1
|
Mishra S, Ghosh A, Hansda B, Mondal TK, Biswas T, Das B, Roy D, Kumari P, Mondal S, Mandal B. Activation of Inert Supports for Enzyme(s) Immobilization Harnessing Biocatalytic Sustainability for Perennial Utilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18377-18406. [PMID: 39171729 DOI: 10.1021/acs.langmuir.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Although Nature's evolution and intelligence have gifted humankind with noteworthy enzyme candidates to simplify complex reactions with ultrafast, overselective, effortless, mild biological reactions for millions of years, their availability at minute-scale, short-range time-temperature stability, and purification costs hardly justify recycling/or reuse. Covalent immobilization, particularly via multipoint bonds, prevents denaturing, maintains activities for long-range time, pH, and temperature, and makes catalysts available for repetitive usages; which attracts researchers and industries to bring more immobilized enzyme contenders in science and commercial progressions. Inert-support activation, the most crucial step, needs appropriate activators; under mild conditions, the activator's functional group(s) still present on the activated support rapidly couples the enzyme, preventing unfolding and keeping the active site alive. This review summarizes exciting experimental advances, from the 1950s until today, in the activation strategies of various inert supports with five different surface activators, the cyanogen bromide, the isocyanate/isothiocyanate, the glutaraldehyde, the carbodiimide (with or without N-hydroxysuccinimide (NHS)), and the diazo group, for the immobilization of diverse enzymes for broader applications. These activators under mild pH (7.5 ± 0.5) and temperature (27 ± 3 °C) and ordinary stirring witnessed support activation and enzyme coupling and put off unfolding, harnessing addressable activities (CNBr: 40 ± 10%; -N═C═O/-N═C═S: 32 ± 7%; GA: 70 ± 15%; CDI: 60 ± 10%; -N+≡N: 80 ± 15%), while underprivileged stability, longevity, and reusabilities keep future investigations alive.
Collapse
Affiliation(s)
- Shailja Mishra
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Ankit Ghosh
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Biswajit Hansda
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tanay K Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Tirtha Biswas
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Basudev Das
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Dipika Roy
- Department of Chemistry, Jadavpur University, Main Campus 188, Raja S.C. Mallick Rd, Kolkata, West Bengal, India 700032
| | - Pallavi Kumari
- University Department of Chemistry, T.M.B.U., Bhagalpur, Bihar-812007, India
| | - Sneha Mondal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| | - Bhabatosh Mandal
- Analytical and Bio-analytical Laboratory, Department of Chemistry, Visva-Bharati, Santiniketan, West Bengal, India 731235
| |
Collapse
|
2
|
Perret G, Boschetti E. Aptamer-Based Affinity Chromatography for Protein Extraction and Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 174:93-139. [PMID: 31485702 DOI: 10.1007/10_2019_106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aptamers are oligonucleotide molecules able to recognize very specifically proteins. Among the possible applications, aptamers have been used for affinity chromatography with effective results and advantages over most advanced protein separation technologies. This chapter first discusses the context of the affinity chromatography with aptamer ligands. With the adaptation of SELEX, the chemical modifications of aptamers to comply with the covalent coupling and the separation process are then extensively presented. A focus is then made about the most important applications for protein separation with real-life examples and the comparison with immunoaffinity chromatography. In spite of well-advanced demonstrations and the extraordinary potential developments, a significant optimization work is still due to deserve large-scale applications with all necessary validations. Graphical Abstract Aptamer-protein complexes by X-ray crystallography.
Collapse
|
3
|
Schiel JE, Mallik R, Soman S, Joseph KS, Hage DS. Applications of silica supports in affinity chromatography. J Sep Sci 2007; 29:719-37. [PMID: 16830485 DOI: 10.1002/jssc.200500501] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The combined use of silica-based chromatographic supports with immobilized affinity ligands can be used in many preparative and analytical applications. One example is the use of silica-based affinity columns in HPLC, giving rise to a method known as high-performance affinity chromatography (HPAC). This review discusses the role that silica has played in the development of affinity chromatography and HPAC and the applications of silica in these methods. This includes a discussion of the types of ligands that have been employed with silica and the methods by which these ligands have been immobilized. Various formats have also been presented for the use of silica in affinity chromatographic methods, including assays involving direct or indirect analyte detection, on-line or off-line affinity extraction, and chiral separations. The use of silica-based affinity columns in studies of biological systems based on zonal elution and frontal analysis methods will also be considered.
Collapse
Affiliation(s)
- John E Schiel
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | | | | | | | |
Collapse
|
5
|
Moxley RA, Jarrett HW. Oligonucleotide trapping method for transcription factor purification systematic optimization using electrophoretic mobility shift assay. J Chromatogr A 2005; 1070:23-34. [PMID: 15861784 DOI: 10.1016/j.chroma.2005.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oligonucleotide trapping, where a transcription factor-DNA response element complex is formed in solution and then recovered (trapped) on a column, was optimized for the purification of CAAT/enhancer binding protein (C/EBP) from rat liver nuclear extract. Electrophoretic mobility shift assays (EMSAs) with ACEP24(GT)5 oligonucleotide, containing the CAAT element, was used to estimate thebinding affinity and concentration of C/EBP in the nuclear extract and then low concentrations of protein and oligonucleotide, which favor specific binding, were used for all further experiments. Also using EMSA, the highest concentrations of competitors, which inhibit non-specific binding but do not inhibit oligonucleotide binding by C/EBP, were determined to be 932 nM T18 (single-stranded DNA), 50 ng/ml heparin (non-DNA competitor), and 50 microg/ml poly(dI:dC) (duplex DNA). Inclusion of 0.1% Tween-20 improved DNA binding. For complex formation, 110 microg nuclear extract was diluted to 0.2 nM C/EBP (apparent Kd of C/EBP) and 1.34 nM ACEP24(GT)5 was added, along with Tween-20 and the competitors. After incubation, the complex was trapped by annealing the (GT)5 tail of the C/EBP-[ACEP24(GT)5] complex to an (AC)5-Sepharose column under flow at 4 degrees C. The column was washed with 0.4 M NaCl and the protein eluted with 1.2 M NaCl. The purification typically resulted in two proteins of apparent molecular mass 32000 and 38000. The smaller one, the major product, was identified to be C/EBP-alpha. The yield was 2.1 microg (66 pmol) of purified C/EBP-alpha p32. This systematic approach to oligonucleotide trapping is generally applicable for the purification of other transcription factors.
Collapse
Affiliation(s)
- Robert A Moxley
- Department of Molecular Sciences, University of Tennessee, 858 Madison Avenue, Suite G-01, Molecular Sciences Building, Memphis, TN 38163, USA
| | | |
Collapse
|