1
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
2
|
Casto-Boggess LD, Golozar M, Butterworth AL, Mathies RA. Optimization of Fluorescence Labeling of Trace Analytes: Application to Amino Acid Biosignature Detection with Pacific Blue. Anal Chem 2021; 94:1240-1247. [PMID: 34965088 DOI: 10.1021/acs.analchem.1c04465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence labeling of biomolecules and fluorescence detection platforms provide a powerful approach to high-sensitivity bioanalysis. Reactive probes can be chosen to target specific functional groups to enable selective analysis of a chosen class of analytes. Particularly, when targeting trace levels of analytes, it is important to optimize the reaction chemistry to maximize the labeling efficiency and minimize the background. Here, we develop methods to optimize the labeling and detection of Pacific Blue (PB)-tagged amino acids. A model is developed to quantitate labeling kinetics and completeness in the circumstance where analyte labeling and reactive probe hydrolysis are in competition. The rates of PB hydrolysis and amino acid labeling are determined as a function of pH. Labeling kinetics and completeness as a function of PB concentration are found to depend on the ratio of the hydrolysis time to the initial labeling time, which depends on the initial PB concentration. Finally, the optimized labeling and detection conditions are used to perform capillary electrophoresis analysis demonstrating 100 pM sensitivities and high-efficiency separations of an 11 amino acid test set. This work provides a quantitative optimization model that is applicable to a variety of reactive probes and targets. Our approach is particularly useful for the analysis of trace amine and amino acid biosignatures in extraterrestrial samples. For illustration, our optimized conditions (reaction at 4 °C in a pH 8.5 buffer) are used to detect trace amino acid analytes at the 100 pM level in an Antarctic ice core sample.
Collapse
Affiliation(s)
- Laura D Casto-Boggess
- Space Sciences Laboratory, University of California Berkeley, Berkeley, California 94720-7450, United States
| | - Matin Golozar
- Chemistry Department and Space Sciences Laboratory, University of California Berkeley, Berkeley, California 94720, United States
| | - Anna L Butterworth
- Space Sciences Laboratory, University of California Berkeley, Berkeley, California 94720-7450, United States
| | - Richard A Mathies
- Chemistry Department and Space Sciences Laboratory, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Ferré S, González-Ruiz V, Guillarme D, Rudaz S. Analytical strategies for the determination of amino acids: Past, present and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121819. [PMID: 31704619 DOI: 10.1016/j.jchromb.2019.121819] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes the analytical methods that have been developed over the years to tackle the high polarity and non-chromophoric nature of amino acids (AAs). First, the historical methods are briefly presented, with a strong focus on the use of derivatization reagents to make AAs detectable with spectroscopic techniques (ultraviolet and fluorescence) and/or sufficiently retained in reversed phase liquid chromatography. Then, an overview of the current analytical strategies for achiral separation of AAs is provided, in which mass spectrometry (MS) becomes the most widely used detection mode in combination with innovative liquid chromatography or capillary electrophoresis conditions to detect AAs at very low concentration in complex matrixes. Finally, some future trends of AA analysis are provided in the last section of the review, including the use of supercritical fluid chromatography (SFC), multidimensional liquid chromatography and electrophoretic separations, hyphenation of ion exchange chromatography to mass spectrometry, and use of ion mobility spectrometry mass spectrometry (IM-MS). Various application examples will also be presented throughout the review to highlight the benefits and limitations of these different analytical approaches for AAs determination.
Collapse
Affiliation(s)
- Sabrina Ferré
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|
4
|
Frolova TS, Lipeeva AV, Baev DS, Baiborodin SI, Orishchenko КE, Kochetov AV, Sinitsyna OI. Fluorescent labeling of ursolic acid with FITC for investigation of its cytotoxic activity using confocal microscopy. Bioorg Chem 2019; 87:876-887. [PMID: 30538052 DOI: 10.1016/j.bioorg.2018.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022]
Abstract
Fluorescent labeling is a widely-used approach in the study of intracellular processes. This method is becoming increasingly popular for studying small bioactive molecules of natural origin; it allows us to estimate the vital intracellular changes which occur under their influence. We propose a new approach for visualization of the intracellular distribution of triterpene acids, based on fluorescent labeling by fluoresceine isothiocyanate. As a model compound we took the most widely-used and best-studied acid in the ursane series - ursolic acid, as this enabled us to compare the results obtained during our research with the available data, in order to evaluate the validity of the proposed method. Experimental tracing of the dynamics of penetration and distribution of the labeled ursolic acid has shown that when the acid enters the cell, it initially localizes on the inner membranes where the predicted target Akt1/protein kinase B - a protein that inhibits apoptosis - is located.
Collapse
Affiliation(s)
- Tatiana S Frolova
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia; Federal Research Center of Fundamental and Translational Medicine of Siberian Branch of the Russian Academy of Sciences, 2, Timakov Street, 630117 Novosibirsk, Russia.
| | - Alla V Lipeeva
- Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| | - Sergey I Baiborodin
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Кonstantin E Orishchenko
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Alexey V Kochetov
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| | - Olga I Sinitsyna
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
O'Brien KB, Sharrief AZ, Nordstrom EJ, Travanty AJ, Huynh M, Romero MP, Bittner KC, Bowser MT, Burton FH. Biochemical markers of striatal desensitization in cortical-limbic hyperglutamatergic TS- & OCD-like transgenic mice. J Chem Neuroanat 2018; 89:11-20. [PMID: 29481900 DOI: 10.1016/j.jchemneu.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 12/19/2017] [Accepted: 02/18/2018] [Indexed: 01/21/2023]
Abstract
Tics and compulsions in comorbid Tourette's syndrome (TS) and obsessive-compulsive disorder (OCD) are associated with chronic hyperactivity of parallel cortico/amygdalo-striato-thalamo-cortical (CSTC) loop circuits. Comorbid TS- & OCD-like behaviors have likewise been observed in D1CT-7 mice, in which an artificial neuropotentiating transgene encoding the cAMP-elevating intracellular subunit of cholera toxin (CT) is chronically expressed selectively in somatosensory cortical & amygdalar dopamine (DA) D1 receptor-expressing neurons that activate cortico/amygdalo-striatal glutamate (GLU) output. We've now examined in D1CT-7 mice whether the chronic GLU output from their potentiated cortical/limbic CSTC subcircuit afferents associated with TS- & OCD-like behaviors elicits desensitizing neurochemical changes in the striatum (STR). Microdialysis-capillary electrophoresis and in situ hybridization reveal that the mice's chronic GLU-excited STR exhibits pharmacodynamic changes in three independently GLU-regulated measures of output neuron activation, co-excitation, and desensitization, signifying hyperactive striatal CSTC output and compensatory striatal glial and neuronal desensitization: 1) Striatal GABA, an output neurotransmitter induced by afferent GLU, is increased. 2) Striatal d-serine, a glial excitatory co-transmitter inhibited by afferent GLU, is decreased. 3) Striatal Period1 (Per1), which plays a non-circadian role in the STR as a GLU + DA D1- (cAMP-) dependent repressor thought to feedback-inhibit GLU + DA- triggered ultradian urges and motions, is transcriptionally abolished. These data imply that chronic cortical/limbic GLU excitation of the STR desensitizes its co-excitatory d-serine & DA inputs while freezing its GABA output in an active state to mediate chronic tics and compulsions - possibly in part by abolishing striatal Per1-dependent ultradian extinction of urges and motions.
