1
|
Manousi N, Vlachaki A, Kika FS, Markopoulou CK, Tzanavaras PD, Zacharis CK. Salting-out homogeneous liquid-liquid microextraction for the determination of azole drugs in human urine: Validation using total error concept. J Sep Sci 2022; 45:1240-1251. [PMID: 35000279 DOI: 10.1002/jssc.202100942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
A salting-out homogeneous liquid-liquid microextraction was proposed for the quantification of four azole drugs in human urine prior to high-performance liquid chromatography analysis. The procedure involved the mixing of the sample with acetonitrile in appropriate volumes followed by the addition of sodium sulfate solution in order to facilitate phase separation. The parameters influencing the extraction performance were studied and optimized using a two-step experimental design. The analytical procedure was thoroughly validated using the accuracy profiles as a graphical decision-making tool. The β-expectation tolerance intervals did not exceed the acceptance criteria of ±15% meaning that 95% of future results will be included in the defined bias limits. The limits of detection of the procedure were satisfactory, ranging between 0.01 and 0.03 μg/mL. The mean analytical bias in the spiking levels was satisfactory and ranged between -10.3 and 4.2% while the relative standard deviation was lower than 5.6%. Monte-Carlo simulations followed by capability analysis were employed to investigate the ruggedness of the sample preparation protocol. The developed method offers advantages compared to previously reported approaches for the same type of analysis including extraction efficiency and scaling down of the sample volume and extraction time.
Collapse
Affiliation(s)
- Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Adamantia Vlachaki
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini S Kika
- Department of Hematology, Bone Marrow Transplantation Unit, George Papanikolaou General Hospital, Thessaloniki, Greece
| | - Catherine K Markopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paraskevas D Tzanavaras
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Determination of Vancomycin in Human Serum by Cyclodextrin-Micellar Electrokinetic Capillary Chromatography (CD-MEKC) and Application for PDAP Patients. Molecules 2017; 22:molecules22040538. [PMID: 28350363 PMCID: PMC6154692 DOI: 10.3390/molecules22040538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 02/03/2023] Open
Abstract
A simple and sensitive cyclodextrin-micellar electrokinetic capillary chromatography (CD-MEKC) method with UV detection was developed and validated for the determination of vancomycin (VCM) in serum. The separation was achieved in 14 min at 25 °C with a fused-silica capillary column of 40.2 cm × 50 mm i.d. (effective length 30.2 cm) and a run buffer containing 25 mM borate buffer with 50 mM sodium dodecylsulfonate (SDS) (pH 9.5) and 2% sulfobutyl-β-cyclodextrin (sulfobutyl-β-CD). Under optimal conditions for biological samples, good separations with high efficiency and short analysis time were achieved. Several parameters affecting the drug separation from biological matrices were studied, including buffer types, concentrations, and pHs. The methods were validated over the range of 0.9998-99.98 µg/mL. Calibration curves of VCM also showed good linearity (r² > 0.999). Intra- and interday precisions (relative standard deviation, RSD) were less than 5.80% and 7.38%, and lower limit of quantification (LLOQ) were lower than 1.0 μg/mL. The mean recoveries ranged between 84.03% and 91.69%. The method was successfully applied for monitoring VCM concentrations in serum of patients with peritoneal dialysis-associated peritonitis (PDAP). The assay should be applicable to pharmacokinetic studies and routine therapeutic drug monitoring of this drug in serum.
Collapse
|
3
|
Bounoua N, Sekkoum K, Belboukhari N, Cheriti A, Aboul-Enein HY. Achiral and chiral separation and analysis of antifungal drugs by HPLC and CE: A comparative study: Mini review. J LIQ CHROMATOGR R T 2016. [DOI: 10.1080/10826076.2016.1174942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nadia Bounoua
- Bioactive Molecules & Chiral Separation Laboratory, University of Bechar, Bechar, Algeria
| | - Khaled Sekkoum
- Bioactive Molecules & Chiral Separation Laboratory, University of Bechar, Bechar, Algeria
| | - Nasser Belboukhari
- Bioactive Molecules & Chiral Separation Laboratory, University of Bechar, Bechar, Algeria
| | - Abdelkrim Cheriti
- Phytochemistry & Organic Synthesis Laboratory, University of Bechar, Bechar, Algeria
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
4
|
Therapeutic drug monitoring for triazoles: A needs assessment review and recommendations from a Canadian perspective. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2015; 25:327-43. [PMID: 25587296 PMCID: PMC4277162 DOI: 10.1155/2014/340586] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Invasive fungal infections cause significant morbidity and mortality in patients with concomitant underlying immunosuppressive diseases. The recent addition of new triazoles to the antifungal armamentarium has allowed for extended-spectrum activity and flexibility of administration. Over the years, clinical use has raised concerns about the degree of drug exposure following standard approved drug dosing, questioning the need for therapeutic drug monitoring (TDM). Accordingly, the present guidelines focus on TDM of triazole antifungal agents. A review of the rationale for triazole TDM, the targeted patient populations and available laboratory methods, as well as practical recommendations based on current evidence from an extended literature review are provided in the present document.
