1
|
Aigbogun OP, Phenix CP, Krol ES, Price EW. The Chemistry of Creating Chemically Programmed Antibodies (cPAbs): Site-Specific Bioconjugation of Small Molecules. Mol Pharm 2023; 20:853-874. [PMID: 36696533 DOI: 10.1021/acs.molpharmaceut.2c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small-molecule drugs have been employed for years as therapeutics in the pharmaceutical industry. However, small-molecule drugs typically have short in vivo half-lives which is one of the largest impediments to the success of many potentially valuable pharmacologically active small molecules. The undesirable pharmacokinetics and pharmacology associated with some small molecules have led to the development of a new class of bioconjugates known as chemically programmed antibodies (cPAbs). cPAbs are bioconjugates in which antibodies are used to augment small molecules with effector functions and prolonged pharmacokinetic profiles, where the pharmacophore of the small molecule is harnessed for target binding and therefore biological targeting. Many different small molecules can be conjugated to large proteins such as full monoclonal antibodies (IgG), fragment crystallizable regions (Fc), or fragment antigen binding regions (Fab). In order to successfully and site-specifically conjugate small molecules to any class of antibodies (IgG, Fc, or Fab), the molecules must be derivatized with a functional group for ease of conjugation without altering the pharmacology of the small molecules. In this Review, we summarize the different synthetic or biological methods that have been employed to produce cPAbs. These unique chemistries have potential to be applied to other fields of antibody modification such as antibody drug conjugates, radioimmunoconjugates, and fluorophore-tagged antibodies.
Collapse
Affiliation(s)
- Omozojie P Aigbogun
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Christopher P Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N-5E5 Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| |
Collapse
|
2
|
Essential Protective Role of Catalytically Active Antibodies (Abzymes) with Redox Antioxidant Functions in Animals and Humans. Int J Mol Sci 2022; 23:ijms23073898. [PMID: 35409256 PMCID: PMC8999700 DOI: 10.3390/ijms23073898] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
During the life of aerobic organisms, the oxygen resulting from numerous reactions is converted into reactive oxygen species (ROS). Many ROS are dangerous due to their high reactivity; they are strong oxidants, and react with various cell components, leading to their damage. To protect against ROS overproduction, enzymatic and non-enzymatic systems are evolved in aerobic cells. Several known non-enzymatic antioxidants have a relatively low specific antioxidant activity. Superoxide dismutases, catalase, glutathione peroxidase, glutathione S-transferase, thioredoxin, and the peroxiredoxin families are the most important enzyme antioxidants. Artificial antibodies catalyzing redox reactions using different approaches have been created. During the past several decades, it has been shown that the blood and various biological fluids of humans and animals contain natural antibodies that catalyze different redox reactions, such as classical enzymes. This review, for the first time, summarizes data on existing non-enzymatic antioxidants, canonical enzymes, and artificial or natural antibodies (abzymes) with redox functions. Comparing abzymes with superoxide dismutase, catalase, peroxide-dependent peroxidase, and H2O2-independent oxidoreductase activities with the same activities as classical enzymes was carried out. The features of abzymes with the redox activities are described, including their exceptional diversity in the optimal pH values, dependency and independence on various metal ions, and the reaction rate constants for healthy donors and patients with different autoimmune diseases. The entire body of evidence indicates that abzymes with redox antioxidant activities existing in the blood for a long time compared to enzymes are an essential part of the protection system of humans and animals from oxidative stress.
Collapse
|
3
|
Nilchan N, Alburger JM, Roush WR, Rader C. An Engineered Arginine Residue of Unusual pH-Sensitive Reactivity Facilitates Site-Selective Antibody Conjugation. Biochemistry 2021; 60:1080-1087. [PMID: 33754696 PMCID: PMC8852817 DOI: 10.1021/acs.biochem.0c00955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monoclonal antibody h38C2 is a humanized catalytic antibody that has been used to generate various immunoconjugate species such as chemically programmed antibodies, antibody-drug conjugates, and antibody-siRNA conjugates. Highly efficient and specific conjugation of h38C2 occurs at its uniquely reactive lysine (Lys) residue buried inside the antibody's catalytic pocket. We recently reported the rational mutation of this Lys residue at position 99 in the heavy chain variable domain to an arginine (Arg) residue. The Lys99Arg mutation can be site-selectively conjugated with molecules containing a hapten-like triazolyl-phenylglyoxal (TPG) unit. Here we show that this conjugation is facilitated by the unusual pH-sensitive reactivity of the Arg99 residue, consistent with an indirectly measured pKa of 5.2. The Arg99/TPG conjugation holds promise to further expand the versatility of the h38C2 conjugation platform, such as for the generation of antibody conjugates with dual payloads.
