1
|
Bujalance-Fernández J, Jurado-Sánchez B, Escarpa A. Molecular Memory Micromotors for Fast Snake Venom Toxin Dynamic Detection. Anal Chem 2024; 96:10791-10799. [PMID: 38914924 PMCID: PMC11223101 DOI: 10.1021/acs.analchem.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024]
Abstract
The analysis and detection of snake venom toxins are a matter of great importance in clinical diagnosis for fast treatment and the discovery of new pharmaceutical products. Current detection methods have high associated costs and require the use of sophisticated bioreceptors, which in some cases are difficult to obtain. Herein, we report the synthesis of template-based molecularly imprinted micromotors for dynamic detection of α-bungarotoxin as a model toxin present in the venom of many-banded krait (Bungarus multicinctus). The specific recognition sites are built-in in the micromotors by incubation of the membrane template with the target toxin, followed by a controlled electrodeposition of a poly(3,4-ethylenedioxythiophene)/poly(sodium 4-styrenesulfonate) polymeric layer, a magnetic Ni layer to promote magnetic guidance and facilitate washing steps, and a Pt layer for autonomous propulsion in the presence of hydrogen peroxide. The enhanced fluid mixing and autonomous propulsion increase the likelihood of interactions with the target analyte as compared with static counterparts, retaining the tetramethylrhodamine-labeled α-bungarotoxin on the micromotor surface with extremely fast dynamic sensor response (after just 20 s navigation) in only 3 μL of water, urine, or serum samples. The sensitivity achieved meets the clinically relevant concentration postsnakebite (from 0.1 to 100 μg/mL), illustrating the feasibility of the approach for practical applications. The selectivity of the protocol is very high, as illustrated by the absence of fluorescence in the micromotor surface in the presence of α-cobratoxin as a representative toxin with a size and structure similar to those of α-bungarotoxin. Recoveries higher than 95% are obtained in the analysis of urine- and serum-fortified samples. The new strategy holds considerable promise for fast, inexpensive, and even onsite detection of several toxins using multiple molecularly imprinted micromotors with tailored recognition abilities.
Collapse
Affiliation(s)
- Javier Bujalance-Fernández
- Department
of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28805 Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department
of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28805 Madrid, Spain
- Chemical
Research Institute “Andres M. del Rio”, Universidad de Alcala, E-28805 Madrid, Spain
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28805 Madrid, Spain
- Chemical
Research Institute “Andres M. del Rio”, Universidad de Alcala, E-28805 Madrid, Spain
| |
Collapse
|
2
|
Kpordze SW, Kikuvi GM, Kimotho JH, Mobegi VA. Development, Optimization and Evaluation of a Sensitive Enzyme-Linked Immunosorbent Assay (ELISA) Prototype for Detection of Chicken-Based IgY Polyclonal Antibodies against Toxins of D. polylepis Venom. Antibodies (Basel) 2024; 13:50. [PMID: 39051326 PMCID: PMC11270286 DOI: 10.3390/antib13030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Life-threatening medical issues can result from snakebite, and hence this is a public health concern. In many tropical and subtropical nations such as Kenya, where a wide variety of poisonous snakes are prevalent, diagnosis of snakebite in health facilities is imperative. Different antivenoms are needed to treat the venom of different snake species. Nonetheless, it might be difficult for medical professionals to identify the exact snake species that envenomated a patient due to the similarities of several snake envenomations' clinical symptoms. Therefore, the necessity for an assay or technique for identifying venomous species is critical. The current study sought to develop a sensitive ELISA prototype for the detection of D. polylepis venom in Kenya using generated chicken-based IgY polyclonal antibodies. Serum samples containing specific chicken-based IgY antibodies previously raised against D. polylepis venom toxins were used in the assay development. ELISA parameters were optimized, and the developed assay was assessed for applicability. The limit of detection (LoD) of the ELISA for neurotoxic venoms was determined to be 0.01 µg/mL. Successful discrimination between neurotoxic and cytotoxic venoms was achieved by the ensuing inhibition ELISA assay. The developed assay showed the capability of identifying venoms in blood samples (from spiked and venom-challenged blood samples) of BALB/c mice, providing compelling evidence of the strategy's usefulness. This assay could help physicians diagnose and manage victims of snakebites through the evaluation of clinical samples.