Collapse
|
5
|
Rizk M, Toubar SS, El-Alamin MMA, Azab MMM. Micellar high performance liquid chromatographic determination of Itraconazole in bulk, pharmaceutical dosage forms and human plasma. ACTA ACUST UNITED AC 2014. [DOI: 10.5155/eurjchem.5.1.11-17.885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Yang H, Ding Y, Cao J, Li P. Twenty-one years of microemulsion electrokinetic chromatography (1991-2012): A powerful analytical tool. Electrophoresis 2013; 34:1273-94. [DOI: 10.1002/elps.201200494] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/18/2012] [Accepted: 01/22/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Hua Yang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University); Nanjing; P. R. China
| | - Yao Ding
- State Key Laboratory of Natural Medicines (China Pharmaceutical University); Nanjing; P. R. China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou; P. R. China
| | - Ping Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University); Nanjing; P. R. China
| |
Collapse
|
7
|
Enantioseparation of Chiral Antimycotic Drugs by HPLC with Polysaccharide-Based Chiral Columns and Polar Organic Mobile Phases with Emphasis on Enantiomer Elution Order. Chromatographia 2013. [DOI: 10.1007/s10337-013-2396-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Simultaneous determination of triazole antifungal drugs in human plasma by sweeping-micellar electrokinetic chromatography. Anal Bioanal Chem 2012; 404:217-28. [DOI: 10.1007/s00216-012-6087-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/25/2012] [Accepted: 04/29/2012] [Indexed: 11/25/2022]
|
9
|
Breadmore MC. Capillary and microchip electrophoresis: Challenging the common conceptions. J Chromatogr A 2012; 1221:42-55. [DOI: 10.1016/j.chroma.2011.09.062] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/21/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
|
10
|
Cao J, Dun W, Qu H. Evaluation of the addition of various surfactant-suspended carbon nanotubes in MEEKC with an in situ-synthesized surfactant system. Electrophoresis 2011; 32:408-13. [DOI: 10.1002/elps.201000535] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 11/09/2022]
|
11
|
El Deeb S, Iriban MA, Gust R. MEKC as a powerful growing analytical technique. Electrophoresis 2010; 32:166-83. [PMID: 21171121 DOI: 10.1002/elps.201000398] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 11/11/2022]
Abstract
This review summarizes the principle and the developments in MEKC in terms of separation power, sensitivity, and detection approaches more than 25 years after its appearance. Newly used surfactants are mentioned. Classical and new sample concentration techniques in MEKC are described. The different detection approaches in MEKC with advantages, limitations, and future prospects are also discussed. This review highlights the wider application of MEKC in different analytical fields. Various recent selected applications of this technique in different analytical fields are reported.
Collapse
Affiliation(s)
- Sami El Deeb
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | | |
Collapse
|
12
|
Theurillat R, Zimmerli S, Thormann W. Determination of voriconazole in human serum and plasma by micellar electrokinetic chromatography. J Pharm Biomed Anal 2010; 53:1313-8. [DOI: 10.1016/j.jpba.2010.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 12/01/2022]
|
13
|
Development, validation, and routine application of a high-performance liquid chromatography method coupled with a single mass detector for quantification of itraconazole, voriconazole, and posaconazole in human plasma. Antimicrob Agents Chemother 2010; 54:3408-13. [PMID: 20530230 DOI: 10.1128/aac.01807-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have developed and validated a high-performance liquid chromatography method coupled with a mass detector to quantify itraconazole, voriconazole, and posaconazole using quinoxaline as the internal standard. The method involves protein precipitation with acetonitrile. Mean accuracy (percent deviation from the true value) and precision (relative standard deviation percentage) were less than 15%. Mean recovery was more than 80% for all drugs quantified. The lower limit of quantification was 0.031 microg/ml for itraconazole and posaconazole and 0.039 microg/ml for voriconazole. The calibration range tested was from 0.031 to 8 microg/ml for itraconazole and posaconazole and from 0.039 to 10 microg/ml for voriconazole.