Collapse
Affiliation(s)
- Kylie B O'Brien
- Department of Chemistry, University of Minnesota, 139 Smith Hall, 207 Pleasant St SE, Minneapolis, MN 55455 USA
| | - Anjail Z Sharrief
- Department of Psychology & Neuroscience Program, Smith College, Clark Science Center, 1 College Lane, Sabin-Reed 429, Northampton, MA 01063, USA
| | - Eric J Nordstrom
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455-0217, USA; Minneapolis Medical Research Foundation, Hennepin County Medical Center, 701 Park Ave, Shapiro S3.111, Minneapolis MN 55415-1623 USA
| | - Anthony J Travanty
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455-0217, USA
| | - Mailee Huynh
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455-0217, USA; Minneapolis Medical Research Foundation, Hennepin County Medical Center, 701 Park Ave, Shapiro S3.111, Minneapolis MN 55415-1623 USA
| | - Megan P Romero
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455-0217, USA; Minneapolis Medical Research Foundation, Hennepin County Medical Center, 701 Park Ave, Shapiro S3.111, Minneapolis MN 55415-1623 USA
| | - Katie C Bittner
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455-0217, USA
| | - Michael T Bowser
- Department of Chemistry, University of Minnesota, 139 Smith Hall, 207 Pleasant St SE, Minneapolis, MN 55455 USA
| | - Frank H Burton
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis MN 55455-0217, USA; Minneapolis Medical Research Foundation, Hennepin County Medical Center, 701 Park Ave, Shapiro S3.111, Minneapolis MN 55415-1623 USA.
| |
Collapse
|
6
|
Galievsky VA, Stasheuski AS, Krylov SN. Improvement of LOD in Fluorescence Detection with Spectrally Nonuniform Background by Optimization of Emission Filtering. Anal Chem 2017; 89:11122-11128. [PMID: 28902988 DOI: 10.1021/acs.analchem.7b03400] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The limit-of-detection (LOD) in analytical instruments with fluorescence detection can be improved by reducing noise of optical background. Efficiently reducing optical background noise in systems with spectrally nonuniform background requires complex optimization of an emission filter-the main element of spectral filtration. Here, we introduce a filter-optimization method, which utilizes an expression for the signal-to-noise ratio (SNR) as a function of (i) all noise components (dark, shot, and flicker), (ii) emission spectrum of the analyte, (iii) emission spectrum of the optical background, and (iv) transmittance spectrum of the emission filter. In essence, the noise components and the emission spectra are determined experimentally and substituted into the expression. This leaves a single variable-the transmittance spectrum of the filter-which is optimized numerically by maximizing SNR. Maximizing SNR provides an accurate way of filter optimization, while a previously used approach based on maximizing a signal-to-background ratio (SBR) is the approximation that can lead to much poorer LOD specifically in detection of fluorescently labeled biomolecules. The proposed filter-optimization method will be an indispensable tool for developing new and improving existing fluorescence-detection systems aiming at ultimately low LOD.
Collapse
Affiliation(s)
- Victor A Galievsky
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Alexander S Stasheuski
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
7
|
Harstad RK, Bowser MT. High-Speed Microdialysis-Capillary Electrophoresis Assays for Measuring Branched Chain Amino Acid Uptake in 3T3-L1 cells. Anal Chem 2016; 88:8115-22. [PMID: 27398773 DOI: 10.1021/acs.analchem.6b01846] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have developed a high-throughput microdialysis-capillary electrophoresis (MD-CE) assay for monitoring branched chain amino acid (BCAA) uptake/release dynamics in 3T3-L1 cells. BCAAs (i.e., isoleucine, leucine, and valine) and their downstream metabolites (i.e., alanine, glutamine, and glutamate) are important indicators of adipocyte lipogenesis. To perform an analysis, amino acids were sampled using microdialysis, fluorescently labeled in an online reaction, separated using CE, and detected using laser-induced fluorescence (LIF) in a sheath flow cuvette. Separation conditions were optimized for the resolution of the BCAAs isoleucine, leucine, and valine, as well as 13 other amino acids, including ornithine, alanine, glutamine, and glutamate. CE separations were performed in <30 s, and the temporal resolution of the online MD-CE assay was <60 s. Limits of detection (LOD) were 400, 200, and 100 nM for isoleucine, leucine, and valine, respectively. MD-CE dramatically improved throughput in comparison to traditional offline CE methods, allowing 8 replicates of 15 samples (i.e., 120 analyses) to be assayed in <120 min. The MD-CE assay was used to assess the metabolism dynamics of 3T3-L1 cells over time, confirming the utility of the assay.
Collapse
Affiliation(s)
- Rachel K Harstad
- Department of Chemistry, University of Minnesota 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Michael T Bowser
- Department of Chemistry, University of Minnesota 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Galievsky VA, Stasheuski AS, Krylov SN. "Getting the best sensitivity from on-capillary fluorescence detection in capillary electrophoresis" - A tutorial. Anal Chim Acta 2016; 935:58-81. [PMID: 27543015 DOI: 10.1016/j.aca.2016.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
Capillary electrophoresis with Laser-Induced Fluorescence (CE-LIF) detection is being applied to new analytical problems which challenge both the power of CE separation and the sensitivity of LIF detection. On-capillary LIF detection is much more practical than post-capillary detection in a sheath-flow cell. Therefore, commercial CE instruments utilize solely on-capillary CE-LIF detection with a Limit of Detection (LOD) in the nM range, while there are multiple applications of CE-LIF that require pM or lower LODs. This tutorial analyzes all aspects of on-capillary LIF detection in CE in an attempt to identify means for improving LOD of CE-LIF with on-capillary detection. We consider principles of signal enhancement and noise reduction, as well as relevant areas of fluorophore photochemistry and fluorescent microscopy.
Collapse
Affiliation(s)
- Victor A Galievsky
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Alexander S Stasheuski
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
9
|
Chen C, Hu Y, Shi X, Tao C, Zheng H, Fei W, Han S, Zhu J, Wei Y, Li F. A single-label fluorescent derivatization method for quantitative determination of neurotoxin in vivo by capillary electrophoresis coupled with laser-induced fluorescence detection. Analyst 2016; 141:4495-501. [PMID: 27175860 DOI: 10.1039/c6an00327c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurotoxin (NT), a short-chain α-neurotoxin, is the main neurotoxic protein identified from the venom of Naja naja atra. As an effective drug for the analgesis of advanced cancer patients, NT lasts longer than morphine and does not cause addiction. However, achieving a sensitive and high-resolution measurement of NT is difficult because of the extra-low content of NT in vivo. Therefore, developing a novel method to quantify NT is essential to study its pharmacokinetics in vivo. Although NT contains four primary amine groups that could react with the thiourea in fluorescein isothiocyanate (FITC), we developed a simple and reproducible single-label fluorescent derivatization method for NT which is related to the reaction of N-terminal α-amino of NT alone under optimized derivatization conditions. Furthermore, neurotoxin labelled with fluorescein isothiocyanate (NT-FITC) was prepared by high-performance liquid chromatography (HPLC) with a purity value higher than 99.29% and identified by MALDI-TOF/TOF-MS. Finally, NT-FITC could be detected at 0.8 nmol L(-1) in rat plasma using capillary electrophoresis coupled with laser induced fluorescence detection (CE-LIF). In this paper, the established method robustly and reliably quantified NT labelled with FITC via intravenous and intramuscular administrations in vivo. In addition, this work fully demonstrated the pharmacokinetic characteristics of NT in vivo, which could reduce the risk of drug accumulation, optimize therapies, and provide sufficient evidence for the rational use of NT in clinical and research laboratories.