Collapse
Affiliation(s)
- Stephen Wilson Kpordze
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), JKUAT-Juja Campus, Nairobi 62000-00200, Kenya
- Spanish Laboratory Complex, University for Development Studies, Nyankpala Campus, Tamale TL 1350, Ghana
| | - Gideon Mutie Kikuvi
- Department of Environmental Health and Disease Control, Jomo Kenyatta University of Agriculture and Technology, JKUAT-Juja Campus, Nairobi 62000-00200, Kenya;
| | - James Hungo Kimotho
- Kenya Medical Research Institute, Off Raila Odinga Way, Nairobi 54840-00200, Kenya;
| | - Victor Atunga Mobegi
- Department of Biochemistry, University of Nairobi, Chiromo Campus, Nairobi 30197-00100, Kenya;
| |
Collapse
|
3
|
Choowongkomon K, Chaisakul J, Seetaha S, Vasaruchapong T, Hodgson WC, Rasri N, Chaeksin K, Boonchaleaw S, Sookprasert N. Development of a Biosensor to Detect Venom of Malayan Krait ( Bungarus candidus). Toxins (Basel) 2024; 16:56. [PMID: 38276532 PMCID: PMC10820552 DOI: 10.3390/toxins16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Malayan krait (Bungarus candidus) envenoming is a cause of significant morbidity and mortality in many Southeast Asian countries. If intubation and specific antivenom administration are delayed, the most significant life-threatening outcome may be the inhibition of neuromuscular transmission and subsequent respiratory failure. It is recommended that krait-envenomed victims without indications of neurotoxicity, e.g., skeletal muscle weakness or ptosis, immediately receive 10 vials of antivenom. However, the administration of excess antivenom may lead to hypersensitivity or serum sickness. Therefore, monitoring venom concentrations in patients could be used as an indicator for snake antivenom treatment. In this study, we aimed to develop a screen-printed gold electrode (SPGE) biosensor to detect B. candidus venom in experimentally envenomed rats. The gold electrodes were coated with monovalent Malayan krait IgG antivenom and used as venom detection biosensors. Electrochemical impedance spectrometry (EIS) and square wave voltammetry (SWV) measurements were performed to detect the electrical characterization between B. candidus venom and monovalent IgG antivenom in the biosensor. The EIS measurements showed increases in charge transfer resistance (Rct) following IgG immobilization and incubation with B. candidus venom solution (0.1-0.4 mg/mL); thus, the antibody was immobilized on the electrode surface and venom was successfully detected. The lowest current signal was detected by SWV measurement in rat plasma collected 30 min following B. candidus experimental envenoming, indicating the highest level of venom concentration in blood circulation (4.3 ± 0.7 µg/mL). The present study demonstrates the ability of the SPGE biosensor to detect B. candidus venom in plasma from experimentally envenomed rats. The technology obtained in this work may be developed as a detection tool for use along with the standard treatment of Malayan krait envenoming.
Collapse
Affiliation(s)
- Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (K.C.); (S.S.); (N.R.)
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand; (K.C.); (S.B.)
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (K.C.); (S.S.); (N.R.)
| | - Taksa Vasaruchapong
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok 10330, Thailand;
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
| | - Natchaya Rasri
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand; (K.C.); (S.S.); (N.R.)
| | - Katechawin Chaeksin
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand; (K.C.); (S.B.)
| | - Sattawat Boonchaleaw
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand; (K.C.); (S.B.)
