1
|
T cell apoptosis characterizes severe Covid-19 disease. Cell Death Differ 2022; 29:1486-1499. [PMID: 35066575 PMCID: PMC8782710 DOI: 10.1038/s41418-022-00936-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/02/2023] Open
Abstract
Severe SARS-CoV-2 infections are characterized by lymphopenia, but the mechanisms involved are still elusive. Based on our knowledge of HIV pathophysiology, we hypothesized that SARS-CoV-2 infection-mediated lymphopenia could also be related to T cell apoptosis. By comparing intensive care unit (ICU) and non-ICU COVID-19 patients with age-matched healthy donors, we found a strong positive correlation between plasma levels of soluble FasL (sFasL) and T cell surface expression of Fas/CD95 with the propensity of T cells to die and CD4 T cell counts. Plasma levels of sFasL and T cell death are correlated with CXCL10 which is part of the signature of 4 biomarkers of disease severity (ROC, 0.98). We also found that members of the Bcl-2 family had modulated in the T cells of COVID-19 patients. More importantly, we demonstrated that the pan-caspase inhibitor, Q-VD, prevents T cell death by apoptosis and enhances Th1 transcripts. Altogether, our results are compatible with a model in which T-cell apoptosis accounts for T lymphopenia in individuals with severe COVID-19. Therefore, a strategy aimed at blocking caspase activation could be beneficial for preventing immunodeficiency in COVID-19 patients.
Collapse
|
2
|
Thiagarajan P, Parker CJ, Prchal JT. How Do Red Blood Cells Die? Front Physiol 2021; 12:655393. [PMID: 33790808 PMCID: PMC8006275 DOI: 10.3389/fphys.2021.655393] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Normal human red blood cells have an average life span of about 120 days in the circulation after which they are engulfed by macrophages. This is an extremely efficient process as macrophages phagocytose about 5 million erythrocytes every second without any significant release of hemoglobin in the circulation. Despite large number of investigations, the precise molecular mechanism by which macrophages recognize senescent red blood cells for clearance remains elusive. Red cells undergo several physicochemical changes as they age in the circulation. Several of these changes have been proposed as a recognition tag for macrophages. Most prevalent hypotheses for red cell clearance mechanism(s) are expression of neoantigens on red cell surface, exposure phosphatidylserine and decreased deformability. While there is some correlation between these changes with aging their causal role for red cell clearance has not been established. Despite plethora of investigations, we still have incomplete understanding of the molecular details of red cell clearance. In this review, we have reviewed the recent data on clearance of senescent red cells. We anticipate recent progresses in in vivo red cell labeling and the explosion of modern proteomic techniques will, in near future, facilitate our understanding of red cell senescence and their destruction.
Collapse
Affiliation(s)
- Perumal Thiagarajan
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J Parker
- University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Josef T Prchal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Davies SP, Reynolds GM, Stamataki Z. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Front Immunol 2018; 9:44. [PMID: 29422896 PMCID: PMC5790054 DOI: 10.3389/fimmu.2018.00044] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gary M Reynolds
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Hudson KE, de Wolski K, Kapp LM, Richards AL, Schniederjan MJ, Zimring JC. Antibodies to Senescent Antigen and C3 Are Not Required for Normal Red Blood Cell Lifespan in a Murine Model. Front Immunol 2017; 8:1425. [PMID: 29163500 PMCID: PMC5670101 DOI: 10.3389/fimmu.2017.01425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Red blood cells (RBCs) have a well-defined lifespan, indicating a mechanism by which senescent cells of a certain age are removed from circulation. However, the specifics by which senescent cells are recognized and removed are poorly understood. There are multiple competing hypotheses for this process, perhaps the most commonly cited is that senescent RBCs expose neoantigens [or senescent antigen(s)] that are then recognized by naturally occurring antibodies, which opsonize the senescent cells and result in clearance from circulation. While there are a large volume of published data to indicate that older RBCs accumulate increased levels of antibody on their surface, to the best of our knowledge, the causal role of such antibodies in clearance has not been rigorously assessed. In the current report, we demonstrate that RBC lifespan and clearance patterns are not altered in mice deficient in antibodies, in C3 protein, or missing both. These data demonstrate that neither antibody nor C3 is required for clearance of senescent RBCs, and questions if they are even involved, in a murine model of RBC lifespan.
