: PMC7663032 DOI: 10.3390/molecules25215070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 11/07/2022] Open
Abstract
In this manuscript, the retention of aromatic hydrocarbons with polar groups has been compared for systems with various nonpolar columns of the types from C3 to C18 and different mobile phases composed of methanol, acetonitrile, or tetrahydrofuran as modifiers. The selectivity separation of the solutes in systems with different adsorbents, when one eluent modifier is swapped by another, has been explained, taking into account molecular interactions of the solutes with components of the stationary phase region (i.e., extracted modifier depending on the chain length of the stationary phase).
Collapse
Affiliation(s)
- Anna Klimek-Turek
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (B.M.); (T.H.D.)
- Correspondence: ; Tel.: +48-81448-7206
| | - Beata Misiołek
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (B.M.); (T.H.D.)
- Department for Variations and Renewals of Medicinal Products, The Office for Registration of Medicinal Products, Medical Devices and Biocidal Products, Al. Jerozolimskie 181C, 02-222 Warsaw, Poland
| | - Tadeusz H. Dzido
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (B.M.); (T.H.D.)
| |
Collapse
|
21
|
Haddad PR, Taraji M, Szücs R. Prediction of Analyte Retention Time in Liquid Chromatography. Anal Chem 2020; 93:228-256. [DOI: 10.1021/acs.analchem.0c04190] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paul R. Haddad
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, Australia 7001
| | - Maryam Taraji
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania, Australia 7001
- The Australian Wine Research Institute, P.O. Box 197, Adelaide, South Australia 5064, Australia
- Metabolomics Australia, P.O. Box 197, Adelaide, South Australia 5064, Australia
| | - Roman Szücs
- Pfizer R&D UK Limited, Ramsgate Road, Sandwich CT13 9NJ, U.K
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina CH2, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| |
Collapse
|
22
|
Poole CF. Selection of calibration compounds for selectivity evaluation of wall-coated, open-tubular columns for gas chromatography by the solvation parameter model. J Chromatogr A 2020; 1629:461500. [DOI: 10.1016/j.chroma.2020.461500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 01/07/2023]
|
23
|
Poole CF, Atapattu SN. Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography. J Chromatogr A 2020; 1626:461427. [DOI: 10.1016/j.chroma.2020.461427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
|
24
|
Evaluation of the solvation parameter model as a quantitative structure-retention relationship model for gas and liquid chromatography. J Chromatogr A 2020; 1626:461308. [DOI: 10.1016/j.chroma.2020.461308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
|
25
|
Poole CF. Wayne State University experimental descriptor database for use with the solvation parameter model. J Chromatogr A 2020; 1617:460841. [DOI: 10.1016/j.chroma.2019.460841] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 01/04/2023]
|
26
|
Qiao L, Yu C, Sun R. Preparation and comparison of three zwitterionic stationary phases for hydrophilic interaction liquid chromatography. J Sep Sci 2020; 43:1071-1079. [DOI: 10.1002/jssc.201901087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/02/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Lizhen Qiao
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| | - Chunmei Yu
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| | - Ruiting Sun
- Institution State Key Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology Panjin P. R. China
| |
Collapse
|
27
|
Mommers J, van der Wal S. Column Selection and Optimization for Comprehensive Two-Dimensional Gas Chromatography: A Review. Crit Rev Anal Chem 2020; 51:183-202. [DOI: 10.1080/10408347.2019.1707643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- John Mommers
- DSM Material Science Center, Geleen, The Netherlands
| | - Sjoerd van der Wal
- Polymer-Analysis Group, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Amézqueta S, Fernández-Pumarega A, Farré S, Luna D, Fuguet E, Rosés M. Lecithin liposomes and microemulsions as new chromatographic phases. J Chromatogr A 2020; 1611:460596. [DOI: 10.1016/j.chroma.2019.460596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
|
29
|
Adamska K, Voelkel A, Sandomierski M. Characterization of mesoporous aluminosilicate materials by means of inverse liquid chromatography. J Chromatogr A 2020; 1610:460544. [DOI: 10.1016/j.chroma.2019.460544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/21/2022]
|
30
|
Kozlov O, Kadlecová Z, Tesařová E, Kalíková K. Evaluation of separation properties of stationary phases in supercritical fluid chromatography; deazapurine nucleosides case study. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Bagwill CS, Wireduaah S, Cusworth B, Korba J, Kirkpatrick CC, Lewis M, Stalcup AM. Use of HPLC retention to investigate new P descriptors designed to represent ion-π interactions. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1667822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Brian Cusworth
- School of Medicine, Washington University, St. Louis, MO, USA
| | | | | | - Michael Lewis
- Department of Chemistry, Saint Louis University, St. Louis, MO, USA
| | - Apryll M. Stalcup
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
32
|
Raimbault A, West C. Effects of high concentrations of mobile phase additives on retention and separation mechanisms on a teicoplanin aglycone stationary phase in supercritical fluid chromatography. J Chromatogr A 2019; 1604:460494. [DOI: 10.1016/j.chroma.2019.460494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022]
|
33
|
Poole CF. Gas chromatography system constant database for 52 wall-coated, open-tubular columns covering the temperature range 60–140 °C. J Chromatogr A 2019; 1604:460482. [DOI: 10.1016/j.chroma.2019.460482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
|
34
|
Obradović D, Stavrianidi AN, Ustinovich KB, Parenago OO, Shpigun OA, Agbaba D. The comparison of retention behaviour of imidazoline and serotonin receptor ligands in non-aqueous hydrophilic interaction chromatography and supercritical fluid chromatography. J Chromatogr A 2019; 1603:371-379. [DOI: 10.1016/j.chroma.2019.04.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/16/2022]
