Li J, Yan Q, Gao Y, Ju H. Electrogenerated Chemiluminescence Detection of Amino Acids Based on Precolumn Derivatization Coupled with Capillary Electrophoresis Separation.
Anal Chem 2006;
78:2694-9. [PMID:
16615781 DOI:
10.1021/ac052092m]
[Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel method for highly sensitive detection of primary and secondary amino acids with selective derivatization using acetaldehyde as a new derivatization reagent was proposed by capillary electrophoresis (CE) coupled with electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II). The precolumn derivatization of these amino acids with acetaldehyde was performed in aqueous solution at room temperature for 1 h. Upon optimized derivatization, the ECL intensities and detection sensitivities of the amino acids were significantly enhanced by 20-70 times. Using four amino acids, arginine, proline, valine, and leucine, as model compounds, their derivatives could be completely separated by CE and sensitively detected by ECL within 22 min. The linear ranges were 0.5-100 microM for arginine and proline and 5-1000 microM for valine and leucine with the detection limits of 1 x 10(-7) (0.5 fmol, arginine), 8 x 10(-8) (0.4 fmol, proline), 1 x 10(-6) (5 fmol, valine), and 1.6 x 10(-6) M (8 fmol, leucine) at a signal-to-noise ratio of 3. The derivatization reactions and ECL process of amino acids were also proposed based on in situ Fourier transform infrared and ultraviolet spectrometric analyses.
Collapse