| | - Nattapon Sookprasert
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathumthani 12120, Thailand
| |
Collapse
|
4
|
Liu CC, Chou YS, Wu CJ, Hsieh CH, Hsiao YC, Chu LJ, Ouyang CH, Lin CC, Liaw GW, Chen CK. Detection of cytotoxins by sandwich-ELISA for discrimination of cobra envenomation and indication of necrotic severity. Int J Biol Macromol 2023; 242:124969. [PMID: 37210050 DOI: 10.1016/j.ijbiomac.2023.124969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Snake envenoming is both a healthcare and socioeconomic problem for developing countries and underserved communities. In Taiwan, clinical management of Naja atra envenomation is a major challenge, since cobra venom-induced symptoms are usually confused with hemorrhagic snakebites and current antivenom treatments do not effectively prevent venom-induced necrosis for which early surgical debridement should be administered. Identification and validation of biomarkers of cobra envenomation is critical for progress in setting a realistic goal for snakebite management in Taiwan. Previously, cytotoxin (CTX) was determined as one of potential biomarker candidates; however, its ability to discriminate cobra envenoming remains to be verified, especially in clinical practice. In this study, we selected a monoclonal single-chain variable fragment (scFv) and a polyclonal antibody to develop a sandwich enzyme-linked immunosorbent assay (ELISA) for CTX detection, which successfully recognized CTX from N. atra venom over that from other snake species. Using this specific assay, the CTX concentration in envenoming mice was shown to remain consistent in about 150 ng/mL during the 2-hour post-injection period. The measured concentration was highly correlated with the size of local necrosis in mouse dorsal skin, which the correlation coefficient is about 0.988. Furthermore, our ELISA method displayed 100 % of specificity and sensitivity in discriminating cobra envenoming among snakebite victims through CTX detection and the level of CTX in victim plasma was ranged from 5.8 to 253.9 ng/mL. Additionally, patients developed tissue necrosis at plasma CTX concentrations higher than 150 ng/mL. Thus, CTX not only serves as a verified biomarker for discrimination of cobra envenoming but also a potential indicator of severity of local necrosis. In this context, detection of CTX may facilitate reliable identification of envenoming species and improve snakebite management in Taiwan.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shao Chou
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City 23741, Taiwan
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City 23741, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hsiang Ouyang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan 32645, Taiwan.
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
5
|
Nong JF, Huang Z, Huang ZZ, Yang J, Li JC, Yang F, Huang DL, Wang F, Wang W. Development of sandwich ELISA and lateral flow assay for the detection of Bungarus multicinctus venom. PLoS Negl Trop Dis 2023; 17:e0011165. [PMID: 36996245 PMCID: PMC10089342 DOI: 10.1371/journal.pntd.0011165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/11/2023] [Accepted: 02/13/2023] [Indexed: 04/01/2023] Open
Abstract
Snakebite envenoming adversely affects human health and life worldwide. Presently, no suitable diagnostic tools for snakebite envenoming are available in China. Therefore, we sought to develop reliable diagnostic tests for snakebite management. We conducted affinity purification experiments to prepare species-specific antivenom antibody (SSAb). In brief, affinity chromatography with an antibody purification column (Protein A) was conducted to purify immunoglobulin G from Bungarus multicinctus (BM) venom hyperimmunized rabbit serum. The cross-reactive antibodies were removed from commercial BM antivenin by immune adsorption on the affinity chromatography columns of the other three venoms, Bungarus Fasciatus (FS), Naja atra (NA), and O. hannah (OH), generating SSAb. The results of western blot analysis and enzyme-linked immunosorbent assay (ELISA) showed the high specificity of the prepared SSAb. The obtained antibodies were then applied to ELISA and lateral flow assay (LFA) to detect BM venom. The resulting ELISA and LFA could specifically and rapidly detect BM venom in various samples with the limits of quantification as 0.1 and 1 ng/ml, respectively. This method could effectively detect snake venom in experimentally envenomed rats (simulating human envenomation), which could distinguish positive and negative samples within 10-15 min. This method also showed promise in serving as a highly useful tool for a rapid clinical distinguishing of BM bites and rational use of antivenom in emergency centers. The study also revealed cross-reactivity between BM and heterogenous venoms, suggesting that they shared common epitopes, which is of great significance for developing detection methods for venoms of the snakes belonging to the same family.