Collapse
|
14
|
Al-Badr AA, El-Subbagh HI. Chapter 5 itraconazole: comprehensive profile. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2010; 34:193-264. [PMID: 22469175 DOI: 10.1016/s1871-5125(09)34005-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
15
|
Simpson SL, Quirino JP, Terabe S. On-line sample preconcentration in capillary electrophoresis. J Chromatogr A 2008; 1184:504-41. [DOI: 10.1016/j.chroma.2007.11.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 02/06/2023]
|
16
|
Breadmore MC, Hodgson R, Kennedy DF, Messerle BA. Fast CE for combinatorial catalysis. Electrophoresis 2008; 29:491-8. [DOI: 10.1002/elps.200700220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
McEvoy E, Marsh A, Altria K, Donegan S, Power J. Recent advances in the development and application of microemulsion EKC. Electrophoresis 2007; 28:193-207. [PMID: 17136741 DOI: 10.1002/elps.200600451] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Microemulsion EKC (MEEKC) is an electrodriven separation technique. Separations are typically achieved using oil-in-water microemulsions, which are composed of nanometre-sized oil droplets suspended in an aqueous buffer. The droplets are stabilised by a surfactant and a cosurfactant. The novel use of water-in-oil microemulsions has also been investigated. This review summarises the advances in the development of MEEKC separations and also the different areas of application including determination of log P values, pharmaceutical applications, chiral analysis, natural products and bioanalytical separations and the use of new methods such as multiplexed MEEKC and high speed MEEKC. Recent applications (2004-2006) are tabulated for each area with microemulsion composition details.
Collapse
Affiliation(s)
- Eamon McEvoy
- Department of Chemical and Life Sciences, Waterford Institute of Technology, Cork Road, Waterford, Ireland.
| | | | | | | | | |
Collapse
|
18
|
Uno T, Shimizu M, Sugawara K, Tateishi T. Sensitive Determination of Itraconazole and Its Active Metabolite in Human Plasma by Column-switching High-performance Liquid Chromatography With Ultraviolet Detection. Ther Drug Monit 2006; 28:526-31. [PMID: 16885720 DOI: 10.1097/00007691-200608000-00007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A simple and sensitive column-switching high-performance liquid chromatographic method for the simultaneous determination of itraconazole (ITZ) and its active metabolite, hydroxyitraconazole (HIT) in human plasma is described. ITZ, HIT, and an internal standard, R051012, were extracted from 1 mL of alkalinized plasma sample using n-heptane-chloroform (60:40, vol/vol). The extract was injected onto column I (TSK precolumn BSA-ODS/S, 5 microm, 10 x 4.6 mm ID) for clean-up and column II (Develosil C8-5 column, 5 microm, 150 x 4.6 mm ID) for separation. The mobile phase consisted of phosphate buffer-acetonitrile (68:32 vol/vol, pH 6.0) for clean-up and phosphate buffer-acetonitrile (35:65 vol/vol, pH 6.0) for separation. The peaks were monitored with an ultraviolet detector set at a wavelength of 263 nm, and total time for chromatographic separation was about 24 minutes. The validated concentration ranges of this method were 3 to 500 ng/mL for ITZ and 3 to 1000 ng/mL for HIT. Mean recoveries were 59.7% for ITZ and 72.8% for HIT. Intraday and interday coefficients of variation were less than 4.6% and 5.0% for ITZ, and 4.6% and 4.9% for HIT at the different concentrations. The limit of quantification was 3 ng/mL for both ITZ and HIT. This method was suitable for therapeutic drug monitoring of ITZ and HIT, and was applied to pharmacokinetic studies in human volunteers.
Collapse
Affiliation(s)
- Tsukasa Uno
- Department of Clinical Pharmacology, Hirosaki University School of Medicine, Hirosaki University Hospital, Hirosaki, Japan.
| | | | | | | |
Collapse
|
19
|
Fang H, Zeng Z, Liu L. Centrifuge Microextraction Coupled with On-Line Back-Extraction Field-Amplified Sample Injection Method for the Determination of Trace Ephedrine Derivatives in the Urine and Serum. Anal Chem 2006; 78:6043-9. [PMID: 16944882 DOI: 10.1021/ac060360q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although sample stacking has enjoyed some degree of success in electrophoretic separation techniques, there is still a major problem with complex matrix sample as it suffers tremendously from sample matrix effects. A novel method that combines two concentration techniques, centrifuge microextraction (CME) and on-line back-extraction field-amplified sample injection (OLBE-FASI), is used to determine trace ephedrine derivatives in urine and serum by capillary zone electrophoresis. The CME, integrating the sample cleanup and preconcentration into a single step, is a promising sample preparation method for biological samples. The CME technique provided 9-14-fold enrichment within 10 min. The OLBE-FASI eliminated the need to perform solvent exchange and provided a further concentration of the analytes. Using CME coupled with OLBE-FASI, over a 3800-fold increase in sensitivity could be obtained as compared with the normal hydrodynamic injection without sample stacking. For a 1-mL urine sample, the linear range was 5/10-200 ng/mL with the square of the correlation coefficients (r(2)) ranging from 0.9988 to 0.9994. Detection limits were from 0.15 to 0.25 ng/mL using a photodiode array UV detection at wavelength 192 nm. The possibility of this method to determine ephedrine derivatives in 20-muL serum samples was also demonstrated.
