1
|
Li M, He P, Yu Z, Zhang S, Gu C, Nie X, Gu Y, Zhang X, Zhu Z, Shao Y. Investigation of Dendrimer Transfer Behaviors at the Micro-Water/1,2-Dichloroethane Interface Facilitated by Dibenzo-18-Crown-6. Anal Chem 2021; 93:1515-1522. [PMID: 33356146 DOI: 10.1021/acs.analchem.0c03815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Trans-interfacial behaviors of multiple ionic species at the interface between two immiscible electrolyte solutions (ITIES) are of importance to biomembrane mimicking, chemical and biosensing, and interfacial molecular catalysis. Utilizing host-guest interaction to facilitate ion transfer is an effective and commonly used method to decrease the Gibbs energy of transfer of a target molecule. Herein, we investigated a facilitated ion transfer (FIT) process of poly(amidoamine)dendrimer (PAMAM, G0-G2) by dibenzo-18-crown-6 (DB18C6) at the microinterfaces between water and 1,2-dichloroethane (μ-W/DCE). Because of the host-guest interaction between a dendrimer and a ligand, negative shifts of the transfer potentials were observed using cyclic voltammetry or Osteryoung square wave voltammetry. From the FIT behavior of the dendrimer, we revealed that each DB18C6 could selectively coordinate with one amino group. We first evaluated the protonated status of the intermediate state (1:2) exactly under the conditions the dendrimer (G1) transfers across the interface using the electrochemical mass spectrometry (EC-MS)-hyphenated technique, which is much smaller than the protonated status in the water phase (1:8 to 14). Using the same methodology, we also studied the facilitated transfer behaviors of G0 and G2. Based on these results, we put forward the mechanism of the FIT process, which might involve a deprotonating process at the interface for higher-generation dendrimers.
Collapse
Affiliation(s)
- Mingzhi Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peng He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shudong Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yaxiong Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Electrochemical Behavior and Detection of Diclofenac at a Microporous Si3N4 Membrane Modified Water–1,6-dichlorohexane Interface System. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The electrochemical behavior when the liquid–liquid interface was modified by commercially available, microporous silicon nitride membrane, was achieved using cyclic voltammetry with tetramethyl ammonium. The transfer characteristics of the ionizable drug diclofenac ( DCF − ), as an anti-inflammatory, anti-rheumatic, antipyretic, and analgesic treatment in common use in biomedical applications, were also investigated across microporous silicon nitride-modified liquid interface. Thus, some thermodynamic variables for DCF − , such as the standard Gibbs energy of transfer, the standard transfer potential and lipophilicity were estimated. Furthermore, the influence of possible interfering substances (ascorbic acid, sugar, amino acid, urea, and metal ions) on the detection of DCF − was investigated. An electrochemical DCF sensor is investigated using differential pulse voltammetry (DPV) as the quantification technique, a linear range of 8–56 µM and a limit of detection of 1.5 µM was possible due to the miniaturized interfaces formed within silicon nitride.
Collapse
|
3
|
Gu C, Nie X, Jiang J, Chen Z, Dong Y, Zhang X, Liu J, Yu Z, Zhu Z, Liu J, Liu X, Shao Y. Mechanistic Study of Oxygen Reduction at Liquid/Liquid Interfaces by Hybrid Ultramicroelectrodes and Mass Spectrometry. J Am Chem Soc 2019; 141:13212-13221. [PMID: 31353892 DOI: 10.1021/jacs.9b06299] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-coupled electron transfer (PCET) reactions at various interfaces (liquid/membrane, solid/electrolyte, liquid/liquid) lie at the heart of many processes in biology and chemistry. Mechanistic study can provide profound understanding of PCET and rational design of new systems. However, most mechanisms of PCET reactions at a liquid/liquid interface have been proposed based on electrochemical and spectroscopic data, which lack direct evidence for possible intermediates. Moreover, a liquid/liquid interface as one type of soft interface is dynamic, making the investigation of interfacial reactions very challenging. Herein a novel electrochemistry method coupled to mass spectrometry (EC-MS) was introduced for in situ study of the oxygen reduction reaction (ORR) by ferrocene (Fc) under catalysis from cobalt tetraphenylporphine (CoTPP) at liquid/liquid interfaces. The key units are two types of gel hybrid ultramicroelectrodes (agar-gel/organic hybrid ultramicroelectrodes and water/PVC-gel hybrid ultramicroelectrodes), which were made based on dual micro- or nanopipettes. A solidified liquid/liquid interface can be formed at the tip of these pipettes, and it serves as both an electrochemical cell and a nanospray emitter for mass spectrometry. We demonstrated that the solidified L/L interfaces were very similar to typical L/L interfaces. Key CoTPP intermediates of the ORR at the liquid/liquid interfaces were identified for the first time, and the four-electron oxygen reduction pathway predominated, which provides valuable insights into the mechanism of the ORR. Theoretical simulation has further supported the possibility of formation of intermediates. This type of platform is promising for in situ tracking and identifying intermediates to study complicated reactions at liquid/liquid interfaces or other soft interfaces.