Collapse
Affiliation(s)
| | - Karen de Wolski
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | - Linda M Kapp
- Bloodworks Northwest Research Institute, Seattle, WA, United States
| | | | - Matthew J Schniederjan
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - James C Zimring
- Bloodworks Northwest Research Institute, Seattle, WA, United States.,Department of Laboratory Medicine, Division of Hematology, University of Washington, Seattle, WA, United States.,Department of Internal Medicine, Division of Hematology, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Understanding quasi-apoptosis of the most numerous enucleated components of blood needs detailed molecular autopsy. Ageing Res Rev 2017; 35:46-62. [PMID: 28109836 DOI: 10.1016/j.arr.2017.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/22/2016] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Erythrocytes are the most numerous cells in human body and their function of oxygen transport is pivotal to human physiology. However, being enucleated, they are often referred to as a sac of molecules and their cellularity is challenged. Interestingly, their programmed death stands a testimony to their cell-hood. They are capable of self-execution after a defined life span by both cell-specific mechanism and that resembling the cytoplasmic events in apoptosis of nucleated cells. Since the execution process lacks the nuclear and mitochondrial events in apoptosis, it has been referred to as quasi-apoptosis or eryptosis. Several studies on molecular mechanisms underlying death of erythrocytes have been reported. The data has generated a non-cohesive sketch of the process. The lacunae in the present knowledge need to be filled to gain deeper insight into the mechanism of physiological ageing and death of erythrocytes, as well as the effect of age of organism on RBCs survival. This would entail how the most numerous cells in the human body die and enable a better understanding of signaling mechanisms of their senescence and premature eryptosis observed in individuals of advanced age.
Collapse
|
6
|
Beattie L, Sawtell A, Mann J, Frame TCM, Teal B, de Labastida Rivera F, Brown N, Walwyn-Brown K, Moore JWJ, MacDonald S, Lim EK, Dalton JE, Engwerda CR, MacDonald KP, Kaye PM. Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J Hepatol 2016; 65:758-768. [PMID: 27262757 PMCID: PMC5028381 DOI: 10.1016/j.jhep.2016.05.037] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Kupffer cells (KCs), the resident tissue macrophages of the liver, play a crucial role in the clearance of pathogens and other particulate materials that reach the systemic circulation. Recent studies have identified KCs as a yolk sac-derived resident macrophage population that is replenished independently of monocytes in the steady state. Although it is now established that following local tissue injury, bone marrow derived monocytes may infiltrate the tissue and differentiate into macrophages, the extent to which newly differentiated macrophages functionally resemble the KCs they have replaced has not been extensively studied. METHODS We studied the two populations of KCs using intravital microscopy, morphometric analysis and gene expression profiling. An ion homeostasis gene signature, including genes associated with scavenger receptor function and extracellular matrix deposition, allowed discrimination between these two KC sub-types. RESULTS Bone marrow derived "KCs" accumulating as a result of genotoxic injury, resemble but are not identical to their yolk sac counterparts. Reflecting the differential expression of scavenger receptors, yolk sac-derived KCs were more effective at accumulating acetylated low density lipoprotein, whereas surprisingly, they were poorer than bone marrow-derived KCs when assessed for uptake of a range of bacterial pathogens. The two KC populations were almost indistinguishable in regard to i) response to lipopolysaccharide challenge, ii) phagocytosis of effete red blood cells and iii) their ability to contain infection and direct granuloma formation against Leishmania donovani, a KC-tropic intracellular parasite. CONCLUSIONS Bone marrow-derived KCs differentiate locally to resemble yolk sac-derived KC in most but not all respects, with implications for models of infectious diseases, liver injury and bone marrow transplantation. In addition, the gene signature we describe adds to the tools available for distinguishing KC subpopulations based on their ontology. LAY SUMMARY Liver macrophages play a major role in the control of infections in the liver and in the pathology associated with chronic liver diseases. It was recently shown that liver macrophages can have two different origins, however, the extent to which these populations are functionally distinct remains to be fully addressed. Our study demonstrates that whilst liver macrophages share many features in common, regardless of their origin, some subtle differences in function exist. DATA REPOSITORY Gene expression data are available from the European Bioinformatics Institute ArrayExpress data repository (accession number E-MTAB-4954).