Collapse
Affiliation(s)
- Cuiwei Chen
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kanoatov M, Galievsky VA, Krylova SM, Cherney LT, Jankowski HK, Krylov SN. Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant. Anal Chem 2015; 87:3099-106. [PMID: 25668425 DOI: 10.1021/acs.analchem.5b00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) is a versatile tool for studying affinity binding. Here we describe a NECEEM-based approach for simultaneous determination of both the equilibrium constant, K(d), and the unknown concentration of a binder that we call a target, T. In essence, NECEEM is used to measure the unbound equilibrium fraction, R, for the binder with a known concentration that we call a ligand, L. The first set of experiments is performed at varying concentrations of T, prepared by serial dilution of the stock solution, but at a constant concentration of L, which is as low as its reliable quantitation allows. The value of R is plotted as a function of the dilution coefficient, and dilution corresponding to R = 0.5 is determined. This dilution of T is used in the second set of experiments in which the concentration of T is fixed but the concentration of L is varied. The experimental dependence of R on the concentration of L is fitted with a function describing their theoretical dependence. Both K(d) and the concentration of T are used as fitting parameters, and their sought values are determined as the ones that generate the best fit. We have fully validated this approach in silico by using computer-simulated NECEEM electropherograms and then applied it to experimental determination of the unknown concentration of MutS protein and K(d) of its interactions with a DNA aptamer. The general approach described here is applicable not only to NECEEM but also to any other method that can determine a fraction of unbound molecules at equilibrium.
Collapse
Affiliation(s)
- Mirzo Kanoatov
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Skinner CD. Fiber optic illumination of a poly(dimethylsiloxane) sheath flow cuvette for diode laser induced fluorescence detection in capillary electrophoresis. Electrophoresis 2015; 36:502-8. [DOI: 10.1002/elps.201400437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Cameron D. Skinner
- Department of Chemistry and Biochemistry; Concordia University; Montréal QC Canada
| |
Collapse
|
12
|
Lan T, Wang J, Dong C, Huang X, Ren J. Homogeneous immunoassays by using photon burst counting technique of single gold nanoparticles. Talanta 2015; 132:698-704. [DOI: 10.1016/j.talanta.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 12/29/2022]
|
13
|
Prikryl J, Foret F. Fluorescence detector for capillary separations fabricated by 3D printing. Anal Chem 2014; 86:11951-6. [PMID: 25427247 DOI: 10.1021/ac503678n] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A simple inexpensive light-emitting diode (LED)-based fluorescence detector for detection in capillary separations is described. The modular design includes a separate high power LED source, detector head, designed in the epifluorescence arrangement, and capillary detection cells. The detector head and detection cells were printed using a 3D printer and assembled with commercially available optical components. Optical fibers were used for connecting the detector head to the LED excitation source and the photodetector module. Microscope objective or high numerical aperture optical fiber were used for collection of the fluorescence emission from the fused silica separation capillary. As an example, mixture of oligosaccharides labeled by 8-aminopyrene-1,3,6-trisulfonate (APTS) was separated by capillary zone electrophoresis and detected by the described detector. The performance of the detector was compared with both a semiconductor photodiode and photomultiplier as light sensing elements. The main advantages of the 3D printed parts, compared to the more expensive alternatives from the optic component suppliers, include not only cost reduction, but also easy customization of the spatial arrangement, modularity, miniaturization, and sharing of information between laboratories for easy replication or further modifications of the detector. All information and files necessary for printing the presented detector are enclosed in the Supporting Information.
Collapse
Affiliation(s)
- Jan Prikryl
- Institute of Analytical Chemistry AS CR, v. v. i. , 60200 Brno, Czech Republic
| | | |
Collapse
|
14
|
Huge BJ, Flaherty RJ, Dada OO, Dovichi NJ. Capillary electrophoresis coupled with automated fraction collection. Talanta 2014; 130:288-93. [PMID: 25159411 DOI: 10.1016/j.talanta.2014.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standard deviation in migration time was 1%. The mean and standard deviation of the tetramethylrhodamine peak width was 5 ± 1 s and likely limited by the 4-s period between droplet deposition. We next injected a complex mixture of DNA fragments and used real-time PCR to quantify the product in a CE-SELEX experiment. The reconstructed electrophoretic peak was 27 s in duration. Finally, we repeated the experiment in the presence of a 30-µM thrombin solution under CE-SELEX conditions; fractions were collected and next-generation sequencing was used to characterize the DNA binders. Over 25,000 sequences were identified with close matches to known thrombin binding aptamers.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan J Flaherty
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oluwatosin O Dada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
15
|
Satori CP, Arriaga EA. Describing autophagy via analysis of individual organelles by capillary electrophoresis with laser induced fluorescence detection. Anal Chem 2013; 85:11391-400. [PMID: 24164243 PMCID: PMC3872064 DOI: 10.1021/ac4023549] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Autophagy is a cellular process responsible for the degradation of intracellular cargo. Its dynamic nature and the multiple types of autophagy organelles present at a given time make current measurements, such as those done by Western blotting, insufficient to understand autophagy and its roles in aging and disease. Capillary electrophoresis coupled to laser induced fluorescence detection (CE-LIF) has been used previously to count and determine properties of individual organelles, but has never been used on autophagy organelles or for determination of changes of such properties. Here we used autophagy organelles isolated from L6 cells expressing GFP-LC3, which is an autophagy marker, to develop a CE-LIF method for the determination of the number of autophagy organelles, their individual GFP-LC3 fluorescence intensities, and their individual electrophoretic mobilities. These properties were compared under basal and rapamycin-driven autophagy, which showed differences in the number of detected organelles and electrophoretic mobility distributions of autophagy organelles. Vinblastine treatment was also used to halt autophagy and further characterize changes and provide additional insight on the nature of autophagy organelles. This approach revealed dramatic and opposite directions in changes of organelle numbers, GFP-LC3 contents, and electrophoretic mobilities during the duration of the vinblastine treatment. These trends suggested the identity of organelle types being detected. These observations demonstrate that individual organelle analysis by CE-LIF is a powerful technology to investigate the complexity and nature of autophagy, a process that plays critical roles in response to drug treatments, aging, and disease.