Collapse
Affiliation(s)
- Chaoyue Gu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Nie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiezhang Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zifei Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yifan Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xin Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences , Peking University Health Science Center , Beijing 100191 , China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
4
|
Katano H, Maruyama M, Kuroda Y, Uematsu K, Maruyama C, Hamano Y. Partition of amines and lysine oligomers between organic solvent and water under a controlled interfacial potential difference. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Electrochemical signature of hen egg white lysozyme at the glycerol-modified liquid-liquid interface. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Arrigan D, Herzog G, Scanlon M, Strutwolf J. Bioanalytical Applications of Electrochemistry at Liquid-Liquid Microinterfaces. ELECTROANALYTICAL CHEMISTRY: A SERIES OF ADVANCES 2013. [DOI: 10.1201/b15576-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Lee SH, Kim H, Girault HH, Lee HJ. Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.9.2577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Kaykal F, Bingol H, Sariguney AB, Coskun A, Akgemci EG. Synthesis and electrochemical properties of a novel calix[4]arene derivative for facilitated transfer of alkali metal ions across water/1,2-dichloroethane micro-interface. Supramol Chem 2011. [DOI: 10.1080/10610278.2011.575466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Meng X, Liang Z, Li B, Xu X, Li Q, Zhao W, Xie S, Shao Y. Investigation of transfer behavior of protonated pyridine at the liquid/liquid interface using dual micropipettes. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Selective sodium ion transfer across a water/1,2-dichloroethane micro-interface by a calix[4]arene derivative. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Bingol H, Kaykal F, Akgemci EG, Sirit A. Facilitated Transfer of Alkali and Alkaline-Earth Metal Ions by a Calix[4]arene Derivative Across Water/1,2-Dichloroethane Microinterface: Amperometric Detection of Ca2+. ELECTROANAL 2010. [DOI: 10.1002/elan.201000345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Juarez AV, Yudi LM, Álvarez Igarzabal C, Strumia MC. Cation transfer across a hydrogel/organic phase: Effect of cation size, hydrophobicity and acid–base properties. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.11.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Ho HLT, Dryfe RAW. Transport of neutral and ionic solutes: the gel/electrode and gel/electrolyte interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:12757-12765. [PMID: 19761267 DOI: 10.1021/la9018212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transport through a polysaccharide gel phase has been investigated voltammetrically using both redox voltammetry at a gel covered electrode and ion transfer voltammetry across the gel/liquid interface (Gel/L). The apparent diffusion coefficients, D(app), of a range of neutral and ionic electroactive species have been determined in both uncharged and anionic polysaccharide media, agar, and kappa-carrageenan, respectively. It is shown that the diffusion of electroactive species in agar gel occurs at a rate similar to that of diffusion in aqueous solution for a range of redox couples. In the kappa-carrageenan medium, by contrast, the diffusion coefficient obtained for cationic solutes was found to be approximately an order of magnitude lower than the value in aqueous solution. The difference in D(app) is attributed to two independent processes: electrostatic interactions between the charge of the sulfonate groups of the kappa-carrageenan gel and the charge of the solute, as well a change in hydration of the solute molecules.
