1
|
Lam YC, Hamchand R, Mucci NC, Kauffman SJ, Dudkina N, Reagle EV, Casanova-Torres ÁM, DeCuyper J, Chen H, Song D, Thomas MG, Palm NW, Goodrich-Blair H, Crawford JM. The Xenorhabdus nematophila LrhA transcriptional regulator modulates production of γ-keto- N-acyl amides with inhibitory activity against mutualistic host nematode egg hatching. Appl Environ Microbiol 2024; 90:e0052824. [PMID: 38916293 PMCID: PMC11267870 DOI: 10.1128/aem.00528-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/01/2024] [Indexed: 06/26/2024] Open
Abstract
Xenorhabdus nematophila is a symbiotic Gammaproteobacterium that produces diverse natural products that facilitate mutualistic and pathogenic interactions in their nematode and insect hosts, respectively. The interplay between X. nematophila secondary metabolism and symbiosis stage is tuned by various global regulators. An example of such a regulator is the LysR-type protein transcription factor LrhA, which regulates amino acid metabolism and is necessary for virulence in insects and normal nematode progeny production. Here, we utilized comparative metabolomics and molecular networking to identify small molecule factors regulated by LrhA and characterized a rare γ-ketoacid (GKA) and two new N-acyl amides, GKA-Arg (1) and GKA-Pro (2) which harbor a γ-keto acyl appendage. A lrhA null mutant produced elevated levels of compound 1 and reduced levels of compound 2 relative to wild type. N-acyl amides 1 and 2 were shown to be selective agonists for the human G-protein-coupled receptors (GPCRs) C3AR1 and CHRM2, respectively. The CHRM2 agonist 2 deleteriously affected the hatch rate and length of Steinernema nematodes. This work further highlights the utility of exploiting regulators of host-bacteria interactions for the identification of the bioactive small molecule signals that they control. IMPORTANCE Xenorhabdus bacteria are of interest due to their symbiotic relationship with Steinernema nematodes and their ability to produce a variety of natural bioactive compounds. Despite their importance, the regulatory hierarchy connecting specific natural products and their regulators is poorly understood. In this study, comparative metabolomic profiling was utilized to identify the secondary metabolites modulated by the X. nematophila global regulator LrhA. This analysis led to the discovery of three metabolites, including an N-acyl amide that inhibited the egg hatching rate and length of Steinernema carpocapsae nematodes. These findings support the notion that X. nematophila LrhA influences the symbiosis between X. nematophila and S. carpocapsae through N-acyl amide signaling. A deeper understanding of the regulatory hierarchy of these natural products could contribute to a better comprehension of the symbiotic relationship between X. nematophila and S. carpocapsae.
Collapse
Affiliation(s)
- Yick Chong Lam
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Nicholas C. Mucci
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Sarah J. Kauffman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Natavan Dudkina
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Emily V. Reagle
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jessica DeCuyper
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Haiwei Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael G. Thomas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Lebedev AT, Polyakova OV, Artaev VB, Mednikova MB, Anokhina EA. Comprehensive two-dimensional gas chromatography-high resolution mass spectrometry with complementary ionization methods in the study of 5000-year-old mummy. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9058. [PMID: 33496359 DOI: 10.1002/rcm.9058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Mummification is one of the defining customs of ancient Egypt. The nuances of the embalming procedure and the composition of the embalming mixtures have attracted the attention of scientists and laypeople for a long time. Modern analytical tools make mummy studies more efficient. METHODS Comprehensive two-dimensional gas chromatography-high resolution mass spectrometry (GCxGC/HRMS) with complementary ionization methods (electron ionization, positive chemical ionization, and electron capture negative ionization [ECNI]) with a Pegasus GC-HRT+4D instrument was used to identify embalming components in the mummy from the Pushkin Museum of Fine Arts acquired in 1913 in London at the de Rustafjaell sale. The mummy dates back to the late Predynastic period (direct accelerator mass spectrometry-dating 3356-3098 bc), being one of the oldest in the world. RESULTS The results showed the complexity of the embalming mixtures that were already in use 5000 years ago. Several hundred organic compounds were identified in the mummy samples. Various types of hydrocarbons (triterpanes, steranes, isoprenoid, and polycyclic aromatic hydrocarbons) prove the presence of petroleum products. Iodinated compounds detected using ECNI define oils of marine origin, whereas esters of palmitic acid indicate the use of beeswax. The nature of the discovered components of conifer tar proves that the preliminary processing of conifer resins involved heating. GCxGC/HRMS also allowed a number of modern contaminants (phthalates, organophosphates, and even DDT) to be identified. CONCLUSIONS Application of a powerful GCxGC/HRMS technique with complementary ionization methods allowed significant widening of the range of organic compounds used for mummification that could be identified. The complexity of the embalming mixtures supports the hypothesis of the high social status of the child made on the basis of the preliminary study of the mummy.