Collapse
Affiliation(s)
- Ji-Fei Nong
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zhou Huang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zheng-Zhuang Huang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jie Yang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jin-Cheng Li
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Feng Yang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dong-Ling Huang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Fan Wang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Wei Wang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Tian Y, Liu Z, Ma L, Yu Y, Shi Q, Zhao S, Zhou Y. Forensic identification of a fatal snakebite from Bungarus multicinctus (Chinese krait) by pathological and toxicological findings: a case report. Forensic Sci Med Pathol 2022; 18:497-502. [PMID: 36045276 DOI: 10.1007/s12024-022-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Bungarus multicinctus (B. multicinctus) is one of the top ten venomous snakes in China, ranking first in lethality at 26.9-33.3%. However, to our knowledge, no forensic autopsy-related cases of death from B. multicinctus bite poisoning have been reported. There are surprisingly few reported cases of death from poisoning by other species of neurotoxic snakes. Neurotoxic snake venom is often highly toxic, and death can quickly occur when bitten in the wild if victims are not taken to a doctor in time. We presented a case of an adult female in Fujian Province of China who was bitten by a poisonous snake while digging for bamboo shoots in the mountains and died from the bite of B. multicinctus confirmed by enzyme-linked immunosorbent assays (ELISA) results. The autopsy's results, histopathological findings, and ELISA results reported here can be helpful for future forensic practice in B. multicinctus venom poisoning; we also briefly review the pathological changes of neurotoxin poisoning, which may be useful in other types of neurotoxin snake venom poisoning.
Collapse
Affiliation(s)
- Yu Tian
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, 430030, Wuhan, People's Republic of China
| | - Zihao Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, 430030, Wuhan, People's Republic of China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, 430030, Wuhan, People's Republic of China
| | - Yanhe Yu
- Public Security Bureau of Gutian, No. 16 West Binhe Road, Chengdong Street, 352200, Gutian, People's Republic of China
| | - Qing Shi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, 430030, Wuhan, People's Republic of China
| | - Shuquan Zhao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, 430030, Wuhan, People's Republic of China.
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, 430030, Wuhan, People's Republic of China.
| |
Collapse
|
7
|
Cheng T, Cao J, Wu T, Jiang X, Yarmolenko MA, Rogachev AA, Rogachev AV. Study on osteoinductive activity of biotin film by low-energy electron beam deposition. BIOMATERIALS ADVANCES 2022; 135:212730. [PMID: 35929224 DOI: 10.1016/j.bioadv.2022.212730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/29/2022] [Accepted: 02/20/2022] [Indexed: 06/15/2023]
Abstract
Biotin film was prepared by low-energy electron beam deposition (LEBD). The molecular structure, chemical composition and micromorphology of the biotin film were investigated by 1HNMR, FTIR, XPS, AFM and SEM. The results showed the molecular structure of a monolayer of biotin film is fully consistent with the molecular structure of the initial biotin powders. The contact angle test showed that the biotin film exhibit good hydrophilicity. The release kinetics of biotin film was tested by UV-Vis method. It was found that the film was almost completely released in about two weeks. The cell viability of MC3T3-E1 cells on the surface of the biotin film was attaining 100.54 ± 1.7% (P < 0.05), showing excellent biocompatibility and biosafety. Titanium implant with surface of biotin film was implanted into the femoral head of rabbits as experimental group. The animals were euthanized after four weeks. Compared with the control group, mature lamellar bone formation was observed with dense trabecular bone, and the expression of Coll-I, Runx2 and BMP-2 was better. The results showed that the repair effect of bone defect in the experimental group was excellent.
Collapse
Affiliation(s)
- Tongfei Cheng
- Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China
| | - Jinxing Cao
- Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China
| | - Tiantian Wu
- Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China
| | - Xiaohong Jiang
- Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China.