Collapse
Affiliation(s)
- Napon Nilchan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - James M. Alburger
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William R. Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
4
|
Shahsavarian MA, Chaaya N, Costa N, Boquet D, Atkinson A, Offmann B, Kaveri SV, Lacroix-Desmazes S, Friboulet A, Avalle B, Padiolleau-Lefèvre S. Multitarget selection of catalytic antibodies with β-lactamase activity using phage display. FEBS J 2017; 284:634-653. [PMID: 28075071 DOI: 10.1111/febs.14012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 10/29/2016] [Accepted: 01/09/2017] [Indexed: 01/24/2023]
Abstract
β-lactamase enzymes responsible for bacterial resistance to antibiotics are among the most important health threats to the human population today. Understanding the increasingly vast structural motifs responsible for the catalytic mechanism of β-lactamases will help improve the future design of new generation antibiotics and mechanism-based inhibitors of these enzymes. Here we report the construction of a large murine single chain fragment variable (scFv) phage display library of size 2.7 × 109 with extended diversity by combining different mouse models. We have used two molecularly different inhibitors of the R-TEM β-lactamase as targets for selection of catalytic antibodies with β-lactamase activity. This novel methodology has led to the isolation of five antibody fragments, which are all capable of hydrolyzing the β-lactam ring. Structural modeling of the selected scFv has revealed the presence of different motifs in each of the antibody fragments potentially responsible for their catalytic activity. Our results confirm (a) the validity of using our two target inhibitors for the in vitro selection of catalytic antibodies endowed with β-lactamase activity, and (b) the plasticity of the β-lactamase active site responsible for the wide resistance of these enzymes to clinically available inhibitors and antibiotics.
Collapse
Affiliation(s)
- Melody A Shahsavarian
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, France.,UMR S 1138, Sorbonne Universités, Université Pierre et Marie Curie - Paris VI, France
| | - Nancy Chaaya
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, France.,UMR S 1138, Sorbonne Universités, Université Pierre et Marie Curie - Paris VI, France
| | - Narciso Costa
- Service de Pharmacologie et d'Immuno-analyse (SPI), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Didier Boquet
- Service de Pharmacologie et d'Immuno-analyse (SPI), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alexandre Atkinson
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR CNRS 6286, Université de Nantes, France
| | - Bernard Offmann
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), UMR CNRS 6286, Université de Nantes, France
| | - Srini V Kaveri
- UMR S 1138, Sorbonne Universités, Université Pierre et Marie Curie - Paris VI, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U 1138, Paris, France.,Equipe Immunopathology and Therapeutic Immunointervention, Centre de Recherche des Cordeliers, Paris, France.,International Associated Laboratory IMPACT, Institut National de la Santé et de la Recherche Médicale-France and Indian Council of Medical Research-India, National Institute of Immunohaemotology, Mumbai, India
| | - Sébastien Lacroix-Desmazes
- UMR S 1138, Sorbonne Universités, Université Pierre et Marie Curie - Paris VI, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U 1138, Paris, France.,Equipe Immunopathology and Therapeutic Immunointervention, Centre de Recherche des Cordeliers, Paris, France.,International Associated Laboratory IMPACT, Institut National de la Santé et de la Recherche Médicale-France and Indian Council of Medical Research-India, National Institute of Immunohaemotology, Mumbai, India
| | - Alain Friboulet
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, France.,UMR S 1138, Sorbonne Universités, Université Pierre et Marie Curie - Paris VI, France
| | - Bérangère Avalle
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, France.,UMR S 1138, Sorbonne Universités, Université Pierre et Marie Curie - Paris VI, France
| | - Séverine Padiolleau-Lefèvre
- Génie Enzymatique et Cellulaire (GEC), FRE 3580 CNRS, Université de Technologie de Compiègne, France.,UMR S 1138, Sorbonne Universités, Université Pierre et Marie Curie - Paris VI, France
| |
Collapse
|
5
|
|
6
|
Inokuma T, Fuller RP, Barbas CF. N-Sulfonyl-β-lactam hapten as an effective labeling reagent for aldolase mAb. Bioorg Med Chem Lett 2015; 25:1684-1687. [PMID: 25791455 DOI: 10.1016/j.bmcl.2015.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
Abstract
Utilization of chemically programmed antibodies (cpAbs) is regarded to be one of the most efficient methods for the development of therapeutic systems. cpAbs can extend the half-life of programming reagents, activate immune systems via the Fc region of antibodies and achieve universal vaccination by attaching varieties of small, programmed molecules. In the current study, we aimed to develop a novel labeling reagent for the preparation of cpAbs and found that N-sulfonyl-β-lactams (NSBLs) were optimal. NSBL can be synthesized from readily available 4-(bromomethyl)benzenesulfonyl chloride via few simple manipulations and can label the aldolase monoclonal antibody (mAb) 84G3, which could not be labeled effectively by the conventional labeling reagent, N-acyl-β-lactam (NABL). We also demonstrated that the conjugate, which consists of mAb 84G3 and an NSBL bearing a biotin moiety, maintained strong binding activity to streptavidin. In addition, the stability assay of NSBL revealed that NSBLs can tolerate aqueous media without significant decomposition over 24h.
