1
|
Bouza M, Li Y, Wang AC, Wang ZL, Fernández FM. Triboelectric Nanogenerator Ion Mobility-Mass Spectrometry for In-Depth Lipid Annotation. Anal Chem 2021; 93:5468-5475. [PMID: 33720699 PMCID: PMC8292975 DOI: 10.1021/acs.analchem.0c05145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids play a critical role in cell membrane integrity, signaling, and energy storage. However, in-depth structural characterization of lipids is still challenging and not routinely possible in lipidomics experiments. Techniques such as collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), ion mobility (IM) spectrometry, and ultrahigh-performance liquid chromatography are not yet capable of fully characterizing double-bond and sn-chain position of lipids in a high-throughput manner. Herein, we report on the ability to structurally characterize lipids using large-area triboelectric nanogenerators (TENG) coupled with time-aligned parallel (TAP) fragmentation IM-MS analysis. Gas-phase lipid epoxidation during TENG ionization, coupled to mobility-resolved MS3 via TAP IM-MS, enabled the acquisition of detailed information on the presence and position of lipid C═C double bonds, the fatty acyl sn-chain position and composition, and the cis/trans geometrical C═C isomerism. The proposed methodology proved useful for the shotgun lipidomics analysis of lipid extracts from biological samples, enabling the detailed annotation of numerous lipid isobars.
Collapse
Affiliation(s)
- Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Aurelia C Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- NSF/NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Williams PE, Klein DR, Greer SM, Brodbelt JS. Pinpointing Double Bond and sn-Positions in Glycerophospholipids via Hybrid 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. J Am Chem Soc 2017; 139:15681-15690. [PMID: 28988476 PMCID: PMC5760168 DOI: 10.1021/jacs.7b06416] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Complete structural characterization of complex lipids, such as glycerophospholipids, by tandem mass spectrometry (MS/MS) continues to present a major challenge. Conventional activation methods do not generate fragmentation patterns that permit the simultaneous discernment of isomers which differ in both the positions of acyl chains on the glycerol backbone and the double bonds within the acyl chains. Herein we describe a hybrid collisional activation/UVPD workflow that yields near-complete structural information for glycerophospholipids. This hybrid MS3 strategy affords the lipid's sum composition based on the accurate mass measured for the intact lipid as well as highly specific diagnostic product ions that reveal both the acyl chain assignment (i.e., sn-position) and the site-specific location of double bonds in the acyl chains. This approach is demonstrated to differentiate sn-positional and double-bond-positional isomers, such as the regioisomeric phosphatidylcholines PC 16:0/18:1(n-9) and PC 18:1(n-9)/16:0, and has been integrated into an LC-MS3 workflow.
Collapse
Affiliation(s)
- Peggy E. Williams
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dustin R. Klein
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Sylvester M. Greer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Poad BLJ, Green MR, Kirk JM, Tomczyk N, Mitchell TW, Blanksby SJ. High-Pressure Ozone-Induced Dissociation for Lipid Structure Elucidation on Fast Chromatographic Timescales. Anal Chem 2017; 89:4223-4229. [DOI: 10.1021/acs.analchem.7b00268] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Berwyck L. J. Poad
- Central
Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Martin R. Green
- Waters Corporation, Altrincham
Road, Wilmslow, Cheshire SK9 4AX, United Kingdom
| | - Jayne M. Kirk
- Waters Corporation, Altrincham
Road, Wilmslow, Cheshire SK9 4AX, United Kingdom
| | - Nick Tomczyk
- Waters Corporation, Altrincham
Road, Wilmslow, Cheshire SK9 4AX, United Kingdom
| | - Todd W. Mitchell
- School
of Medicine, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Stephen J. Blanksby
- Central
Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
4
|
Combining liquid chromatography with ozone-induced dissociation for the separation and identification of phosphatidylcholine double bond isomers. Anal Bioanal Chem 2015; 407:5053-64. [DOI: 10.1007/s00216-014-8430-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/06/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
|
5
|
Charged Lipid Bilayers in Aqueous Surroundings with Low pH. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-411515-6.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
6
|
Kiełbowicz G, Smuga D, Gładkowski W, Chojnacka A, Wawrzeńczyk C. An LC method for the analysis of phosphatidylcholine hydrolysis products and its application to the monitoring of the acyl migration process. Talanta 2012; 94:22-9. [PMID: 22608409 DOI: 10.1016/j.talanta.2012.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/02/2012] [Accepted: 01/09/2012] [Indexed: 02/09/2023]
Abstract
An assay for quantitative analysis of phosphatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and its hydrolysis products: 1-hydroxy-2-palmitoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine, sn-glycero-3-phosphocholine and palmitic acid using high-performance liquid chromatography with charge aerosol detector (CAD) was developed. The separation of the compounds of interest was achieved on a reversed-phase/hydrophilic interaction stationary phase with a mobile phase consisting of acetonitrile:methanol:10mM ammonium acetate solution. The method was applied to control the acyl migration process of LPC regioisomers in the most common solvents used in the synthesis or modification of PC.
