1
|
Yamashita S, Miyazawa T, Higuchi O, Takekoshi H, Miyazawa T, Kinoshita M. Characterization of Glycolipids in the Strain Chlorella pyrenoidosa. J Nutr Sci Vitaminol (Tokyo) 2022; 68:353-357. [PMID: 36047108 DOI: 10.3177/jnsv.68.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Plant-derived polar lipids have been reported to exhibit various beneficial effects on human health. The green alga Chlorella is known to be abundant in nutrients, including lipophilic components, and has varying nutrient content depending on the strain. In this study, to assess the nutritional functions of the strain Chlorella pyrenoidosa, we comprehensively analyzed the composition of fatty acids, polar glycerolipids, and sphingolipids. We found that n-3 polyunsaturated fatty acids (PUFAs) comprised 45.6 mol% of fatty acids in the total lipids and 62.2 mol% of n-3 PUFAs in the total lipids occurred in the glycolipids. Monogalactosyldiacylglycerol was the primary glycolipid class, and n-3 PUFA constituted 73.5 mol% of the fatty acids. Although glucosylceramide was observed in trace amounts, highly polar sphingolipids (HPSs), including glycosyl inositol phosphoryl ceramide, were found in much higher amounts compared to rice bran, which is a common source of sphingolipids. These results suggest that the examined Chlorella strain, which is abundant in glycolipids bearing n-3 PUFAs and HPS, is potentially useful as a dietary supplement for improving human health.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Taiki Miyazawa
- Food Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Ohki Higuchi
- Food Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Hideo Takekoshi
- Production and Development Department, Sun Chlorella Co., Ltd
| | - Teruo Miyazawa
- Food Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
2
|
Conde TA, Zabetakis I, Tsoupras A, Medina I, Costa M, Silva J, Neves B, Domingues P, Domingues MR. Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. Int J Mol Sci 2021; 22:9825. [PMID: 34576003 PMCID: PMC8471354 DOI: 10.3390/ijms22189825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Noncommunicable diseases (NCD) and age-associated diseases (AAD) are some of the gravest health concerns worldwide, accounting for up to 70% of total deaths globally. NCD and AAD, such as diabetes, obesity, cardiovascular disease, and cancer, are associated with low-grade chronic inflammation and poor dietary habits. Modulation of the inflammatory status through dietary components is a very appellative approach to fight these diseases and is supported by increasing evidence of natural and dietary components with strong anti-inflammatory activities. The consumption of bioactive lipids has a positive impact on preventing chronic inflammation and consequently NCD and AAD. Thus, new sources of bioactive lipids have been sought out. Microalgae are rich sources of bioactive lipids such as omega-6 and -3 polyunsaturated fatty acids (PUFA) and polar lipids with associated anti-inflammatory activity. PUFAs are enzymatically and non-enzymatically catalyzed to oxylipins and have a significant role in anti and pro-resolving inflammatory responses. Therefore, a large and rapidly growing body of research has been conducted in vivo and in vitro, investigating the potential anti-inflammatory activities of microalgae lipids. This review sought to summarize and critically analyze recent evidence of the anti-inflammatory potential of microalgae lipids and their possible use to prevent or mitigate chronic inflammation.
Collapse
Affiliation(s)
- Tiago Alexandre Conde
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (I.Z.); (A.T.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Isabel Medina
- Instituto de Investigaciones Marinas-Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Spain;
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products SAA, Rua 25 de Abril 1974, 2445-287 Pataias, Portugal; (M.C.); (J.S.)