Collapse
Affiliation(s)
- Tsubasa Inokuma
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | - Roberta P Fuller
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Carlos F Barbas
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, United States
| |
Collapse
|
7
|
Rader C. Chemically programmed antibodies. Trends Biotechnol 2014; 32:186-97. [PMID: 24630478 DOI: 10.1016/j.tibtech.2014.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/13/2014] [Accepted: 02/07/2014] [Indexed: 12/24/2022]
Abstract
Due to their unlimited chemical diversity, small molecules can rival monoclonal antibodies (mAbs) with respect to specificity and affinity for target molecules. However, key pharmacological properties of mAbs remain unmatched by small molecules. Chemical programming strategies have been developed for site-specific and covalent conjugation of small molecules to mAbs with unique reactivity centers. In addition to blending favorable features of small molecules and mAbs, chemically programmed antibodies (cpAbs) are economically attractive because they utilize the same mAb for an almost unlimited number of target molecule specificities, reducing manufacturing costs and shortening drug discovery and development time. Preclinical studies and clinical trials have begun to demonstrate the broad utility of cpAbs for the treatment and prevention of human diseases.
Collapse
Affiliation(s)
- Christoph Rader
- Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #2C1, Jupiter, FL 33458, USA; Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #2C1, Jupiter, FL 33458, USA.
| |
Collapse
|
8
|
Armacost K, Acevedo O. Exploring the Aldol Reaction using Catalytic Antibodies and “On Water” Organocatalysts from QM/MM Calculations. J Am Chem Soc 2013; 136:147-56. [DOI: 10.1021/ja405614p] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kira Armacost
- Department
of Chemistry,
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Orlando Acevedo
- Department
of Chemistry,
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
9
|
Efficient refolding of a recombinant abzyme : structural and catalytic characterizations. Appl Microbiol Biotechnol 2012; 97:7721-31. [PMID: 23250220 DOI: 10.1007/s00253-012-4600-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 10/27/2022]
Abstract
Catalytic antibodies are currently being investigated in order to understand their role under physio-pathological situations. To this end, the knowledge of structure-function relationships is of great interest. Recombinant scFv fragments are smaller and easier to genetically manipulate than whole antibodies, making them well suited for this kind of study. Nevertheless they are often described as proteins being laborious to produce. This paper describes a highly efficient method to produce large quantities of refolded soluble catalytic scFv. For the first time, the functionality of a refolded catalytic scFv displaying a β-lactamase activity has been validated by three approaches: (1) use of circular dichroism to ensure that the refolded had secondary structure consistent with a native scFv fold, (2) development of enzyme-linked immunosorbant assay and surface plasmon resonance (SPR) approaches for testing that the binding characteristics of an inhibitory peptide have been retained, and (3) proof of the subtle catalytic properties conservation through the development of a new sensitive catalytic assay using a fluorogenic substrate.