Collapse
Affiliation(s)
- Albert T Lebedev
- Organic Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V Polyakova
- Organic Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Maria B Mednikova
- Department of Theory and Methods, Institute of Archaeology RAS, Moscow, Russia
| | - Eugenia A Anokhina
- Department of the Ancient Orient, The Pushkin State Museum of Fine Arts, Moscow, Russia
| |
Collapse
|
3
|
Ménager M, Azémard C, Vieillescazes C. Study of Egyptian mummification balms by FT-IR spectroscopy and GC–MS. Microchem J 2014. [DOI: 10.1016/j.microc.2013.11.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Regert M. Analytical strategies for discriminating archeological fatty substances from animal origin. MASS SPECTROMETRY REVIEWS 2011; 30:177-220. [PMID: 21337597 DOI: 10.1002/mas.20271] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/21/2009] [Accepted: 07/21/2009] [Indexed: 05/21/2023]
Abstract
Mass spectrometry (MS) is an essential tool in the field of biomolecular archeology to characterize amorphous organic residues preserved in ancient ceramic vessels. Animal fats of various nature and origin, namely subcutaneous fats of cattle, sheep, goats, pigs, horses, and also of dairy products, are those most commonly identified in organic residues in archeological pottery. Fats and oils of marine origin have also been revealed. Since the first applications of MS coupled with gas chromatography (GC) in archeology at the end of 1980s, several developments have occurred, including isotopic determinations by GC coupled to isotope ratio MS and identification of triacylglycerols (TAGs) structure by soft ionization techniques (ESI and APCI). The combination of these methods provides invaluable insights into the strategies of exploitation of animal products in prehistory. In this review, I focus on the analytical strategies based upon MS that allow elucidation of the structure of biomolecular constituents and determination of their isotopic values to identify the nature of animal fat components preserved in highly complex and degraded archeological matrices.
Collapse
Affiliation(s)
- M Regert
- Centre d'Etudes Préhistoire, Antiquité, Moyen Âge, UMR 6130, Université Nice Sophia Antipolis, CNRS, Bât. 1; 250, rue Albert Einstein, F-06560 Valbonne, France.
| |
Collapse
|
5
|
Colombini MP, Modugno F, Ribechini E. Organic mass spectrometry in archaeology: evidence for Brassicaceae seed oil in Egyptian ceramic lamps. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:890-8. [PMID: 15934034 DOI: 10.1002/jms.865] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An analytical procedure based on alkaline hydrolysis and silylation followed by GC/MS analysis was employed to study the formation of characteristic acidic compounds and the development of a distinctive chromatographic pattern in the course of accelerated ageing tests on Brassicaceae seed oil. On the basis of mass spectra of trimethylsilyl derivatives, the main degradation products were identified as alpha,omega-dicarboxylic, omega-hydroxycarboxylic and dihydroxycarboxylic acids, including 11,12-dihydroxyeicosanoic acid and 13,14-dihydroxydocosanoic acid. The mass spectra of both these compounds are characterised by fragment ions arising from the alpha cleavage of the bond between the two vicinal trimethylsiloxy groups, resulting in fragments at m/z 215 and 345 for 11,12-dihydroxyeicosanoic acid, and at m/z 215 and 373 for 13,14-dihydroxydocosanoic acid. Other significant fragment ion-radicals from rearrangement process at m/z [M - 90](+*), [M - 142](+*), 204 as well as fragment ions at m/z [M - 15](+), [M - 105](+), 217 are present in the mass spectra of both the compounds. The results obtained for reference materials were compared with those relating to archaeological organic materials recovered in Egyptian pottery lamps. The occurrence of the same characteristic degradation products found in the reference materials subjected to accelerated ageing indicates an unambiguous origin for the organic archaeological remains and represents the chemical evidence for the use of oil from seeds of Brassicaceae as illuminant.