Collapse
Affiliation(s)
- Chad P Satori
- University of Minnesota Twin-Cities Department of Chemistry, 207 Pleasant Street Southeast, Minneapolis Minnesota 55455-0431, United States
| | | |
Collapse
|
16
|
Automated method for analysis of tryptophan and tyrosine metabolites using capillary electrophoresis with native fluorescence detection. Anal Bioanal Chem 2013; 405:2451-9. [PMID: 23307134 DOI: 10.1007/s00216-012-6685-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/28/2012] [Accepted: 12/20/2012] [Indexed: 02/04/2023]
Abstract
Capillary electrophoresis (CE) with laser-induced native fluorescence (LINF) detection offers the ability to characterize low levels of selected analyte classes, depending on the excitation and emission wavelengths used. Here a new automated CE-LINF system that provides deep ultraviolet (DUV) excitation (224 nm) and variable emission wavelength detection was evaluated for the analysis of small molecule tryptophan- and tyrosine-related metabolites. The optimized instrument design includes several features that increase throughput, lower instrument cost and maintenance, and decrease complexity when compared with earlier systems using DUV excitation. Sensitivity is enhanced by using an ellipsoid detection cell to increase the fluorescence collection efficiency. The limits of detection ranged from 4 to 30 nmol/L for serotonin and tyrosine, respectively. The system demonstrated excellent linearity over several orders of magnitude of concentration and intraday precision from 1-11 % relative standard deviation (RSD). The instrument's performance was validated via tryptophan and serotonin characterization using tissue extracts from the mammalian brain stem, with RSDs of less than 10 % for both metabolites. The flexibility and sensitivity offered by DUV laser excitation and tunable emission enables a broad range of small-volume measurements.
Collapse
|
17
|
Dada OO, Huge BJ, Dovichi NJ. Simplified sheath flow cuvette design for ultrasensitive laser induced fluorescence detection in capillary electrophoresis. Analyst 2012; 137:3099-101. [PMID: 22606689 PMCID: PMC3371152 DOI: 10.1039/c2an35321k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a design for a sheath-flow cuvette that uses a relatively inexpensive quartz cuvette. The cuvette has a high optical quality square flow chamber that is fused to quartz tubes at each end. PEEK/TEFZEL fittings hold and seal the quartz flow chamber without putting strain on the cuvette. The performance of the cuvette is evaluated as a laser-induced fluorescence detector for capillary electrophoresis. The cuvette produces mass detection limits of 50 yoctomoles (30 copies) for 5-carboxyl tetramethylrhodamine (5 TAMRA SE) with a separation efficiency of 400,000 theoretical plates.
Collapse
Affiliation(s)
- Oluwatosin O Dada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
18
|
Shameli SM, Glawdel T, Liu Z, Ren CL. Bilinear temperature gradient focusing in a hybrid PDMS/glass microfluidic chip integrated with planar heaters for generating temperature gradients. Anal Chem 2012; 84:2968-73. [PMID: 22404579 DOI: 10.1021/ac300188s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Temperature gradient focusing (TGF) is a counterflow gradient focusing technique, which utilizes a temperature gradient across a microchannel or capillary to separate analytes. With an appropriate buffer, the temperature gradient creates a gradient in both the electric field and electrophoretic velocity. Combined with a bulk counter flow, ionic species concentrate at a unique point where the total velocity sums to zero and separate from each other. Scanning TGF uses varying bulk flow so that a large number of analytes that have large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Up to now, scanning TGF examples have been performed using a linear temperature gradient which has limitations in improving peak capacity and resolution at the same time. In this work, we develop a bilinear temperature gradient along the separation channel that improves both peak capacity and separation resolution simultaneously. The temperature profile along the channel consists of a very sharp gradient used to preconcentrate the sample followed by a shallow gradient that increases separation resolution. A specialized design is developed for the heaters to achieve the bilinear profile using both analytical and numerical modeling. The heaters are integrated onto a hybrid PDMS/glass chip fabricated using conventional sputtering and soft-lithography techniques. Separation performance is characterized by separating several different dyes and amino acids that have close electrophoretic mobilities. Experiments show a dramatic improvement in peak capacity and resolution in comparison to the standard linear temperature gradient.
Collapse
Affiliation(s)
- Seyed Mostafa Shameli
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Canada
| | | | | | | |
Collapse
|
19
|
Zhang ZX, Gao PF, Guo XF, Wang H, Zhang HS. 1,3,5,7-Tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)difluoroboradiaza-s-indacene as a new fluorescent labeling reagent for HPLC determination of amino acid neurotransmitters in the cerebral cortex of mice. Anal Bioanal Chem 2011; 401:1905-14. [DOI: 10.1007/s00216-011-5253-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 11/30/2022]
|
20
|
Ramsay LM, Cermak N, Dada OO, Dovichi NJ. Capillary isoelectric focusing with pH 9.7 cathode for the analysis of gastric biopsies. Anal Bioanal Chem 2011; 400:2025-30. [PMID: 21461616 PMCID: PMC4429874 DOI: 10.1007/s00216-011-4926-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 03/11/2011] [Accepted: 03/16/2011] [Indexed: 10/18/2022]
Abstract
Capillary isoelectric focusing tends to suffer from poor reproducibility, particularly for the analysis of complex protein samples from cellular or tissue homogenates. This poor reproducibility appears to be associated with erratic variations in electroosmotic flow. One cause of electroosmotic flow variation is degradation of the capillary coating caused by the extremely basic solution commonly used during mobilization and focusing; this degradation of the capillary coating can be reduced by employing a CAPS mobilization buffer at pH 9. Another cause of variation is protein adsorption to the capillary wall, which causes an increase in electroosmotic flow. The effects of protein adsorption can be reduced by use of surfactants in the buffer and by employing an extremely low sample loading. We report the use of CAPS mobilization buffer in combination with an ultrasensitive laser-induced fluorescence detector for the reproducible analysis of ∼2 ng of protein from a Barrett's esophagus biopsy.
Collapse
Affiliation(s)
- Lauren M. Ramsay
- Department of Chemistry, University of Washington, Seattle WA 98195 USA
| | - Nathan Cermak
- Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge MA 02139 USA
| | - Oluwatosin O. Dada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46617, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame IN 46617, USA
| |
Collapse
|
21
|
Dada OO, Essaka DC, Hindsgaul O, Palcic MM, Prendergast J, Schnaar RL, Dovichi NJ. Nine orders of magnitude dynamic range: picomolar to millimolar concentration measurement in capillary electrophoresis with laser induced fluorescence detection employing cascaded avalanche photodiode photon counters. Anal Chem 2011; 83:2748-53. [PMID: 21410138 PMCID: PMC3072807 DOI: 10.1021/ac103374x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The dynamic range of capillary electrophoresis analysis is ultimately limited by molecular shot noise at low concentrations and by concentration-induced band broadening at high concentrations. We report a system that approaches these fundamental limits. A laser-induced fluorescence detector is reported that employs a cascade of four fiber-optic beam splitters connected in series to generate a primary signal and four attenuated signals, each monitored by a single-photon counting avalanche photodiode. Appropriate scaling of the signals from the five photodiodes produces a linear optical calibration curve for 5-carboxyl-tetramethylrhodamine from the concentration detection limit of 1 pM to the upper limit of 1 mM. Mass detection limits are 120 yoctomoles (70 molecules) injected into the instrument. The very-wide dynamic range instrument was used to study the metabolic products of the fluorescently labeled glycosphingolipid tetramethylrhodamine labeled GM1 (GM1-TMR) produced by single cells isolated from the rat cerebellum.
Collapse
Affiliation(s)
- Oluwatosin O Dada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Boardman A, Chang T, Folch A, Dovichi NJ. Indium-tin oxide coated microfabricated device for the injection of a single cell into a fused silica capillary for chemical cytometry. Anal Chem 2010; 82:9959-61. [PMID: 21033750 PMCID: PMC3057485 DOI: 10.1021/ac1022716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A microfabricated device is described for the capture and injection of a single mammalian cell into a fused silica capillary for subsequent analysis by chemical cytometry. The device consists of a 500 μm diameter well made from polydimethylsiloxane on an indium-tin oxide coated microscope slide. The bottom of the well contains a 2 μm high aperture, which was designed to block passage of cells. A cellular suspension was allowed to settle on the device, and aspiration through the aperture was used to trap a single NG-108 cell. Untrapped cells were washed from the device, and a 150 μm outer diameter and 50 μm inner diameter capillary was placed in the well. To inject a cell, voltage was applied to the indium-tin oxide while simultaneously applying vacuum at the distal end of the capillary.