Collapse
Affiliation(s)
- Huaifang Fang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | | | | |
Collapse
|
20
|
Abstract
Compared to MEKC, the presence of a water-immiscible oil phase in the microemulsion droplets of microemulsion EKC (MEEKC) gives rise to some special properties, such as enhanced solubilization capacity and enlarged migration window, which could allow for the improved separation of various hydrophobic and hydrophilic compounds, with reduced sample pretreatment steps, unique selectivities and/or higher efficiencies. Typically, stable and optically clear oil-in-water microemulsions containing a surfactant (SDS), oil (octane or heptane), and cosurfactant (1-butanol) in phosphate buffer are employed as separation media in conventional MEEKC. However, in recent years, the applicability of reverse MEEKC (water-in-oil microemulsions) has also been demonstrated, such as for the enhanced separation of highly hydrophobic substances. Also, during the past few years, the development and application of MEEKC for the separation of chiral molecules has been expanded, based on the use of enantioselective microemulsions that contained a chiral surfactant or chiral alcohol. On the other hand, the application of MEEKC for the characterization of the lipophilicity of chemical substances remains an active and important area of research, such as the use of multiplex MEEKC for the high-throughput determination of partition coefficients (log P values) of pharmaceutical compounds. In this review, recent applications of MEEKC (covering the period from 2003 to 2005) are reported. Emphases are placed on the discussion of MEEKC in the separation of chiral molecules and highly hydrophobic substances, as well as in the determination of partition coefficients, followed by a survey of recent applications of MEEKC in the analysis of pharmaceuticals, cosmetics and health-care products, biological and environmental compounds, plant materials, and foods.
Collapse
Affiliation(s)
- Carmen W Huie
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
21
|
Castro-Puyana M, Crego AL, Marina ML. Separation and quantitation of the four stereoisomers of itraconazole in pharmaceutical formulations by electrokinetic chromatography. Electrophoresis 2006; 27:887-95. [PMID: 16411272 DOI: 10.1002/elps.200500347] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The four stereoisomers of itraconazole were resolved for the first time by EKC using a CD as chiral selector. A study on the enantiomeric separation ability of different neutral CDs was carried out. Heptakis-2,3,6-tri-O-methyl-beta-CD was shown to provide the highest values for the enantiomeric resolution. The influence of some experimental conditions, such as pH, chiral selector concentration, and temperature, on the enantiomeric separation was also studied. The use of a 100 mM phosphate buffer (pH 2.5), 30 mM in heptakis-2,3,6-tri-O-methyl-beta-CD together with an applied voltage of 30 kV and a temperature of 20 degrees C enabled the separation of the enantiomers of itraconazole with high resolutions (Rs > 3.0). Finally, the method was validated and successfully applied to the quantitation of itraconazole in three pharmaceutical formulations.