Collapse
|
10
|
Crystal structure of two anti-porphyrin antibodies with peroxidase activity. PLoS One 2012; 7:e51128. [PMID: 23240001 PMCID: PMC3519839 DOI: 10.1371/journal.pone.0051128] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/30/2012] [Indexed: 01/07/2023] Open
Abstract
We report the crystal structures at 2.05 and 2.45 Å resolution of two antibodies, 13G10 and 14H7, directed against an iron(III)-αααβ-carboxyphenylporphyrin, which display some peroxidase activity. Although these two antibodies differ by only one amino acid in their variable λ-light chain and display 86% sequence identity in their variable heavy chain, their complementary determining regions (CDR) CDRH1 and CDRH3 adopt very different conformations. The presence of Met or Leu residues at positions preceding residue H101 in CDRH3 in 13G10 and 14H7, respectively, yields to shallow combining sites pockets with different shapes that are mainly hydrophobic. The hapten and other carboxyphenyl-derivatized iron(III)-porphyrins have been modeled in the active sites of both antibodies using protein ligand docking with the program GOLD. The hapten is maintained in the antibody pockets of 13G10 and 14H7 by a strong network of hydrogen bonds with two or three carboxylates of the carboxyphenyl substituents of the porphyrin, respectively, as well as numerous stacking and van der Waals interactions with the very hydrophobic CDRH3. However, no amino acid residue was found to chelate the iron. Modeling also allows us to rationalize the recognition of alternative porphyrinic cofactors by the 13G10 and 14H7 antibodies and the effect of imidazole binding on the peroxidase activity of the 13G10/porphyrin complexes.
Collapse
|
11
|
Lee JH, Deng L. Asymmetric approach toward chiral cyclohex-2-enones from anisoles via an enantioselective isomerization by a new chiral diamine catalyst. J Am Chem Soc 2012; 134:18209-12. [PMID: 23043531 PMCID: PMC3492513 DOI: 10.1021/ja308623n] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A 3-step asymmetric approach toward the optically active chiral cyclohex-2-enones from anisoles has been developed. The crucial asymmetric induction step is an unprecedented catalytic enantioselective isomerization of β,γ-unsaturated cyclohex-3-en-1-ones to the corresponding α,β-unsaturated chiral enones. This new asymmetric transformation was realized by cooperative iminium-base catalysis with an electronically tunable new organic catalyst. The synthetic utility of this methodology is highlighted by the enantioselective total synthesis of (-)-isoacanthodoral.
Collapse
Affiliation(s)
- Jung Hwa Lee
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Li Deng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| |
Collapse
|
12
|
McEnaney PJ, Parker CG, Zhang AX, Spiegel DA. Antibody-recruiting molecules: an emerging paradigm for engaging immune function in treating human disease. ACS Chem Biol 2012; 7:1139-51. [PMID: 22758917 PMCID: PMC3401898 DOI: 10.1021/cb300119g] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetic immunology, the development of synthetic systems capable of modulating and/or manipulating immunological functions, represents an emerging field of research with manifold possibilities. One focus of this area has been to create low molecular weight synthetic species, called antibody-recruiting molecules (ARMs), which are capable of enhancing antibody binding to disease-relevant cells or viruses, thus leading to their immune-mediated clearance. This article provides a thorough discussion of contributions in this area, beginning with the history of small-molecule-based technologies for modulating antibody recognition, followed by a systematic review of the various applications of ARM-based strategies. Thus, we describe ARMs capable of targeting cancer, bacteria, and viral pathogens, along with some of the scientific discoveries that have resulted from their development. Research in this area underscores the many exciting possibilities at the interface of organic chemistry and immunobiology and is positioned to advance both basic and clinical science in the years to come.
Collapse
Affiliation(s)
- Patrick J McEnaney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | | |
Collapse
|
13
|
Gavrilyuk J, Uehara H, Otsubo N, Hessell A, Burton DR, Barbas CF. Potent inhibition of HIV-1 entry with a chemically programmed antibody aided by an efficient organocatalytic synthesis. Chembiochem 2011; 11:2113-8. [PMID: 20845359 DOI: 10.1002/cbic.201000432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Julia Gavrilyuk
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
14
|
Wuellner U, Gavrilyuk JI, Barbas CF. Expanding the concept of chemically programmable antibodies to RNA aptamers: chemically programmed biotherapeutics. Angew Chem Int Ed Engl 2010; 49:5934-7. [PMID: 20645365 DOI: 10.1002/anie.201001736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ulrich Wuellner
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
15
|
Wuellner U, Gavrilyuk J, Barbas C. Expanding the Concept of Chemically Programmable Antibodies to RNA Aptamers: Chemically Programmed Biotherapeutics. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Zhu X, Tanaka F, Lerner RA, Barbas CF, Wilson IA. Direct observation of an enamine intermediate in amine catalysis. J Am Chem Soc 2009; 131:18206-7. [PMID: 19968282 PMCID: PMC3227542 DOI: 10.1021/ja907271a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An enamine intermediate is believed to be the central feature of biological catalysts, such as aldolases and small molecule amine organocatalysts. Despite decades of investigation of naturally occurring aldolase enzymes and recent studies on designed aldolase antibodies and organocatalysts, direct structural observation of an enamine intermediate has proven to be rare. Herein, we report the observation of a stable enamine intermediate in the crystal structure of an aldolase antibody 33F12 in complex with a 1,3-diketone derivative. This enamine complex structure provides strong evidence that fewer residues are essential for amine catalysis within the hydrophobic environments of this catalytic antibody than speculated for natural aldolase enzymes and should serve to guide future studies aimed at the rational design of these types of catalysts, as well as organocatalysts. Indeed, enamine catalysis in proteins might be more simplistic than previously imagined.