Collapse
Affiliation(s)
- Lynette Beattie
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK; QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | - Amy Sawtell
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Jason Mann
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | - Bianca Teal
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | | | - Najmeeyah Brown
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Katherine Walwyn-Brown
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - John W J Moore
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Sandy MacDonald
- Biosciences Technology Facility, Dept. of Biology, University of York, York YO10 5DD, UK
| | - Eng-Kiat Lim
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Jane E Dalton
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | - Kelli P MacDonald
- QIMR Berghofer Medical Research Institute, 300 Herston Rd, Herston, Queensland 4006, Australia
| | - Paul M Kaye
- Centre for Immunology and Infection, Hull York Medical School and Dept. of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
7
|
Stachurska A, Król T, Trybus W, Szary K, Fabijańska-Mitek J. 3D visualization and quantitative analysis of human erythrocyte phagocytosis. Cell Biol Int 2016; 40:1195-1203. [DOI: 10.1002/cbin.10671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Anna Stachurska
- Department of Immunohaematology; Centre of Postgraduate Medical Education; Marymoncka 99/103 01-813 Warsaw Poland
| | - Teodora Król
- Department of Cell Biology and Electron Microscopy; Institute of Biology; The Jan Kochanowski University; Świętokrzyska 15 25-406 Kielce Poland
| | - Wojciech Trybus
- Department of Cell Biology and Electron Microscopy; Institute of Biology; The Jan Kochanowski University; Świętokrzyska 15 25-406 Kielce Poland
| | - Karol Szary
- Department of Molecular Physics; Institute of Physics; The Jan Kochanowski University; Świętokrzyska 15 25-406 Kielce Poland
| | - Jadwiga Fabijańska-Mitek
- Department of Immunohaematology; Centre of Postgraduate Medical Education; Marymoncka 99/103 01-813 Warsaw Poland
| |
Collapse
|
8
|
Guegan F, Plazolles N, Baltz T, Coustou V. Erythrophagocytosis of desialylated red blood cells is responsible for anaemia during Trypanosoma vivax infection. Cell Microbiol 2013; 15:1285-303. [PMID: 23421946 DOI: 10.1111/cmi.12123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/26/2022]
Abstract
Trypanosomal infection-induced anaemia is a devastating scourge for cattle in widespread regions. Although Trypanosoma vivax is considered as one of the most important parasites regarding economic impact in Africa and South America, very few in-depth studies have been conducted due to the difficulty of manipulating this parasite. Several hypotheses were proposed to explain trypanosome induced-anaemia but mechanisms have not yet been elucidated. Here, we characterized a multigenic family of trans-sialidases in T. vivax, some of which are released into the host serum during infection. These enzymes are able to trigger erythrophagocytosis by desialylating the major surface erythrocytes sialoglycoproteins, the glycophorins. Using an ex vivo assay to quantify erythrophagocytosis throughout infection, we showed that erythrocyte desialylation alone results in significant levels of anaemia during the acute phase of the disease. Characterization of virulence factors such as the trans-sialidases is vital to develop a control strategy against the disease or parasite.