Collapse
Affiliation(s)
- Anna Boardman
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
23
|
Dickerson JA, Ramsay LM, Dada OO, Cermak N, Dovichi NJ. Two-dimensional capillary electrophoresis: capillary isoelectric focusing and capillary zone electrophoresis with laser-induced fluorescence detection. Electrophoresis 2010; 31:2650-4. [PMID: 20603830 DOI: 10.1002/elps.201000151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CIEF and CZE are coupled with LIF detection to create an ultrasensitive 2-D separation method for proteins. In this method, two capillaries are joined through a buffer-filled interface. Separate power supplies control the potential at the injection end of the first capillary and at the interface; the detector is held at ground potential. Proteins are labeled with the fluorogenic reagent Chromeo P503, which preserves the isoelectric point of the labeled protein. The labeled proteins were mixed with ampholytes and injected into the first-dimension capillary. A focusing step was performed with the injection end of the capillary at high pH and the interface at low pH. To mobilize components, the interface was filled with a high pH buffer, which was compatible with the second-dimension separation. A fraction was transferred to the second-dimension capillary for separation. The process of fraction transfer and second dimension separation was repeated two dozen times. The separation produced a spot capacity of 125.
Collapse
Affiliation(s)
- Jane A Dickerson
- Department of Chemistry, University of Washington, Seattle WA, USA
| | | | | | | | | |
Collapse
|
24
|
Dickerson JA, Dovichi NJ. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests. Electrophoresis 2010; 31:2461-4. [PMID: 20564272 DOI: 10.1002/elps.201000200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We perform 2-D capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis (CSE) was performed in the first dimension and MEKC was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition, a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the 2-D separation. In this case, the two ridges observed from the original 2-D separation disappeared and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a 2-D Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r=0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r=0.956.
Collapse
Affiliation(s)
- Jane A Dickerson
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | |
Collapse
|
25
|
Ramsay LM, Dickerson JA, Dada O, Dovichi NJ. Femtomolar concentration detection limit and zeptomole mass detection limit for protein separation by capillary isoelectric focusing and laser-induced fluorescence detection. Anal Chem 2010; 81:1741-6. [PMID: 19206532 DOI: 10.1021/ac8025948] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescence tends to produce the lowest detection limits for most forms of capillary electrophoresis. Two issues have discouraged its use in capillary isoelectric focusing. The first issue is fluorescent labeling of proteins. Most labeling reagents react with lysine residues and convert the cationic residue to a neutral or anionic product. At best, these reagents perturb the isoelectric point of the protein. At worse, they convert each protein into hundreds of different fluorescent products that confound analysis. The second issue is the large background signal generated by impurities within commercial ampholytes. This background signal is particularly strong when excited in the blue portion of the spectrum, which is required by many common fluorescent labeling reagents. This paper addresses these issues. For labeling, we employ Chromeo P540, which is a fluorogenic reagent that converts cationic lysine residues to cationic fluorescent products. The reaction products are excited in the green, which reduces the background signal generated by impurities present within the ampholytes. To further reduce the background signal, we photobleach ampholytes with high-power photodiodes. Photobleaching reduced the noise in the ampholyte blank by an order of magnitude. Isoelectric focusing performed with photobleached pH 3-10 ampholytes produced concentration detection limits of 270 +/- 25 fM and mass detection limits of 150 +/- 15 zmol for Chromeo P540 labeled beta-lactoglobulin. Concentration detection limits were 520 +/- 40 fM and mass detection limits were 310 +/- 30 zmol with pH 4-8 ampholytes. A homogenate was prepared from a Barrett's esophagus cell line and separated by capillary isoelectric focusing, reproducibly generating dozens of peaks. The sample taken for the separation was equal to the labeled protein homogenate from three cells.
Collapse
Affiliation(s)
- Lauren M Ramsay
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
26
|
Wojcik R, Vannatta M, Dovichi NJ. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization. Anal Chem 2010; 82:1564-7. [PMID: 20099889 DOI: 10.1021/ac100029u] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diagonal capillary electrophoresis is a form of two-dimensional capillary electrophoresis that employs identical separation modes in each dimension. The distal end of the first capillary incorporates an enzyme-based microreactor. Analytes that are not modified by the reactor will have identical migration times in the two capillaries and will generate spots that fall on the diagonal in a reconstructed two-dimensional electropherogram. Analytes that undergo enzymatic modification in the reactor will have different migration times in the second capillary and will generate spots that fall off the diagonal in the electropherogram. We demonstrate the system with immobilized alkaline phosphatase to monitor the phosphorylation status of a mixture of peptides. This enzyme-based diagonal capillary electrophoresis assay appears to be generalizable; any post-translational modification can be detected as long as an immobilized enzyme is available that reacts with the modification under electrophoretic conditions.
Collapse
Affiliation(s)
- Roza Wojcik
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | |
Collapse
|
27
|
Mbuna J, Kaneta T, Imasaka T. Measurement of intracellular accumulation of anthracyclines in cancerous cells by direct injection of cell lysate in MEKC/LIF detection. Electrophoresis 2010; 31:1396-404. [DOI: 10.1002/elps.200900659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Quantification of green fluorescent protein in cellular supernatant by capillary electrophoresis with laser-induced fluorescence detection for measurement of cell death. Talanta 2010; 81:948-53. [PMID: 20298877 DOI: 10.1016/j.talanta.2010.01.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/18/2010] [Accepted: 01/19/2010] [Indexed: 11/24/2022]
Abstract
A common method for quantifying cell death is measuring the concentration of lactate dehydrogenase (LDH) released by cells as their membranes become unstable. In cells expressing green fluorescent protein (GFP), degradation of the cell membrane also results in the release of GFP into the surrounding supernatant. In this study, we used capillary electrophoresis with laser-induced fluorescence detection to measure the levels of GFP in supernatants of UBIGFP/BL6 primary macrophages that had been infected with Salmonella typhimurium, treated with staurosporine, or exposed to H(2)O(2), all known inducers of cell death. We also used a standard LDH assay to measure the release of LDH into supernatants. We observed the rate of cell death quantified by release of GFP and LDH into supernatant to be essentially identical, demonstrating that GFP release is at least as good as an indicator of macrophage cell death as the established LDH release method.
Collapse
|
29
|
|
30
|
Whitmore CD, Essaka D, Dovichi NJ. Six orders of magnitude dynamic range in capillary electrophoresis with ultrasensitive laser-induced fluorescence detection. Talanta 2009; 80:744-8. [PMID: 19836546 DOI: 10.1016/j.talanta.2009.07.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 07/26/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 microM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary.