Collapse
Affiliation(s)
- Xueyong Zhu
- Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fujie Tanaka
- Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Richard A. Lerner
- Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carlos F. Barbas
- Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Departments of Chemistry and Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Barbas C. Organocatalysis Lost: Modern Chemistry, Ancient Chemistry, and an Unseen Biosynthetic Apparatus. Angew Chem Int Ed Engl 2008; 47:42-7. [DOI: 10.1002/anie.200702210] [Citation(s) in RCA: 474] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Barbas C. Die verlorene Organokatalyse: moderne Chemie, klassische Chemie und ein unbemerkter Biosynthesemechanismus. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200702210] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Dean S, Greenberg W, Wong CH. Recent Advances in Aldolase-Catalyzed Asymmetric Synthesis. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700115] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Sinha SC, Li LS, Watanabe SI, Kaltgrad E, Tanaka F, Rader C, Lerner RA, Barbas CF. Aldolase antibody activation of prodrugs of potent aldehyde-containing cytotoxics for selective chemotherapy. Chemistry 2006; 10:5467-72. [PMID: 15378729 DOI: 10.1002/chem.200400419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Prodrugs of potent aldehyde analogues of the anticancer drug doxorubicin (Dox) were synthesized. These prodrugs were efficiently activated by antibody 93F3 and no drug formation was observed in the absence of 93F3 in either phosphate buffered saline or cell culture media. In the presence of antibody 93F3, these prodrugs were activated and decreased the proliferation of human cancer cells in in vitro proliferation assays.
Collapse
Affiliation(s)
- Subhash C Sinha
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mondal K, Ramesh NG, Roy I, Gupta MN. Enhancing the synthetic utility of aldolase antibody 38C2. Bioorg Med Chem Lett 2006; 16:807-10. [PMID: 16321532 DOI: 10.1016/j.bmcl.2005.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 10/25/2005] [Accepted: 11/08/2005] [Indexed: 11/21/2022]
Abstract
Three-phase partitioning (TPP) treated aldolase antibody 38C2 was evaluated for aldol reaction between p-nitrobenzaldehyde and acetone to give 4-(4'-nitrophenyl)-4-hydroxy-2-butanone. While TPP-treated 38C2 transformed 65% of p-nitrobenzaldehyde, the untreated 38C2 gave only 24% transformation in 18 h at 25 degrees C. However, since TPP-treated 38C2 also gave an additional (unidentified) product, its synthetic utility was limited. Crosslinked aggregate of 38C2, however, gave the biocatalyst which gave a single product and could be reused at 40 degrees C five times without loss of activity.