Collapse
Affiliation(s)
- Grzegorz Kiełbowicz
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25 50-375 Wrocław, Poland
| | | | | | | | | |
Collapse
|
7
|
Brouwers JF. Liquid chromatographic–mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:763-75. [DOI: 10.1016/j.bbalip.2011.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/22/2011] [Accepted: 08/02/2011] [Indexed: 12/21/2022]
|
8
|
Affiliation(s)
- Jiann‐Tsyh Lin
- a United States Department of Agriculture , Western Regional Research Center, Agricultural Research Service , California, USA
| |
Collapse
|
9
|
Lin JT, McKeon TA. SEPARATION OF INTACT PHOSPHATIDYLCHOLINE MOLECULAR SPECIES BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-100101491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- J. T. Lin
- a United States Department of Agriculture , Western Regional Research Center, Agricultural Research Service , 800 Buchanan Street, Albany, California, 94710, U.S.A
| | - T. A. McKeon
- a United States Department of Agriculture , Western Regional Research Center, Agricultural Research Service , 800 Buchanan Street, Albany, California, 94710, U.S.A
| |
Collapse
|
10
|
Lin JT, Wani S, He X, Nguyen T, McKeon TA. Incorporation of laurate and hydroxylaurate into phosphatidylcholines and acylglycerols in castor microsomes. J AM OIL CHEM SOC 2005. [DOI: 10.1007/s11746-005-1099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiann-Tsyh Lin
- Western Regional Research Center, Agricultural Research Service; U.S. Department of Agriculture; 800 Buchanan St. Albany 94710 CA
| | - Seiji Wani
- Western Regional Research Center, Agricultural Research Service; U.S. Department of Agriculture; 800 Buchanan St. Albany 94710 CA
| | - Xiaohua He
- Western Regional Research Center, Agricultural Research Service; U.S. Department of Agriculture; 800 Buchanan St. Albany 94710 CA
| | - Tasha Nguyen
- Western Regional Research Center, Agricultural Research Service; U.S. Department of Agriculture; 800 Buchanan St. Albany 94710 CA
| | - Thomas A. McKeon
- Western Regional Research Center, Agricultural Research Service; U.S. Department of Agriculture; 800 Buchanan St. Albany 94710 CA
| |
Collapse
|
11
|
Lin J, McKeon TA. Relative Retention Times of Molecular Species of Acylglycerols, Phosphatidylcholines, and Phosphatidylethanolamines Containing Ricinoleate in Reversed‐Phase HPLC. J LIQ CHROMATOGR R T 2003. [DOI: 10.1081/jlc-120020092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jiann‐Tsyh Lin
- a U.S. Department of Agriculture, Agricultural Research Service , Western Regional Research Center , 800 Buchanan St., Albany , California , 94710 , USA
| | - Thomas A. McKeon
- a U.S. Department of Agriculture, Agricultural Research Service , Western Regional Research Center , 800 Buchanan St., Albany , California , 94710 , USA
| |
Collapse
|
12
|
|
13
|
Lin JT, Chen JM, Chen P, Liao LP, McKeon TA. Molecular species of PC and PE formed during castor oil biosynthesis. Lipids 2002; 37:991-5. [PMID: 12530559 DOI: 10.1007/s11745-006-0991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
As part of a program to elucidate castor oil biosynthesis, we have identified 36 molecular species of PC and 35 molecular species of PE isolated from castor microsomes after incubations with [14C]-labeled FA. The six [14C]FA studied were ricinoleate, stearate, oleate, linoleate, linolenate, and palmitate, which were the only FA identified in castor microsomal incubations. The incorporation of each of the six FA into PC was better than that into PE. The [14C]FA were incorporated almost exclusively into the sn-2 position of both PC and PE. The incorporation of [14C]stearate and [14C]palmitate into 2-acyl-PC was slower compared to the other four [14C]FA. The incorporation does not show any selectivity for the various lysoPC molecular species. The level of incorporation of [14C]FA in PC was in the order of: oleate > linolenate > palmitate > linoleate > stearate > ricinoleate, and in PE: linoleate > linolenate > oleate > palmitate > stearate > ricinoleate. In general, at the sn-1 position of both PC and PE, linoleate was the most abundant FA, palmitate was the next, and oleate, linolenate, stearate, and ricinoleate were minor FA. The activities of oleoyl-12-hydroxylase, oleoyl-12-desaturase seem unaffected by the FA at the sn-1 position of 2-oleoyl-PC. The FA in the sn-1 position of PC does not significantly affect the activity of phospholipase A2, whereas ricinoleate is preferentially removed from the sn-2 position of PC. The results show that (i) [14C]oleate is most actively incorporated to form 2-oleoyl-PC, the immediate substrate of oleoyl-12-hydroxylase; (ii) 2-ricinoleoyl-PC is formed mostly by the hydroxylation of 2-oleoyl-PC, not from the incorporation of ricinoleate into 2-ricinoleoyl-PC; and (iii) 2-oleoyl-PE is less actively formed than 2-oleoyl-PC.