Collapse
Affiliation(s)
- María Castro-Puyana
- Departamento de Química Analítica, Facultad de Química, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | | | | |
Collapse
|
22
|
Buchkowsky SS, Partovi N, Ensom MHH. Clinical Pharmacokinetic Monitoring of Itraconazole Is Warranted in Only a Subset of Patients. Ther Drug Monit 2005; 27:322-33. [PMID: 15905803 DOI: 10.1097/01.ftd.0000150135.22645.ea] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Itraconazole is a synthetic triazole antifungal agent that is commonly used in the prophylaxis and treatment of fungal infection. A role for itraconazole drug monitoring has been suggested previously; however, the advent of new formulations and increased clinical evidence may aid in further defining this role. Consequently, we have used a previously published decision-making algorithm to determine whether clinical pharmacokinetic monitoring of itraconazole is warranted. First, itraconazole has proven efficacy for the prophylaxis and treatment of fungal infection in immunocompromised individuals such as neutropenic cancer, human immunodeficiency virus (HIV), and solid organ transplant patients. Several assays have been developed to quantify itraconazole and its main metabolite in patient plasma. Measurement of these plasma drug levels in many clinical studies has resulted in no clear definition of a relationship between concentration and efficacy. However, limited evidence suggests a correlation between itraconazole levels greater than 250 or 500 ng/mL and increased efficacy. Clinical monitoring of efficacy is difficult because of the challenges in diagnosis of fungal infections and nonspecific clinical symptoms associated with fungal infections. Pharmacokinetic studies of itraconazole indicate that significant inter- and intrapatient variability exists in both healthy and immunocompromised patient populations, although subpopulations such as neutropenic cancer and HIV patients appear to require more drug than their healthy counterparts to attain similar drug levels. A therapeutic range has not been defined for itraconazole, but because of its relatively minimal side effects, a narrow range is unlikely. Drug interactions can occur with itraconazole because it is both an inhibitor and substrate of the cytochrome P450 3A4 (CYP3A4) enzyme and P-glycoprotein transporter systems. Protein binding alterations could also lead to differences in drug effect. Last, the duration of treatment of prophylaxis is significantly long to propose a potential benefit from drug monitoring. From weighing the available evidence, it appears that itraconazole drug level monitoring would provide more information on efficacy than clinical judgment alone in a subset of patients. Immunosuppressed patients requiring preventative therapy who have suspected poor absorption, are on concomitant enzyme inducers, or are suspected to be noncompliant would have the greatest benefit from itraconazole drug monitoring.
Collapse
Affiliation(s)
- Susan S Buchkowsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
23
|
Pappas TJ, Gayton-Ely M, Holland LA. Recent advances in micellar electrokinetic chromatography. Electrophoresis 2005; 26:719-734. [PMID: 15714572 DOI: 10.1002/elps.200410191] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review contains nearly 200 reference citations, and covers advances in electrokinetic capillary chromatography based on micelles, including stabilized micelle complexes, polymeric and mixed micelles from 2003-2004. Detection strategies, analyte determinations, and applications in micellar electrokinetic capillary chromatography (MEKC) are discussed. Information regarding methods of analyte concentration, analyte specific analyses, and nonstandard micelles has been summarized in tabular form to provide a means of rapid access to information pertinent to the reader.
Collapse
Affiliation(s)
- Theron J Pappas
- Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
24
|
Li Q, Chang CK, Huie CW. Microemulsion and micellar electrokinetic chromatography of Hematoporphyrin D: a starting material of hematoporphyrin derivative. Electrophoresis 2005; 26:885-894. [PMID: 15669006 DOI: 10.1002/elps.200410232] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An investigation of the basic factors which govern the microemulsion electrokinetic chromatography (MEEKC) and micellar electrokinetic chromatography (MEKC) separation of Hematoporphyrin D and its base hydrolysis product, hematoporphyrin derivative (HpD), was performed. These model compounds contain a complex mixture of porphyrin monomers, dimers and/or oligomers, and were utilized to gain insights into the MEEKC/micellar electrokinetic chromatography (MEKC) separation of samples containing highly lipophilic substances. For example, the organic modifier/cosurfactant (1-butanol) and/or oil phase (e.g., 1-octanol in comparison to ethyl acetate) were found to have an apparent influence on the separation selectivity of Hematoporphyrin D, the extent of which was dependent on the chemical nature of the surfactant employed (e.g., sodium dodecyl sulfate vs. sodium cholate). An interesting and important finding was that the presence of an organic modifier (methanol or acetonitrile at a concentration of 20% or higher) in the sample matrix as well as in the run buffer was essential for the optimal MEEKC or MEKC separation of a number of porphyrin monomers (including hematoporphyrin IX and its acetates, most likely hydroxyacetate, diacetate, and vinyl acetate, as well as its dehydration products, hydroxyethylvinyldeuteroporphyrin and protoporphyrin) contained in Hematoporphyrin D. On the other hand, the use of these optimized conditions for the MEEKC or MEKC separation of various oligomeric porphyrin species in HpD were unsatisfactory. As HpD is a well-known and effective photosensitizing agent in photodynamic therapy (a new approach for cancer treatment), the improved separation and characterization of various monomeric and oligomeric porphyrin species in HpD and its starting material, such as Hematoporphyrin D, is a challenging and important task.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| | | | | |
Collapse
|
25
|
Li X, Chu S, Fu S, MA L, Liu X, Xu X. Off-Line Concentration of Bisphenol A and Three Alkylphenols by SPE then On-Line Concentration and Rapid Separation by Reverse-Migration Micellar Electrokinetic Chromatography. Chromatographia 2005. [DOI: 10.1365/s10337-004-0471-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|