Collapse
Affiliation(s)
- Kalyani Mondal
- Chemistry Department, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
22
|
Padiolleau-Lefèvre S, Débat H, Phichith D, Thomas D, Friboulet A, Avalle B. Expression of a functional scFv fragment of an anti-idiotypic antibody with a β-lactam hydrolytic activity. Immunol Lett 2006; 103:39-44. [PMID: 16325271 DOI: 10.1016/j.imlet.2005.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 10/05/2005] [Accepted: 10/09/2005] [Indexed: 11/24/2022]
Abstract
The single chain variable fragment (scFv) of an anti-idiotypic catalytic monoclonal antibody, 9G4H9, displaying a beta-lactamase-like activity was cloned. The recombinant protein was expressed through the periplasm in Escherichia coli in the presence or in the absence of FkpA, a chaperone-like enzyme and tested for its hydrolytic activity. The results show that the catalytic parameters for hydrolysis of ampicillin by scFv9G4H9 are clearly influenced by the presence of FkpA, indicating that the correct folding of the fragment represents a crucial step for catalysis.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/genetics
- Antibodies, Anti-Idiotypic/isolation & purification
- Antibodies, Anti-Idiotypic/metabolism
- Antibodies, Catalytic/genetics
- Antibodies, Catalytic/isolation & purification
- Antibodies, Catalytic/metabolism
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/metabolism
- Binding Sites
- Cloning, Molecular
- Hydrolysis
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/isolation & purification
- Immunoglobulin Fc Fragments/metabolism
- Models, Molecular
- Molecular Mimicry
- beta-Lactamases/chemistry
- beta-Lactamases/metabolism
Collapse
Affiliation(s)
- Séverine Padiolleau-Lefèvre
- Génie Enzymatique et Cellulaire, UMR 6022 CNRS, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- John W Kehoe
- Biosciences Division, Argonne National Laboratory, Building 202, Argonne, Illinois 60439, USA
| | | |
Collapse
|
24
|
Tanaka F, Fuller R, Barbas CF. Development of Small Designer Aldolase Enzymes: Catalytic Activity, Folding, and Substrate Specificity†. Biochemistry 2005; 44:7583-92. [PMID: 15896002 DOI: 10.1021/bi050216j] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small (24-35 amino acid residues) peptides that catalyze carbon-carbon bond transformations including aldol, retro-aldol, and Michael reactions in aqueous buffer via an enamine mechanism have been developed. Peptide phage libraries were created by appending six randomized amino acid residues to the C-terminus or to the N-terminus of an 18-mer alpha-helix peptide containing lysine residues. Reaction-based selection with 1,3-diketones was performed to trap the amino groups of reactive lysine residues that were necessary for the catalysis via an enamine mechanism by formation of stable enaminones. The selected 24-mer peptides catalyzed the reactions with improved activities. The improved activities were correlated with improved folded states of the peptides. The catalyst was then improved with respect to substrate specificity by appending a phage display-derived substrate-binding module. The resulting 35-mer peptide functioned with a significant proportion of the catalytic proficiency of larger protein catalysts. These results indicate that small designer enzymes with good rate acceleration and excellent substrate specificity can be created by combination of design and reaction-based selection from libraries.
Collapse
Affiliation(s)
- Fujie Tanaka
- The Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
25
|
Seebeck FP, Hilvert D. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site. J Am Chem Soc 2005; 127:1307-12. [PMID: 15669871 DOI: 10.1021/ja044647l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytic antibody 34E4 accelerates the conversion of benzisoxazoles to salicylonitriles with surprising efficiency, exploiting a carboxylate base with an elevated pKa for proton abstraction. Mutagenesis of this antibody, produced as a chimeric Fab, confirms the prediction of a homology model that GluH50 is the essential catalytic residue. Replacement of this residue by glutamine, alanine, or glycine reduces catalytic activity by more than 2.6 x 10(4)-fold. By comparing the chemical proficiencies of the parent antibody with the chemical proficiencies of acetate and the mutants, the effective concentration of the catalytic side chain was estimated to be >51 000 M. The 2.1 kcal/mol destabilization of the transition state observed when GluH50 is replaced by aspartate suggests that positional ordering imposed by the antibody active site contributes significantly to the efficiency of proton transfer. The observation that the GluH50Ala and GluH50Gly variants could not be chemically rescued by exogenous addition of high concentrations of formate or acetate further underscores the advantage the antibody derives from covalently fixing its base at the active site. Although medium effects also play an important role in 34E4, for example in enhancing the reactivity of the carboxylate side chain through desolvation, comparison of 34E4 with less proficient antibodies shows that positioning a carboxylate in a hydrophobic binding pocket alone is insufficient for efficient general base catalysis. Our results demonstrate that structural complementarity between the antibody and its substrate in the transition state is an important and necessary component of 34E4's high activity. By harnessing an additional catalytic group that could serve as a general acid to stabilize developing negative charge in the leaving group, overall efficiencies rivaling those of highly evolved enzymes should be accessible.
