Santesson S, Barinaga-Rementeria Ramírez I, Viberg P, Jergil B, Nilsson S. Affinity Two-Phase Partitioning in Acoustically Levitated Drops.
Anal Chem 2003;
76:303-8. [PMID:
14719875 DOI:
10.1021/ac034951h]
[Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Miniaturized (<1 microL) biospecific affinity two-phase partitioning in an acoustically levitated drop is described. Miniaturization commonly gives unfavorable surface/volume ratios, but in the levitation approach adsorption problems are minimized since the only surrounding wall is the liquid/air interface of the drop. Biotinylated liposomes were partitioned in aqueous poly(ethylene glycol)/dextran two-phase drops with NeutrAvidin-dextran as the affinity ligand. A two-phase drop was trapped and manipulated in a node of a standing ultrasonic wave. Alternatively, a two-phase system was formed by levitation and evaporation of a polymer one-phase drop. Phase mixing was achieved by adjusting the ultrasonic field and phase separation by readjusting the field. NeutrAvidin-dextran brought about the redistribution of biotinylated liposomes from the poly(ethylene glycol)-rich phase into the dextran-rich phase. Thus, an entire affinity two-phase separation procedure, including mixing of the phases and incubation to allow affinity interactions to develop under constant volume, followed by phase separation under controlled evaporation, can be performed in a single levitated drop. This miniaturized technique would allow the separation of biologically active membranes or organelles from individual cells for analysis.
Collapse