| | - M A Yarmolenko
- Francisk Skorina Gomel State University, 104, Sovetskaya Street, Gomel 246019, Belarus
| | - A A Rogachev
- Francisk Skorina Gomel State University, 104, Sovetskaya Street, Gomel 246019, Belarus
| | - A V Rogachev
- Francisk Skorina Gomel State University, 104, Sovetskaya Street, Gomel 246019, Belarus
| |
Collapse
|
8
|
Chen F, Qin M, Liu W, Wang F, Ren W, Xu H, Li F. Snake Venom Identification via Fluorescent Discrimination. Anal Chem 2021; 93:14025-14030. [PMID: 34528790 DOI: 10.1021/acs.analchem.1c02804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification and discrimination of snake venom are highly desired for timely clinical treatment. However, the complex components in snake venom make it a great challenge to achieve rapid and accurate identification. Inspired by the organism's taste sensing system, a fluorescent sensor array that could differentiate snake venoms was fabricated. The interaction of snake venoms with different fluorescent dyes in the sensor array gave rich information, based on which efficient detection of complex snake venom was achieved. The main six proteins of snake venom in the same concentration, different concentrations, and their mixtures were identified with 100% accuracy. Furthermore, seven snake venoms belonging to different snake families were discriminated in PBS buffer and human plasma. Interferents of bovine serum albumin (BSA), thrombin, and transferrin (TRF) demonstrated the practicability of the fluorescent sensor array. This strategy of a multiresponse sensor array provides an effective method for accurate and rapid venom toxicology analysis, benefiting early and timely clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Fei Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453000, China
| | - Fan Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453000, China
| | - Wanjie Ren
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Huihua Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Knudsen C, Jürgensen JA, Føns S, Haack AM, Friis RUW, Dam SH, Bush SP, White J, Laustsen AH. Snakebite Envenoming Diagnosis and Diagnostics. Front Immunol 2021; 12:661457. [PMID: 33995385 PMCID: PMC8113877 DOI: 10.3389/fimmu.2021.661457] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenoming is predominantly an occupational disease of the rural tropics, causing death or permanent disability to hundreds of thousands of victims annually. The diagnosis of snakebite envenoming is commonly based on a combination of patient history and a syndromic approach. However, the availability of auxiliary diagnostic tests at the disposal of the clinicians vary from country to country, and the level of experience within snakebite diagnosis and intervention may be quite different for clinicians from different hospitals. As such, achieving timely diagnosis, and thus treatment, is a challenge faced by treating personnel around the globe. For years, much effort has gone into developing novel diagnostics to support diagnosis of snakebite victims, especially in rural areas of the tropics. Gaining access to affordable and rapid diagnostics could potentially facilitate more favorable patient outcomes due to early and appropriate treatment. This review aims to highlight regional differences in epidemiology and clinical snakebite management on a global scale, including an overview of the past and ongoing research efforts within snakebite diagnostics. Finally, the review is rounded off with a discussion on design considerations and potential benefits of novel snakebite diagnostics.
Collapse
Affiliation(s)
- Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- BioPorto Diagnostics A/S, Hellerup, Denmark
| | - Jonas A. Jürgensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sofie Føns
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Aleksander M. Haack
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rasmus U. W. Friis
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Søren H. Dam
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sean P. Bush
- Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Julian White
- Toxinology Department, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Maduwage KP, Gawarammana IB, Gutiérrez JM, Kottege C, Dayaratne R, Premawardena NP, Jayasingha S. Enzyme immunoassays for detection and quantification of venoms of Sri Lankan snakes: Application in the clinical setting. PLoS Negl Trop Dis 2020; 14:e0008668. [PMID: 33017411 PMCID: PMC7561112 DOI: 10.1371/journal.pntd.0008668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/15/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Background Detection and quantification of snake venom in envenomed patients’ blood is important for identifying the species responsible for the bite, determining administration of antivenom, confirming whether sufficient antivenom has been given, detecting recurrence of envenoming, and in forensic investigation. Currently, snake venom detection is not available