Collapse
Affiliation(s)
- Huong L T Ho
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | |
Collapse
|
14
|
A digital simulation study of steady-state voltammograms for the ion transfer across the liquid–liquid interface formed at the orifice of a micropipette. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2008.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zazpe R, Hibert C, O'Brien J, Lanyon YH, Arrigan DWM. Ion-transfer voltammetry at silicon membrane-based arrays of micro-liquid-liquid interfaces. LAB ON A CHIP 2007; 7:1732-1737. [PMID: 18030394 DOI: 10.1039/b712601h] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microporous silicon membranes, fabricated by lithographic patterning and wet and dry silicon etching processes, were used to create arrays of micro-scale interfaces between two immiscible electrolyte solutions (muITIES) for ion-transfer voltammetry. These membranes served the dual functions of interface stabilization and enhancement of the rate of mass-transport to the interface. The pore radii were 6.5 microm, 12.8 microm and 26.6 microm; the pore-pore separations were ca. 20- to 40-times the pore radii and the membrane thickness was 100 microm. Deep reactive ion etching (DRIE) was used for pore drilling through the silicon, which had been previously selectively thinned by potassium hydroxide etching. DRIE produces hydrophobic fluorocarbon-coated internal pore walls. The small pore sizes and large pore-pore separations used resulted in steady-state voltammograms for the transfer of tetramethylammonium cation (TMA(+)) from the aqueous to the organic phase, whereas the reverse voltammetric sweeps were peak-shaped. These asymmetric voltammograms are consistent with the location of the ITIES at the aqueous side of the silicon membrane such that the organic phase fills the micropores. Comparison of the experimental currents to calculated currents for an inlaid disc micro-interface revealed that the interfaces were slightly recessed, up to 10 microm (or 10% of the pore length) in one case. Facilitated ion transfer, with an organic-phase ionophore, confirmed the location of the organic phase within the pores. These microporous silicon membranes offer opportunities for various analytical operations, including enhancing the rate of mass transport to ITIES-based sensing devices and stabilization of the ITIES for hydrodynamic applications.
Collapse
Affiliation(s)
- Raul Zazpe
- Tyndall National Institute, Lee Maltings, University College, Cork, Ireland
| | | | | | | | | |
Collapse
|
16
|
Beni V, Ghita M, Arrigan DWM. Cyclic and pulse voltammetric study of dopamine at the interface between two immiscible electrolyte solutions. Biosens Bioelectron 2005; 20:2097-103. [PMID: 15741080 DOI: 10.1016/j.bios.2004.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/29/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
The detection of dopamine by differential pulse voltammetry (DPV) and square wave voltammetry (SWV) at the interface between two immiscible electrolyte solutions (ITIES) has been studied. Voltammetry at the liquid/liquid (water/1,2-dichloroethane) interface provides a simple method for overcoming the major problem associated with dopamine detection by voltammetry at solid electrodes: the co-existence of ascorbate at higher concentrations. Selectivity for dopamine was achieved by the use of dibenzo-18-crown-6 as an ionophore for the facilitated transfer voltammetry of protonated dopamine across the ITIES. Under these conditions, ascorbate is not transferred and hence does not interfere in the ion transfer current for dopamine. By use of DPV and SWV, the lowest concentration detectable can be lowered from ca. 0.1 mM (obtained with cyclic voltammetry) to 2 microM. Evaluation of the effect of some other physiologically important species (acetylcholine, sodium, potassium and ammonium ions) on the dopamine transfer voltammetry has been studied, indicating the need for improved ionophore designs in order to achieve practically useful selectivity.
Collapse
Affiliation(s)
- Valerio Beni
- NMRC, University College, Lee Maltings, Prospect Row, Cork, Ireland
| | | | | |
Collapse
|
17
|
OSAKAI T, KATANO H. Recent Developments in the Electroanalytical Chemistry at an Oil|Water Interface. BUNSEKI KAGAKU 2005. [DOI: 10.2116/bunsekikagaku.54.251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Hajime KATANO
- Department of Bioscience, Fukui Prefectural University
| |
Collapse
|
18
|
Fantini S, Clohessy J, Gorgy K, Fusalba F, Johans C, Kontturi K, Cunnane VJ. Influence of the presence of a gel in the water phase on the electrochemical transfer of ionic forms of beta-blockers across a large water 1,2-dichloroethane interface. Eur J Pharm Sci 2003; 18:251-7. [PMID: 12659936 DOI: 10.1016/s0928-0987(03)00018-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The transfer of ionic species of three beta-blockers (propranolol, sotalol and timolol) has been studied by cyclic voltammetry at a macroscopic water 1,2-dichloroethane (1,2-DCE) interface. The aqueous solution has been gellified in order to study the effect of the gel on the transport properties of the drugs. The gelling agent also stabilizes the interface overcoming mechanical instability. The standard potential and standard Gibbs energy of transfer across the interface, the partition coefficient and the diffusion coefficient of each drug were determined in the presence of a gelled interface. The diffusion coefficients were shifted relative to those obtained at normal water 1,2-DCE interfaces (free of gel).
Collapse
Affiliation(s)
- Sebastien Fantini
- Materials Surface Sciences Institute, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | | | | | | | | | | | |
Collapse
|