Collapse
Affiliation(s)
- Jiann-Tsyh Lin
- USDA, ARS, Western Regional Research Center, Albany, California 94710, USA.
| | | | | | | | | |
Collapse
|
14
|
Lin JT, Lew KM, Chen JM, McKeon TA. Separation of the molecular species of intact phosphatidylethanolamines and their N-monomethyl and N,N-dimethyl derivatives by high-performance liquid chromatography on a C8 column. J Chromatogr A 2000; 891:349-53. [PMID: 11043795 DOI: 10.1016/s0021-9673(00)00723-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have developed a gradient reversed-phase C8 high-performance liquid chromatography method for the separation of molecular species of phosphatidylethanolamines (PEs) and their N-monomethyl and N,N-dimethyl derivatives. This method uses a 40-min linear gradient of 88-100% methanol, containing ammonium hydroxide as silanol suppressing agent, and is suitable for metabolic studies using both UV detection at 205 nm and radioactivity flow detection. The elution order of a given PE is inversely related to the polarity of its fatty acid constituents. Lipid classes studied here containing the same fatty acyl chains elute in the order: PE-N,N-dimethyl<PE<PE-N-monomethyl<phosphatidylcholine, indicating that elution order is not simply a function of the numbers of methyl groups on the nitrogen atom of PE.
Collapse
Affiliation(s)
- J T Lin
- Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA 94710, USA.
| | | | | | | |
Collapse
|
15
|
Lin JT, Lew KM, Chen JM, Iwasaki Y, McKeon TA. Metabolism of 1-acyl-2-oleoyl-sn-glycero-3-phosphoethanolamine in castor oil biosynthesis. Lipids 2000; 35:481-6. [PMID: 10907782 DOI: 10.1007/s11745-000-547-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have examined the role of 2-oleoyl-PE (phosphatidylethanolamine) in the biosynthesis of triacylglycerols (TAG) by castor microsomes. In castor microsomal incubation, the label from 14C-oleate of 1-palmitoyl-2-[1-(14)C]oleoyl-sn-glycero-3-phosphoethanolamine is incorporated into TAG containing ricinoleate. The enzyme characteristics, such as optimal pH, and the effect of incubation components of the oleoyl-12-hydroxylase using 2-oleoyl-PE as incubation substrate are similar to those for 2-oleoyl-PC (phosphatidylcholine). However, compared to 2-oleoyl-PC, 2-oleoyl-PE is a less efficient incubation substrate of oleoyl-12-hydroxylase in castor microsomes. Unlike 2-oleoyl-PC, 2-oleoyl-PE is not hydroxylated to 2-ricinoleoyl-PE by oleoyl-12-hydroxylase and is not desaturated to 2-linoleoyl-PE by oleoyl-12-desaturase. We have demonstrated the conversion of 2-oleoyl-PE to 2-oleoyl-PC and vice versa. The incorporation of label from 2-[14C]oleoyl-PE into TAG occurs after its conversion to 2-oleoyl-PC, which can then be hydroxylated or desaturated. We detected neither PE-N-monomethyl nor PE-N,N-dimethyl, the intermediates from PE to PC by N-methylation. The conversion of 2-oleoyl-PE to 2-oleoyl-PC likely occurs via hydrolysis to 1,2-diacyl-sn-glycerol by phospholipase C and then by cholinephosphotransferase. This conversion does not appear to play a key role in driving ricinoleate into TAG.
Collapse
Affiliation(s)
- J T Lin
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California 94710, USA.
| | | | | | | | | |
Collapse
|