in clinical practice in Sri Lanka. This study describes the development of enzyme immunoassays (EIA) to differentiate and quantify venoms of Russell’s viper (Daboia russelii), saw-scaled viper (Echis carinatus), common cobra (Naja naja), Indian krait (Bungarus caeruleus), and hump-nosed pit viper (Hypnale hypnale) in the blood of envenomed patients in Sri Lanka. Methodology / Principal findings A double sandwich EIA of high analytical sensitivity was developed using biotin-streptavidin amplification for detection of venom antigens. Detection and quantification of D. russelii, N. naja, B. caeruleus, and H. hypnale venoms in samples from envenomed patients was achieved with the assay. Minimum (less than 5%) cross reactivity was observed between species, except in the case of closely related species of the same genus (i.e., Hypnale). Persistence/ recurrence of venom detection following D. russelii envenoming is also reported, as well as detection of venom in samples collected after antivenom administration. The lack of specific antivenom for Hypnale sp envenoming allowed the detection of venom antigen in circulation up to 24 hours post bite. Conclusion The EIA developed provides a highly sensitive assay to detect and quantify five types of Sri Lankan snake venoms, and should be useful for toxinological research, clinical studies, and forensic diagnosis. Snakebite is a major medical and public health problem in tropical agricultural world. Detection of the type of snake venom and measurement of venom levels in blood are important for snakebite research, selecting the appropriate antivenom, and assessing venom levels in blood at the clinical setting. Currently, a snake venom detection platform is not available in clinical practice in Sri Lanka. This study aimed to develop a double sandwich enzyme immunoassays (EIA) to differentiate and quantify venoms of Russell’s viper (Daboia russelii), saw-scaled viper (Echis carinatus), common cobra (Naja naja), Indian krait (Bungarus caeruleus), and hump-nosed pit viper (Hypnale hypnale) in blood samples of envenomed patients in Sri Lanka. The EIA developed used biotin-streptavidin amplification for detection of venom antigens and showed high analytical sensitivity. The assay allowed the quantification of venoms of the five species in blood samples from envenomed patients. Low level of cross reactivity was noted between species, except in the case of closely related Hypnale species. The presence of D. russelii venom after antivenom treatment is reported, a finding that has implications in the dosing of antivenom in these envenomings. Lack of specific antivenom for H. hypnale envenoming offered an opportunity of study the remaining venom antigen in circulation up to 24 hr post bite. The EIA developed constitutes a useful tool to detect and quantify the five types of Sri Lankan snake venoms, and should be useful for research purposes, as well as for the diagnosis and therapy evaluation of clinical cases of envenomings in this country, and for forensic purposes.
Collapse
Affiliation(s)
- Kalana Prasad Maduwage
- Department of Biochemistry, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
- * E-mail:
| | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | | | | | | |
Collapse
|
11
|
de Faria RAD, Lins VDFC, Nappi GU, Matencio T, Heneine LGD. Development of an Impedimetric Immunosensor for Specific Detection of Snake Venom. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0559-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Duracova M, Klimentova J, Fucikova A, Dresler J. Proteomic Methods of Detection and Quantification of Protein Toxins. Toxins (Basel) 2018; 10:toxins10030099. [PMID: 29495560 PMCID: PMC5869387 DOI: 10.3390/toxins10030099] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biological toxins are a heterogeneous group of compounds that share commonalities with biological and chemical agents. Among them, protein toxins represent a considerable, diverse set. They cover a broad range of molecular weights from less than 1000 Da to more than 150 kDa. This review aims to compare conventional detection methods of protein toxins such as in vitro bioassays with proteomic methods, including immunoassays and mass spectrometry-based techniques and their combination. Special emphasis is given to toxins falling into a group of selected agents, according to the Centers for Disease Control and Prevention, such as Staphylococcal enterotoxins, Bacillus anthracis toxins, Clostridium botulinum toxins, Clostridium perfringens epsilon toxin, ricin from Ricinus communis, Abrin from Abrus precatorius or control of trade in dual-use items in the European Union, including lesser known protein toxins such as Viscumin from Viscum album. The analysis of protein toxins and monitoring for biological threats, i.e., the deliberate spread of infectious microorganisms or toxins through water, food, or the air, requires rapid and reliable methods for the early identification of these agents.