Collapse
Affiliation(s)
- Colin D Whitmore
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA.
| | | | | |
Collapse
|
31
|
Pugsley HR, Swearingen KE, Dovichi NJ. Fluorescein thiocarbamyl amino acids as internal standards for migration time correction in capillary sieving electrophoresis. J Chromatogr A 2009; 1216:3418-20. [PMID: 19249052 PMCID: PMC2659727 DOI: 10.1016/j.chroma.2009.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
A number of algorithms have been developed to correct for migration time drift in capillary electrophoresis. Those algorithms require identification of common components in each run. However, not all components may be present or resolved in separations of complex samples, which can confound attempts for alignment. This paper reports the use of fluorescein thiocarbamyl derivatives of amino acids as internal standards for alignment of 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ)-labeled proteins in capillary sieving electrophoresis. The fluorescein thiocarbamyl derivative of aspartic acid migrates before FQ-labeled proteins and the fluorescein thiocarbamyl derivative of arginine migrates after the FQ-labeled proteins. These compounds were used as internal standards to correct for variations in migration time over a two-week period in the separation of a cellular homogenate. The experimental conditions were deliberately manipulated by varying electric field and sample preparation conditions. Three components of the homogenate were used to evaluate the alignment efficiency. Before alignment, the average relative standard deviation in migration time for these components was 13.3%. After alignment, the average relative standard deviation in migration time for these components was reduced to 0.5%.
Collapse
Affiliation(s)
- Haley R. Pugsley
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | | - Norman J. Dovichi
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| |
Collapse
|
32
|
Yu CZ, He YZ, Xie HY, Gao Y, Gan WE, Li J. On-line wall-free cell for laser-induced fluorescence detection in capillary electrophoresis. J Chromatogr A 2009; 1216:4504-9. [PMID: 19329123 DOI: 10.1016/j.chroma.2009.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 11/16/2022]
Abstract
A wall-free detection method based on liquid junction in a capillary gap was proposed for laser-induced fluorescence (LIF) of capillary electrophoresis (CE). The capillary gap of the wall-free cell was fabricated by etching a 10-mm x 50-microm I.D. fused-silica capillary to obtain a polyimide coating sleeve, decoating about 6mm at one end of both 50 microm I.D. separation and liquid junction capillary, inserting the treated capillary ends into the coating sleeve oppositely, fixing the capillaries with a gap distance of 140 microm by epoxy glue and removing the coating sleeve by burning. The theoretical model, experimental results and wall-free cell images indicated that the gap distance and applied voltage were main influence factors on the wall-free detection. Since the wall-free cell increased the absorption light path and avoided the stray light from the capillary wall, it improved the ratio of signal to noise and limit of detection (LOD) of CE-LIF. Three flavin compounds of riboflavin (RF), flavin mononucleotide sodium (FMN) and flavin adenine dinucleotide disodium (FAD) were used to evaluate the wall-free detection method. Compared with on-column cell, the LODs of the wall-free cell were improved 15-, 6- and 9-fold for RF, FMN and FAD, respectively. The linear calibration concentrations of the flavins ranged from 0.005 to 5.0 micromol/L. The column efficiency was in the range from 1.0 x 10(5) to 2.5 x 10(5) plates. The wall-free detection of CE-LIF was applied to the analysis of the flavins in spinach and lettuce leaves.
Collapse
Affiliation(s)
- Chang-Zhu Yu
- Department of Chemistry, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui 230026, China
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Ramsay LM, Dickerson JA, Dovichi NJ. Attomole protein analysis by CIEF with LIF detection. Electrophoresis 2009; 30:297-302. [DOI: 10.1002/elps.200800498] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Skinner CD. A PDMS sheath flow cuvette for high-sensitivity LIF measurements in CE. Electrophoresis 2009; 30:372-8. [DOI: 10.1002/elps.200800300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Liu K, Wang H, Bai J, Wang L. Home-made capillary array electrophoresis for high-throughput amino acid analysis. Anal Chim Acta 2008; 622:169-74. [DOI: 10.1016/j.aca.2008.05.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 05/23/2008] [Accepted: 05/27/2008] [Indexed: 11/25/2022]
|
37
|
Turner EH, Dickerson JA, Ramsay LM, Swearingen KE, Wojcik R, Dovichi NJ. Reaction of fluorogenic reagents with proteins III. Spectroscopic and electrophoretic behavior of proteins labeled with Chromeo P503. J Chromatogr A 2008; 1194:253-6. [PMID: 18482729 PMCID: PMC2566543 DOI: 10.1016/j.chroma.2008.04.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 11/15/2022]
Abstract
The spectroscopic and electrophoretic properties of proteins labeled with Chromeo P503 were investigated. Its photobleaching characteristics were determined by continually infusing Chromeo P503-labeled alpha-lactalbumin into a sheath-flow cuvette and monitored fluorescence as a function of laser power. The labeled protein is relatively photo-labile with an optimum excitation power of about 2 mW. The unreacted reagent is weakly fluorescent but present at much higher concentration than the labeled protein. The unreacted reagent undergoes photobleaching at a laser power more than an order of magnitude higher than the labeled protein. One-dimensional capillary electrophoresis analysis of Chromeo P503-labeled alpha-lactalbumin produced concentration detection limits (3sigma) of 12 pM and mass detection limits of 0.7 zmol, but with modest theoretical plate counts of 17,000. The reagent was employed for the two-dimensional capillary electrophoresis analysis of a homogenate prepared from a Barrett's esophagus cell line; the separation quality is similar to that produced by 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ), a more commonly used reagent.
Collapse
Affiliation(s)
- Emily H. Turner
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Jane A. Dickerson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Lauren M. Ramsay
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Roza Wojcik
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Norman J. Dovichi
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
38
|
Swearingen KE, Dickerson JA, Turner EH, Ramsay LM, Wojcik R, Dovichi NJ. Reaction of fluorogenic reagents with proteins II: capillary electrophoresis and laser-induced fluorescence properties of proteins labeled with Chromeo P465. J Chromatogr A 2008; 1194:249-52. [PMID: 18479693 DOI: 10.1016/j.chroma.2008.04.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 11/18/2022]
Abstract
The fluorogenic reagent Chromeo P465 is considered for the analysis of proteins by capillary electrophoresis with laser-induced fluorescence detection. The reagent was first used to label alpha-lactalbumin; the product was analyzed by capillary zone electrophoresis in a sub-micellar sodium dodecyl sulfate (SDS) buffer. The product generated a set of equally spaced but poorly resolved peaks that formed a broad envelope with a net mobility of 4 x 10(-4)cm(2) V(-1) s(-1). The components of the envelope were presumably protein that had reacted with different numbers of labels. The mobility of these components decreased by roughly 1% with the addition of each label. The signal increased linearly from 1.0 nM to 100 nM alpha-lactalbumin (r(2)=0.99), with a 3sigma detection limit of 70 pM. We then considered the separation of a mixture of ovalbumin, alpha-chymotrypsinogen A, and alpha-lactalbumin labeled with Chromeo P465; unfortunately, baseline resolution was not achieved with a borax/SDS buffer. Better resolution was achieved with N-cyclohexyl-2-aminoethanesulfonic acid/Tris/SDS/dextran capillary sieving electrophoresis; however, dye interactions with this buffer system produced a less than ideal blank.