|
35
|
Reversed-phase liquid chromatography system constant database over an extended mobile phase composition range for 25 siloxane-bonded silica-based columns. J Chromatogr A 2019; 1600:112-126. [DOI: 10.1016/j.chroma.2019.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 11/23/2022]
|
36
|
Design, synthesis and evaluation of a series of alkylsiloxane-bonded stationary phases for expanded supercritical fluid chromatography separations. J Chromatogr A 2019; 1593:127-134. [DOI: 10.1016/j.chroma.2019.01.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/19/2022]
|
37
|
System Maps for the Retention of Neutral Compounds on an Electrostatic-Shielded Reversed-Phase Column. Chromatographia 2019. [DOI: 10.1007/s10337-019-03714-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Poole CF. Gas chromatography system constant database over an extended temperature range for nine open-tubular columns. J Chromatogr A 2019; 1590:130-145. [DOI: 10.1016/j.chroma.2019.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/07/2018] [Accepted: 01/10/2019] [Indexed: 11/25/2022]
|
39
|
Poole CF. Chromatographic test methods for characterizing alkylsiloxane-bonded silica columns for reversed-phase liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:207-219. [DOI: 10.1016/j.jchromb.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 02/09/2023]
|
40
|
Buszewski B, Skoczylas M. Multi-Parametric Characterization of Amino Acid- and Peptide-Silica Stationary Phases. Chromatographia 2018. [DOI: 10.1007/s10337-018-3569-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Taraba L, Křížek T, Kozlík P, Hodek O, Coufal P. Protonation of polyaniline-coated silica stationary phase affects the retention behavior of neutral hydrophobic solutes in reversed-phase capillary liquid chromatography. J Sep Sci 2018; 41:2886-2894. [PMID: 29763512 DOI: 10.1002/jssc.201800261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/24/2023]
Abstract
Because of its high conductivity when acid doped, polyaniline is known as a synthetic metal and is used in a wide range of applications, such as supercapacitors, biosensors, electrochromic devices, or solar and fuel cells. Emeraldine is the partly oxidized, stable form of polyaniline, consisting of alternating diaminobenzenoid and iminoquinoid segments. When acidified, the nitrogen atoms of emeraldine become protonated. Due to electrostatic repulsion between positive charges, the polarity and morphology of emeraldine chains presumably change; however, the protonation effects on emeraldine have not yet been clarified. Thus, we investigated these changes by reversed-phase capillary liquid chromatography using a linear solvation energy relationship approach to assess differences in dominant retention interactions under a significantly varied mobile phase pH. We observed that hydrophobicity dominates the intermolecular interactions under both acidic and alkaline eluent conditions, albeit to different extents. Therefore, by tuning the mobile phase pH, we can even modulate the retention of neutral hydrophobic solutes, such as aromatic hydrocarbons, because the pH-dependent charge and structure of polymer chains of the emeraldine-coated silica stationary phase show a mixed-mode separation mechanism.
Collapse
Affiliation(s)
- Lukáš Taraba
- Faculty of Science, Department of Analytical Chemistry, Charles University, Prague, Czech Republic
| | - Tomáš Křížek
- Faculty of Science, Department of Analytical Chemistry, Charles University, Prague, Czech Republic
| | - Petr Kozlík
- Faculty of Science, Department of Analytical Chemistry, Charles University, Prague, Czech Republic
| | - Ondřej Hodek
- Faculty of Science, Department of Analytical Chemistry, Charles University, Prague, Czech Republic
| | - Pavel Coufal
- Faculty of Science, Department of Analytical Chemistry, Charles University, Prague, Czech Republic
| |
Collapse
|
42
|
Lenca N, Poole CF. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide trifluoromethanesulfonate for gas chromatography. J Chromatogr A 2018; 1559:164-169. [DOI: 10.1016/j.chroma.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
|
43
|
Larbi H, Didaoui L, Righezza M. Characterization of stationary phases based on monosubstituted benzene retention indices using correspondence factor analysis and linear solvation energy relationships in RPLC. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1418-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Poole CF. Influence of Solvent Effects on Retention of Small Molecules in Reversed-Phase Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-018-3531-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Insights into the Retention Mechanism of Small Neutral Compounds on Octylsiloxane-Bonded and Diisobutyloctadecylsiloxane-Bonded Silica Stationary Phases in Reversed-Phase Liquid Chromatography. Chromatographia 2018. [DOI: 10.1007/s10337-017-3454-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Characterization of Retention Mechanisms in Mixed-Mode HPLC with a Bimodal Reversed-Phase/Cation-Exchange Stationary Phase. Chromatographia 2018. [DOI: 10.1007/s10337-018-3477-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Estimation of descriptors for hydrogen-bonding compounds from chromatographic and liquid-liquid partition measurements. J Chromatogr A 2017; 1526:13-22. [DOI: 10.1016/j.chroma.2017.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023]
|
48
|
Atapattu SN, Poole CF, Praseuth MB. Insights into the Retention Mechanism for Small Neutral Compounds on Silica-Based Phenyl Phases in Reversed-Phase Liquid Chromatography. Chromatographia 2017. [DOI: 10.1007/s10337-017-3451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Lenca N, Poole CF. A system map for the ionic liquid stationary phase 1,12-di(tripropylphosphonium)dodecane bis(trifluoromethylsulfonyl)imide for gas chromatography. J Chromatogr A 2017; 1525:138-144. [DOI: 10.1016/j.chroma.2017.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/15/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
|
50
|
Lenca N, Poole CF. System map for the ionic liquid stationary phase tri(tripropylphosphoniumhexanamido)triethylamine bis(trifluoromethylsulfonyl)imide for gas chromatography. J Chromatogr A 2017; 1524:210-214. [DOI: 10.1016/j.chroma.2017.09.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/10/2023]
|