Collapse
Affiliation(s)
- Miloslava Duracova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defense in Brno, Třebešská 1575, CZ-500 01 Hradec Králové, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00 Prague 6, Czech Republic.
| |
Collapse
|
13
|
Leow CH, Fischer K, Leow CY, Cheng Q, Chuah C, McCarthy J. Single Domain Antibodies as New Biomarker Detectors. Diagnostics (Basel) 2017; 7:diagnostics7040052. [PMID: 29039819 PMCID: PMC5745390 DOI: 10.3390/diagnostics7040052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Biomarkers are defined as indicators of biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention. Biomarkers have been widely used for early detection, prediction of response after treatment, and for monitoring the progression of diseases. Antibodies represent promising tools for recognition of biomarkers, and are widely deployed as analytical tools in clinical settings. For immunodiagnostics, antibodies are now exploited as binders for antigens of interest across a range of platforms. More recently, the discovery of antibody surface display and combinatorial chemistry techniques has allowed the exploration of new binders from a range of animals, for instance variable domains of new antigen receptors (VNAR) from shark and variable heavy chain domains (VHH) or nanobodies from camelids. These single domain antibodies (sdAbs) have some advantages over conventional murine immunoglobulin owing to the lack of a light chain, making them the smallest natural biomarker binders thus far identified. In this review, we will discuss several biomarkers used as a means to validate diseases progress. The potential functionality of modern singe domain antigen binders derived from phylogenetically early animals as new biomarker detectors for current diagnostic and research platforms development will be described.
Collapse
Affiliation(s)
- Chiuan Herng Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Katja Fischer
- Bacterial Pathogenesis and Scabies Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia.
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane 4051, Australia.
| | - Candy Chuah
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan 16150, Malaysia.
| | - James McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia.
| |
Collapse
|
14
|
Yang Z, Lan Q, Li J, Wu J, Tang Y, Hu X. Efficient streptavidin-functionalized nitrogen-doped graphene for the development of highly sensitive electrochemical immunosensor. Biosens Bioelectron 2017; 89:312-318. [DOI: 10.1016/j.bios.2016.09.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/29/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022]
|
15
|
Sharma SK, Kuch U, Höde P, Bruhse L, Pandey DP, Ghimire A, Chappuis F, Alirol E. Use of Molecular Diagnostic Tools for the Identification of Species Responsible for Snakebite in Nepal: A Pilot Study. PLoS Negl Trop Dis 2016; 10:e0004620. [PMID: 27105074 PMCID: PMC4841570 DOI: 10.1371/journal.pntd.0004620] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/15/2016] [Indexed: 11/19/2022] Open
Abstract
Snakebite is an important medical emergency in rural Nepal. Correct identification of the biting species is crucial for clinicians to choose appropriate treatment and anticipate complications. This is particularly important for neurotoxic envenoming which, depending on the snake species involved, may not respond to available antivenoms. Adequate species identification tools are lacking. This study used a combination of morphological and molecular approaches (PCR-aided DNA sequencing from swabs of bite sites) to determine the contribution of venomous and non-venomous species to the snakebite burden in southern Nepal. Out of 749 patients admitted with a history of snakebite to one of three study centres, the biting species could be identified in 194 (25.9%). Out of these, 87 had been bitten by a venomous snake, most commonly the Indian spectacled cobra (Naja naja; n = 42) and the common krait (Bungarus caeruleus; n = 22). When both morphological identification and PCR/sequencing results were available, a 100% agreement was noted. The probability of a positive PCR result was significantly lower among patients who had used inadequate "first aid" measures (e.g. tourniquets or local application of remedies). This study is the first to report the use of forensic genetics methods for snake species identification in a prospective clinical study. If high diagnostic accuracy is confirmed in larger cohorts, this method will be a very useful reference diagnostic tool for epidemiological investigations and clinical studies.