Collapse
Affiliation(s)
- Kristian E Swearingen
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | | | | | | | | | | |
Collapse
|
39
|
Cohen D, Dickerson JA, Whitmore CD, Turner EH, Palcic MM, Hindsgaul O, Dovichi NJ. Chemical cytometry: fluorescence-based single-cell analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:165-190. [PMID: 20636078 DOI: 10.1146/annurev.anchem.1.031207.113104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cytometry deals with the analysis of the composition of single cells. Flow and image cytometry employ antibody-based stains to characterize a handful of components in single cells. Chemical cytometry, in contrast, employs a suite of powerful analytical tools to characterize a large number of components. Tools have been developed to characterize nucleic acids, proteins, and metabolites in single cells. Whereas nucleic acid analysis employs powerful polymerase chain reaction-based amplification techniques, protein and metabolite analysis tends to employ capillary electrophoresis separation and ultrasensitive laser-induced fluorescence detection. It is now possible to detect yoctomole amounts of many analytes in single cells.
Collapse
Affiliation(s)
- Daniella Cohen
- Department of Chemistry, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Yu CZ, He YZ, Han F, Fu GN. Post-column reactor of coaxial-gap mode for laser-induced fluorescence detection in capillary electrophoresis. J Chromatogr A 2007; 1171:133-9. [DOI: 10.1016/j.chroma.2007.09.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 09/14/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
|
41
|
Bliss CL, McMullin JN, Backhouse CJ. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. LAB ON A CHIP 2007; 7:1280-7. [PMID: 17896011 DOI: 10.1039/b708485d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The fabrication and performance of a microfluidic device with integrated liquid-core optical waveguides for laser induced fluorescence DNA fragment analysis is presented. The device was fabricated through poly(dimethylsiloxane) (PDMS) soft lithography and waveguides are formed in dedicated channels through the addition of a liquid PDMS pre-polymer of higher refractive index. Once a master has been fabricated, microfluidic chips can be produced in less than 3 h without the requirement for a cleanroom, yet this method provides an optical system that has higher performance than a conventional confocal optical assembly. Optical coupling was achieved through the insertion of optical fibers into fiber-to-waveguide couplers at the edge of the chip and the liquid-fiber interface results in low reflection and scattering losses. Waveguide propagation losses are measured to be 1.8 dB cm(-1) (532 nm) and 1.0 dB cm(-1) (633 nm). The chip displays an average total coupling loss of 7.6 dB due to losses at the optical fiber interfaces. In the electrophoretic separation and detection of a BK virus PCR product, the waveguide system achieves an average signal-to-noise ratio of 570 +/- 30 whereas a commercial confocal benchtop electrophoresis system achieves an average SNR of 330 +/- 30. To our knowledge, this is the first time that a waveguide-based system has been demonstrated to have a SNR comparable to a commercially available confocal-based system for microchip capillary electrophoresis.
Collapse
Affiliation(s)
- Christopher L Bliss
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
42
|
Braun KL, Hapuarachchi S, Fernandez FM, Aspinwall CA. High-sensitivity detection of biological amines using fast Hadamard transform CE coupled with photolytic optical gating. Electrophoresis 2007; 28:3115-21. [PMID: 17674422 DOI: 10.1002/elps.200700087] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching. Application of fast Hadamard transform CE (fHTCE) for fluorescein-based dyes yields a ten-fold higher sensitivity for photolytic injections compared to photobleaching injections, due primarily to the reduced fluorescent background provided by caged fluorescent dyes. Detection limits as low as 5 pM (ca. 18 molecules per injection event) were obtained with on-column LIF detection using fHTCE in less than 25 s, with the capacity for continuous, online separations. Detection limits for glutamate and aspartate below 150 pM (1-2 amol/injection event) were obtained using photolytic sample injection, with separation efficiencies exceeding 1 x 10(6) plates/m and total multiplexed separation times as low as 8 s. These results strongly support the feasibility of this approach for high-sensitivity dynamic chemical monitoring applications.
Collapse
Affiliation(s)
- Kevin L Braun
- Department of Chemistry, University of Arizona, Tucson, AZ 85721-0041, USA
| | | | | | | |
Collapse
|
43
|
Whitmore CD, Olsson U, Larsson EA, Hindsgaul O, Palcic MM, Dovichi NJ. Yoctomole analysis of ganglioside metabolism in PC12 cellular homogenates. Electrophoresis 2007; 28:3100-4. [PMID: 17668449 DOI: 10.1002/elps.200700202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report an ultrasensitive method for the analysis of glycosphingolipid catabolism. The substrate G(M1) and the set of seven metabolites into which it can be degraded (G(A1), G(M2), G(A2), G(M3), LacCer, GlcCer, and Cer) were labeled with the highly fluorescent dye tetramethylrhodamine. CE with LIF detection was used to assay these compounds with 150 +/- 80 yoctomole mass (1 ymol = 10(-24) mol = 0.6 copies) detection limits and 5 +/- 3 pM concentration detection limits. An alignment algorithm based on migration of two components was employed to correct for drift in the separation. The within-day and between-day precision in peak height was 20%, in peak width 15%, and in adjusted migration time 0.03%. After normalization to total sample injected, the RSD in peak height reduced to 2-6%, which approaches the limit set by molecular shot noise in the number of molecules taken for analysis. PC12 cells were incubated with the labeled G(M1). Fluorescent microscopy demonstrated uptake by the cells. CE was used to separate a cellular homogenate prepared from these cells. A set of peaks was observed, which were tentatively identified based on comigration with the standards. Roughly 120 pL of homogenate was injected, which contained a total of 150 zmol of labeled substrate and products. Metabolite that preserves the fluorescent label can be detected at the yoctomole level, which should allow characterization of this metabolic pathway in single cells.
Collapse
Affiliation(s)
- Colin D Whitmore
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Saito S, Suzuki R, Danzaka N, Hikichi A, Yoshimoto K, Maeda M, Aoyama M. Direct fluorometric detection of paramagnetic and heavy metal ions at sub-amol level using an aromatic polyaminocarboxylate by CZE: Combination of pre- and on-capillary complexation technique. Electrophoresis 2007; 28:2448-57. [PMID: 17577884 DOI: 10.1002/elps.200600516] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The low sensitivity of simple CZE for detecting metal ions is a long-standing problem even when an LIF detection system is employed. We have successfully achieved an ultrasensitive CE-LIF using a simple CZE mode (typical detection limit: 10(-11)-10(-10) mol/dm(3)). Both the design of a newly synthesized ligand and the combination of a precapillary derivatizing technique with an on-capillary ternary complexing technique have enabled us to achieve this extremely low LOD and high resolution of large metal complexes. The direct fluorescent detection of the paramagnetic metal ions was achieved for the first time despite their intrinsic fluorescent quenching nature. The fluorescent ligand (L) consists of a polyaminocarboxylate chelating moiety, a strongly emissive fluorescein moiety and a spacer connecting the two portions. The migration behavior of various metal-L complexes was investigated. The resolution among the complexes was improved by the introduction of a ternary complex equilibrium of the kinetically stable mother complexes with OH(-) ion. The analytical potential of our simple system was examined, and it was proved that the system was one of the most sensitive methods without the need for any preconcentration process.