| | - Bruno Neves
- Department of Medical Sciences, Institute of Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Rosário Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Centre, LAQV REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
3
|
Conde TA, Couto D, Melo T, Costa M, Silva J, Domingues MR, Domingues P. Polar lipidomic profile shows Chlorococcum amblystomatis as a promising source of value-added lipids. Sci Rep 2021; 11:4355. [PMID: 33623097 PMCID: PMC7902829 DOI: 10.1038/s41598-021-83455-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
There is a growing trend to explore microalgae as an alternative resource for the food, feed, pharmaceutical, cosmetic and fuel industry. Moreover, the polar lipidome of microalgae is interesting because of the reports of bioactive polar lipids which could foster new applications for microalgae. In this work, we identified for the first time the Chlorococcum amblystomatis lipidome using hydrophilic interaction liquid chromatography-high resolution electrospray ionization- tandem mass spectrometry (HILIC-HR-ESI-MS/MS). The Chlorococcum amblystomatis strain had a lipid content of 20.77% and the fatty acid profile, determined by gas chromatography-mass spectrometry, has shown that this microalga contains high amounts of omega-3 polyunsaturated fatty acids (PUFAs). The lipidome identified included 245 molecular ions and 350 lipid species comprising 15 different classes of glycolipids (6), phospholipids (7) and betaine lipids (2). Of these, 157 lipid species and the main lipid species of each class were esterified with omega-3 PUFAs. The lipid extract has shown antioxidant activity and anti-inflammatory potential. Lipid extracts also had low values of atherogenic (0.54) and thrombogenic index (0.27). In conclusion, the lipid extracts of Chlorococcum amblystomatis have been found to be a source of lipids rich in omega-3 PUFAs for of great value for the food, feed, cosmetic, nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Tiago A. Conde
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Daniela Couto
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Margarida Costa
- R&D Department, Allmicroalgae Natural Products S.A., Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - Joana Silva
- R&D Department, Allmicroalgae Natural Products S.A., Rua 25 de Abril 19, 2445-287 Pataias, Portugal
| | - M. Rosário Domingues
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal ,grid.7311.40000000123236065Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- grid.7311.40000000123236065Department of Chemistry, Mass Spectrometry Centre, LAQV REQUIMTE, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Haynes CA, Allegood JC, Park H, Sullards MC. Sphingolipidomics: methods for the comprehensive analysis of sphingolipids. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2696-708. [PMID: 19147416 PMCID: PMC2765038 DOI: 10.1016/j.jchromb.2008.12.057] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Sphingolipids comprise a highly diverse and complex class of molecules that serve as both structural components of cellular membranes and signaling molecules capable of eliciting apoptosis, differentiation, chemotaxis, and other responses in mammalian cells. Comprehensive or "sphingolipidomic" analyses (structure specific, quantitative analyses of all sphingolipids, or at least all members of a critical subset) are required in order to elucidate the role(s) of sphingolipids in a given biological context because so many of the sphingolipids in a biological system are inter-converted structurally and metabolically. Despite the experimental challenges posed by the diversity of sphingolipid-regulated cellular responses, the detection and quantitation of multiple sphingolipids in a single sample has been made possible by combining classical analytical separation techniques such as high-performance liquid chromatography (HPLC) with state-of-the-art tandem mass spectrometry (MS/MS) techniques. As part of the Lipid MAPS consortium an internal standard cocktail was developed that comprises the signaling metabolites (i.e. sphingoid bases, sphingoid base-1-phosphates, ceramides, and ceramide-1-phosphates) as well as more complex species such as mono- and di-hexosylceramides and sphingomyelin. Additionally, the number of species that can be analyzed is growing rapidly with the addition of fatty acyl Co-As, sulfatides, and other complex sphingolipids as more internal standards are becoming available. The resulting LC-MS/MS analyses are one of the most analytically rigorous technologies that can provide the necessary sensitivity, structural specificity, and quantitative precision with high-throughput for "sphingolipidomic" analyses in small sample quantities. This review summarizes historical and state-of-the-art analytical techniques used for the identification, structure determination, and quantitation of sphingolipids from free sphingoid bases through more complex sphingolipids such as sphingomyelins, lactosylceramides, and sulfatides including those intermediates currently considered sphingolipid "second messengers". Also discussed are some emerging techniques and other issues remaining to be resolved for the analysis of the full sphingolipidome.
Collapse
Affiliation(s)
- Christopher A. Haynes
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-5048, U.S.A
| | - Hyejung Park
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| | - M. Cameron Sullards
- School of Biology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332-0363, U.S.A
| |
Collapse
|