Collapse
Affiliation(s)
- Fabien Guegan
- Microbiologie fondamentale et Pathogénicité, UMR 5234, Université de Bordeaux, Bordeaux, France
| | | | | | | |
Collapse
|
9
|
Abstract
Important advances in our understanding of iron metabolism have been made during the past 10 years, highlighting the mechanisms by which dysregulated iron homeostasis leads to hematologic, metabolic, and neurodegenerative diseases. In particular, the discovery of hepcidin and its fundamental role as the hormonal peptide regulating iron metabolism has delineated the organization of the complex network of proteins that regulates iron metabolism within the body. Maintenance of iron homeostasis is the consequence of tight coordination between iron absorption from the diet by enterocytes, and iron recycling by macrophages following degradation of senescent erythrocytes. Thus, any perturbation of these processes leads to a wide spectrum of diseases, ranging from iron deficiency anemia to iron overload. This review will focus particularly on the mechanisms involved in iron recycling by macrophages and summarize the pathological conditions perturbing this process.
Collapse
Affiliation(s)
- Carole Beaumont
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Université Paris Diderot Paris, UFR de Médecine site Bichat, Paris, France.
| | | |
Collapse
|
10
|
Toivanen A, Ihanus E, Mattila M, Lutz HU, Gahmberg CG. Importance of molecular studies on major blood groups--intercellular adhesion molecule-4, a blood group antigen involved in multiple cellular interactions. Biochim Biophys Acta Gen Subj 2007; 1780:456-66. [PMID: 17997044 DOI: 10.1016/j.bbagen.2007.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/18/2022]
Abstract
Several blood groups, including the LW-blood group were discovered in the first part of last century, but their biochemical characteristics and cellular functions have only more recently been elucidated. The LW-blood group, renamed ICAM-4 (CD242), is red cell specific and belongs to the intercellular adhesion molecule family. ICAM-4 binds to several integrin receptors on blood and endothelial cells and is thus able to form large cellular complexes containing red cells. Its physiological function(s) has remained incompletely understood, but recent work shows that macrophage integrins can bind red cells through this ligand. In this article we discuss molecular properties of major blood group antigens, describe ICAM-4 in more detail, and show that phagocytosis of senescent red cells is in part ICAM-4/beta(2)-integrin dependent.
Collapse
Affiliation(s)
- Anne Toivanen
- Division of Biochemistry, Faculty of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
11
|
Ihanus E, Uotila LM, Toivanen A, Varis M, Gahmberg CG. Red-cell ICAM-4 is a ligand for the monocyte/macrophage integrin CD11c/CD18: characterization of the binding sites on ICAM-4. Blood 2006; 109:802-10. [PMID: 16985175 DOI: 10.1182/blood-2006-04-014878] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intercellular adhesion molecule 4 (ICAM-4) is a unique member of the ICAM family because of its specific expression on erythroid cells and ability to interact with several types of integrins expressed on blood and endothelial cells. The first reported receptors for ICAM-4 were CD11a/CD18 and CD11b/CD18. In contrast to these 2, the cellular ligands and the functional role of the third beta2 integrin, CD11c/CD18, have not been well defined. Here, we show that ICAM-4 functions as a ligand for the monocyte/macrophage-specific CD11c/CD18. Deletion of the individual immunoglobulin domains of ICAM-4 demonstrated that both its domains contain binding sites for CD11c/CD18. Analysis of a panel of ICAM-4 point mutants identified residues that affected binding to the integrin. By molecular modeling the important residues were predicted to cluster in 2 distinct but spatially close regions of the first domain with an extension to the second domain spatially distant from the other residues. We also identified 2 peptides derived from sequences of ICAM-4 that are capable of modulating the binding to CD11c/CD18. CD11c/CD18 is expressed on macrophages in spleen and bone marrow. Inhibition of erythrophagocytosis by anti-ICAM-4 and anti-integrin antibodies suggests a role for these interactions in removal of senescent red cells.
Collapse
Affiliation(s)
- Eveliina Ihanus
- Faculty of Biosciences, Division of Biochemistry, PO Box 56, Viikinkaari 5, University of Helsinki 00014, Finland
| | | | | | | | | |
Collapse
|