Collapse
Affiliation(s)
- Shingo Saito
- Graduate School of Science, and Engineering, Saitama University, Saitama City, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sobhani K, Fink SL, Cookson BT, Dovichi NJ. Repeatability of chemical cytometry: 2-DE analysis of single RAW 264.7 macrophage cells. Electrophoresis 2007; 28:2308-13. [PMID: 17557367 DOI: 10.1002/elps.200700017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This report presents the use of 2-DE with ultrasensitive fluorescence detection as a chemical cytometry tool to characterize the protein and biogenic amine content of single cells from the RAW 264.7 murine macrophage cell line. Cells were sorted by cell cycle prior to 2-DE analysis. Cells in the G2/M phase of the cell cycle were aspirated into the first-dimensional capillary and lysed. The cellular contents were fluorescently labeled and first separated by capillary sieving electrophoresis (CSE). Over 380 fractions were transferred from the first-dimensional capillary to the second-dimensional capillary, where components were further separated by MEKC and detected by laser-induced fluorescence. Twenty-five spots common to the four electropherograms were fit with a 2-D Gaussian surface to determine spot position, width, and amplitude. The RSD in CSE mobility was 1.0 +/- 0.6%. The mean uncertainty in spot position was 1.3 times larger than the mean spot width in the CSE dimension. The average SD in MEKC migration time was 0.37 +/- 0.13 s, which is smaller than the average spot size in this dimension. Spot capacity was 200. The RSD in spot amplitude was 50%, reflecting a large cell-to-cell variation in component expression.
Collapse
Affiliation(s)
- Kimia Sobhani
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The properties of organelles within a cell have been shown to be highly heterogeneous. Until now, it has been unclear just how much of this heterogeneity is endemic to the organelle subpopulations themselves and how much is actually due to stochastic cellular noise. An attractive approach for investigating the origins of heterogeneity among the organelles of a single cell is CE with LIF detection (CE-LIF). As a proof of principle, in this report we optimize and use a single cell CE-LIF method to investigate the properties of endocytic (acidic) organelles. Our results show that the properties of individual acidic organelles containing Alexa Fluor 488 Dextran suggest that there are two groups of CCRF-CEM cells: a group with a high dextran content per cell, and a group with a low dextran content per cell. Furthermore, the individual organelle measurements of the single cells allow us to compare in each group the distributions of doxorubicin content per acidic organelle and electrophoretic mobilities of these organelles.
Collapse
Affiliation(s)
- Yun Chen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
47
|
Sobhani K, Michels DA, Dovichi NJ. Sheath-flow cuvette for high-sensitivity laser-induced fluorescence detection in capillary electrophoresis. APPLIED SPECTROSCOPY 2007; 61:777-9. [PMID: 17697473 DOI: 10.1366/000370207781393208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The sheath-flow cuvette is a key component in a high-sensitivity post-column laser-induced fluorescence detector for capillary electrophoresis. Most designs are based on commercial cuvettes originally manufactured for use in a flow cytometer. In these devices, a quartz flow chamber is held in a stainless-steel fixture that is difficult to machine and subjects the cuvette to a torque when sealed, which frequently leads to damage of the flow chamber. In this report we present a design for a cuvette that may easily be constructed. This design uses compression to hold and seal the quartz flow chamber without applying torque. The system produces detection limits (3sigma) of 115 yoctomoles (70 copies) for FQ-labeled carbonic anhydrase.
Collapse
Affiliation(s)
- Kimia Sobhani
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | | | |
Collapse
|
48
|
Hapuarachchi S, Aspinwall CA. Design, characterization, and utilization of a fast fluorescence derivatization reaction utilizingo-phthaldialdehyde coupled with fluorescent thiols. Electrophoresis 2007; 28:1100-6. [PMID: 17311246 DOI: 10.1002/elps.200600567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have developed a chemical derivatization scheme for primary amines that couples the fast kinetic properties of o-phthaldialdehyde (OPA) with the photophysical properties of visible, high quantum yield, fluorescent dyes. In this reaction, OPA is used as a cross-linking reagent in the labeling reaction of primary amines in the presence of a fluorescent thiol, 5-((2-(and-3)-S-(acetylmercapto)succinoyl)amino)fluorescein (SAMSA fluorescein), thereby incorporating fluorescein (epsilon = 78 000 M(-1), quantum yield of 0.98) into the isoindole product. Detection is based on excitation and emission of the incorporated fluorescein using the 488 nm laser line of an Ar(+) laser rather than the UV-excited isoindole, thereby eliminating the UV light sources for detection. Using this method, we have quantitatively labeled biologically important primary amines in less than 10 s. Detection limits for analysis of glutamate, glycine, GABA, and taurine were less than 2 nM. We present the characterization of OPA/SAMSA-F reaction and the potential utility of the derivatization reaction for dynamic chemical monitoring of biologically relevant analytes using CE.
Collapse
|
49
|
Chen X, Fazal MA, Dovichi NJ. CSE-MECC two-dimensional capillary electrophoresis analysis of proteins in the mouse tumor cell (AtT-20) homogenate. Talanta 2007; 71:1981-1985. [PMID: 17637850 PMCID: PMC1920328 DOI: 10.1016/j.talanta.2006.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Two-dimensional capillary electrophoresis was used for the separation of proteins and biogenic amines from the mouse AtT-20 cell line. The first-dimension capillary contained a TRIS-CHES-SDS-dextran buffer to perform capillary sieving electrophoresis, which is based on molecular weight of proteins. The second-dimension capillary contained a TRIS-CHES-SDS buffer for micel1ar electrokinetic capillary chromatography. After a 61 seconds preliminary separation, fractions from the first-dimension capillary were successively transferred to the second-dimension capillary, where they further separated by MECC. The two-dimensional separation required 60 minutes.
Collapse
Affiliation(s)
- Xingguo Chen
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, USA
| | | | | |
Collapse
|
50
|
Fu NN, Zhang HS, Ma M, Wang H. Quantification of polyamines in human erythrocytes using a new near-infrared cyanine 1-(ε-succinimidyl-hexanoate)- 1′-methyl-3,3,3′,3′-tetramethyl- indocarbocyanine-5,5′-disulfonate potassium with CE-LIF detection. Electrophoresis 2007; 28:822-9. [PMID: 17315150 DOI: 10.1002/elps.200600237] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel near-infrared (NIR) cyanine 1-(epsilon-succinimidyl-hexanoate)-1'-methyl-3,3,3',3'-tetramethyl-indocarbocyanine-5,5'-disulfonate potassium (MeCy5-OSu) has been developed in our laboratory. Simultaneous determination of MeCy5-OSu-derivatized polyamines spermine (Spm), spermidine (Spd), cadaverine (Cad), and putrescine (Put) based on the separation by CE combined with diode LIF detection has been accomplished. The highest derivatization efficiency was achieved in 0.2 mol/L borate buffer (pH 8.8) for 20 min at 25 degrees C. Polyamine derivatives were separated within 14 min in the phosphate running buffer (pH 3) containing 50 mmol/L phosphoric acid, 40 mmol/L SDS, and 35% methanol v/v. Linearity of response was obtained in the range of 10-200 nmol/L. The detection limits (S/N = 3) for Spm, Spd, Cad, and Put were 0.8, 1, 3, and 2 nmol/L, respectively. The proposed method has been successfully applied to the analysis of polyamines in erythrocytes of two healthy persons and one cancer patient. Average recoveries for erythrocyte samples were 93.6-106% and coefficients of variation ranged from 1.8 to 5.4%. The analysis of polyamines in erythrocytes can be used for studying the relationship between their changes and the carcinogenesis process involved in erythrocytes.
Collapse
Affiliation(s)
- Ni-Na Fu
- Department of Chemistry, Wuhan University, Wuhan, PR China
| | | | | | | |
Collapse
|