Collapse
Affiliation(s)
| | - Ulrich Kuch
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Patrick Höde
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Laura Bruhse
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Deb P. Pandey
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Senckenberg Forschungsinstitut, Frankfurt am Main, Germany
| | - Anup Ghimire
- B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - François Chappuis
- Division of Tropical and Humanitarian Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Emilie Alirol
- Division of Tropical and Humanitarian Medicine, University Hospitals of Geneva, Geneva, Switzerland
- Médecins Sans Frontières UK, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Yang Z, Luo S, Li J, Shen J, Yu S, Hu X, Dionysiou DD. A streptavidin functionalized graphene oxide/Au nanoparticles composite for the construction of sensitive chemiluminescent immunosensor. Anal Chim Acta 2014; 839:67-73. [DOI: 10.1016/j.aca.2014.05.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/19/2013] [Accepted: 05/20/2014] [Indexed: 12/25/2022]
|
17
|
MU XH, TONG ZY, HUANG QB, LIU B, LIU ZW, HAO LQ, ZHANG JP. Magnetic Affinity Immunoassay Based Enzyme-labeled Phage Displayed Antibody. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(13)60736-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Yang Z, Shen J, Li J, Zhu J, Hu X. An ultrasensitive streptavidin-functionalized carbon nanotubes platform for chemiluminescent immunoassay. Anal Chim Acta 2013; 774:85-91. [DOI: 10.1016/j.aca.2013.02.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
|
19
|
Huang Y, Xu Y, He Q, Chu J, Du B, Liu J. Determination of zearalenone in corn based on a biotin-avidin amplified enzyme-linked immunosorbent assay. FOOD AGR IMMUNOL 2013. [DOI: 10.1080/09540105.2012.759540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
20
|
Abstract
Snake bite is one of the most neglected public health issues in poor rural communities living in the tropics. Because of serious misreporting, the true worldwide burden of snake bite is not known. South Asia is the world's most heavily affected region, due to its high population density, widespread agricultural activities, numerous venomous snake species and lack of functional snake bite control programs. Despite increasing knowledge of snake venoms' composition and mode of action, good understanding of clinical features of envenoming and sufficient production of antivenom by Indian manufacturers, snake bite management remains unsatisfactory in this region. Field diagnostic tests for snake species identification do not exist and treatment mainly relies on the administration of antivenoms that do not cover all of the important venomous snakes of the region. Care-givers need better training and supervision, and national guidelines should be fed by evidence-based data generated by well-designed research studies. Poorly informed rural populations often apply inappropriate first-aid measures and vital time is lost before the victim is transported to a treatment centre, where cost of treatment can constitute an additional hurdle. The deficiency of snake bite management in South Asia is multi-causal and requires joint collaborative efforts from researchers, antivenom manufacturers, policy makers, public health authorities and international funders.
Collapse
Affiliation(s)
- Emilie Alirol
- Division of International and Humanitarian Medicine, Geneva University Hospitals, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
21
|
A liquid crystal-based sensor for real-time and label-free identification of phospholipase-like toxins and their inhibitors. Biosens Bioelectron 2009; 24:2289-93. [DOI: 10.1016/j.bios.2008.11.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 11/04/2008] [Accepted: 11/20/2008] [Indexed: 11/20/2022]
|
22
|
Selvanayagam ZE, Neuzil P, Gopalakrishnakone P, Sridhar U, Singh M, Ho LC. An ISFET-based immunosensor for the detection of beta-Bungarotoxin. Biosens Bioelectron 2002; 17:821-6. [PMID: 12191931 DOI: 10.1016/s0956-5663(02)00075-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An ion-sensitive field effect transistor (ISFET)-based immunosensor was developed to detect/quantitate beta-Bungarotoxin (beta-BuTx), a potent presynaptic neurotoxin from the venom of Bungarus multicinctus. A murine monoclonal antibody (mAb 15) specific to beta-BuTx was immobilized onto silicon nitride wafers after silanization and activation with glutaraldehyde. A chip based enzyme linked-immunosorbantassay (ELISA) was performed to ascertain antigen binding to the immobilized antibody. To develop an electrochemical immunosensing system for the detection/quantitation of beta-BuTx, an ISFET was used as a solid phase detector. MAb 15 was immobilized on the gate region of the ISFET. The antigen antibody reaction was monitored by the addition of urease conjugated rabbit anti-beta-BuTx antibodies. The sensor can detect toxin level as low as 15.6 ng/ml. The efficacy of the sensor for the determination of beta-BuTx from B. multicinctus venom was demonstrated in mouse model. Toxin concentration was highest at the site of injection (748.0+/-26 ng/ml) and moderate amount was found in the plasma (158.5+/-13 ng/ml).
Collapse
Affiliation(s)
- Z Emmanuel Selvanayagam
- Department of Anatomy, Venom and Toxin Research Programme, Faculty of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117597, Singapore.
| | | | | | | | | | | |
Collapse
|