Collapse
Affiliation(s)
- Maria Perla Colombini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Risorgimento 35, 56126 Pisa, Italy.
| | | | | |
Collapse
|
6
|
Copley MS, Bland HA, Rose P, Horton M, Evershed RP. Gas chromatographic, mass spectrometric and stable carbon isotopic investigations of organic residues of plant oils and animal fats employed as illuminants in archaeological lamps from Egypt. Analyst 2005; 130:860-71. [PMID: 15912234 DOI: 10.1039/b500403a] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Man's use of illuminants in lamps or as torches to extend the working day and range of environments accessible to him would have been a major technological advance in human civilisation. The most obvious evidence for this in the archaeological record comes from pottery and stone vessels showing sooting due to the use of a wick in conjunction with a lipid-based fuel or illuminant. A wide range of potential fuels would have been exploited depending upon availability and burning requirements. Reported herein are the results of chemical investigations of a number of lamps recovered from excavations of the site of Qasr Ibrim, Egypt. Gas chromatographic, mass spectrometric and stable carbon isotopic analyses of both free (solvent extractable) and 'bound'(released from solvent extracted pottery by base treatment) lipids have revealed a wide range of saturated fatty acids, hydroxy fatty acids and alpha, omega-dicarboxylic acids. Examination of the distributions of compounds and comparisons with the fatty acid compositions of modern plant oils have allowed a range of fats and oils to be recognised. Specific illuminants identified include Brassicaceae (Cruciferae) seed oil (most likely radish oil, Raphanus sativus), castor oil (from Ricinus communis), animal fat, with less diagnostic distributions and delta(13)C values being consistent with low stearic acid plant oils, such as linseed (Linum usitatissimum) or sesame (Sesamum indicum) oils. The identifications of the various oils and fats are supported by parallel investigations of illuminant residues produced by burning various oils in replica pottery lamps. The findings are entirely consistent with the classical writers including Strabo, Pliny and Theophrastrus.
Collapse
Affiliation(s)
- M S Copley
- Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | | | | | |
Collapse
|
7
|
Varmuza K, Makristathis A, Schwarzmeier J, Seidler H, Mader RM. Exploration of anthropological specimens by GC-MS and chemometrics. MASS SPECTROMETRY REVIEWS 2005; 24:427-452. [PMID: 15389850 DOI: 10.1002/mas.20020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Anthropological specimens combine a variety of unfavorable characteristics, rendering their evaluation an analytical challenge. Their remarkable status is primarily based on two characteristics: (i) these very rare samples of human origin are testimonies of human history and are, therefore, available only in minute amounts for analytical purposes, and (ii) the analysis of these samples is extremely limited by the decomposition of molecules, which are easily detected in living organisms, such as nucleic acids and proteins, but are subject to rapid post-mortem decay. In this article, we review the methods and results of archaeometry, emphasizing the role of MS combined with chemometrics. Focusing on experimental results for fatty acid profiles, specimens from mummies from different civilizations were compared. Considering in particular the Tyrolean Iceman, the application of chemometric methods to GC-MS data recovers essential information about the preservation and the storage conditions of mummies.
Collapse
Affiliation(s)
- Kurt Varmuza
- Institute of Chemical Engineering, Laboratory for Chemometrics, Vienna University of Technology, Vienna, Austria.
| | | | | | | | | |
Collapse
|
8
|
Makristathis A, Schwarzmeier J, Mader RM, Varmuza K, Simonitsch I, Chavez JC, Platzer W, Unterdorfer H, Scheithauer R, Derevianko A, Seidler H. Fatty acid composition and preservation of the Tyrolean Iceman and other mummies. J Lipid Res 2002; 43:2056-61. [PMID: 12454266 DOI: 10.1194/jlr.m100424-jlr200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In anthropology, objective parameters to adequately describe storage conditions and the preservation of mummies have yet to be identified. Considering that fatty acids degrade to stable products, we analysed their profile in human mummies and in control samples by gas chromatography coupled to mass spectrometry (GC/MS). Originating from different epochs and civilizations, samples of the Tyrolean Iceman, other glacier corpses, a freeze dried mummy, corpses from a permafrost region, a corpse mummified immersed in water, and a desert mummy were evaluated. Chemometric analysis based on the concentrations of 16 fatty acids revealed the degree of similarity between anthropologic and fresh corpse samples, which was mainly influenced by the content of palmitic acid, oleic acid, and 10-hydroxystearic acid. The presence of 10-hydroxystearic acid was associated with immersion in water, whereas dry mummification was accompanied by high contents of oleic acid. Samples of the Tyrolean Iceman clustered between fresh tissue and those of other glacier corpses indicating the good preservation of this mummy. Thus, environmental post-mortem conditions were associated with characteristic fatty acid patterns suggesting that chemometric analysis of fatty acid contents may add to our knowledge about post-mortem storage conditions and the preservation of human corpses.
Collapse
Affiliation(s)
- Athanasios Makristathis
- Department of Clinical Microbiology, Hygiene Institute, University of Vienna, Austria. Department of Internal Medicine I, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chapter 15 Lipids. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0301-4770(08)61508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|