Collapse
Affiliation(s)
- Florian P Seebeck
- Laboratorium für Organische Chemie, Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093, Zürich, Switzerland
| | | |
Collapse
|
26
|
Zhu X, Tanaka F, Hu Y, Heine A, Fuller R, Zhong G, Olson AJ, Lerner RA, Barbas CF, Wilson IA. The origin of enantioselectivity in aldolase antibodies: crystal structure, site-directed mutagenesis, and computational analysis. J Mol Biol 2004; 343:1269-80. [PMID: 15491612 DOI: 10.1016/j.jmb.2004.08.102] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/10/2004] [Accepted: 08/27/2004] [Indexed: 11/25/2022]
Abstract
Catalytic aldolase antibodies, generated by reactive immunization, catalyze the aldol reaction with the efficiency of natural enzymes, but accept a much broader range of substrates. Two separate groups of aldolase antibodies that catalyze the same aldol reactions with antipodal selectivity were analyzed by comparing their amino acid sequences with their crystal structures, site-directed mutagenesis data, and computational docking of the transition states of the aldol reaction. The crystal structure of aldolase antibody 93F3 Fab' at 2.5A resolution revealed a combining site with two lysine residues, including LysL89 that reacts to form the covalent enamine intermediate. In contrast, antibody 33F12 has one active site lysine, LysH93. The reactive lysine residues in each group of antibodies are differentially located on the heavy and light chain variable regions in pseudo-symmetric opposite orientations, but both within highly hydrophobic environments. Thus, the defining feature for the observed enantioselectivities of these aldolase antibody catalysts is the respective location and relative disposition of the reactive lysine residues within the active sites of these catalysts.
Collapse
Affiliation(s)
- Xueyong Zhu
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Xu Y, Yamamoto N, Janda KD. Catalytic antibodies: hapten design strategies and screening methods. Bioorg Med Chem 2004; 12:5247-68. [PMID: 15388154 DOI: 10.1016/j.bmc.2004.03.077] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 03/08/2004] [Indexed: 11/24/2022]
Abstract
Catalytic antibodies have emerged as powerful tools for the efficient and specific catalysis of a wide range of chemical transformations. Generating antibody catalysts that achieve enzymatic efficiency remains a challenging task, which has long been the source of great interest both in the design of more effective haptens for immunization and in the development of more direct and efficient screening methods for the selection of antibodies with desired catalytic capacities. In this review, we describe the development of different hapten design strategies, including a transition state analog (TSA) approach, 'bait-and-switch' catalysis, and reactive immunization. We also comment on recent developments in the screening process that allow for a more efficient identification of antibody catalysts.
Collapse
Affiliation(s)
- Yang Xu
- The Scripps Research Institute, Department of Chemistry and The Skaggs Institute of Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
28
|
Tanaka F, Fuller R, Shim H, Lerner RA, Barbas CF. Evolution of Aldolase Antibodies in Vitro : Correlation of Catalytic Activity and Reaction-based Selection. J Mol Biol 2004; 335:1007-18. [PMID: 14698295 DOI: 10.1016/j.jmb.2003.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aldolase antibodies that operate via an enamine mechanism were developed by in vitro selection. Antibody Fab phage display libraries were created where the catalytic active site residues of aldolase antibodies 38C2 and 33F12 were combined with a naive human antibody V gene repertoire. Selection from these libraries with 1,3-diketones covalently trapped the amino groups of reactive lysine residues by formation of stable enaminones. The selected aldolase antibodies retained the essential catalytic lysine residue and its function in altered and humanized primary antibody structures. The substrate specificity of the aldolase antibodies was directly related to the structure of the diketone used for selection. The k(cat) values of the antibody-catalyzed retro-aldol reactions were correlated with the K(d) values, i.e. the reactivities of the selected aldolase antibodies for the corresponding diketones. Antibodies that bound to the diketone with a lower K(d) value displayed a higher k(cat) value in the retro-aldol reaction, and a linear relationship was observed in the plots of logk(cat) versus logK(d). These results indicate that selections with diketones directed the evolution of aldolase antibodies in vitro that operate via an enamine mechanism. This strategy provides a route to tailor-made aldol catalysts with different substrate specificities.
Collapse
Affiliation(s)
- Fujie Tanaka
- The Skaggs Institute for Chemical Biology and Departments of Molecular Biology and Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road BCC-550, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
29
|
Rader C, Turner JM, Heine A, Shabat D, Sinha SC, Wilson IA, Lerner RA, Barbas CF. A humanized aldolase antibody for selective chemotherapy and adaptor immunotherapy. J Mol Biol 2003; 332:889-99. [PMID: 12972259 DOI: 10.1016/s0022-2836(03)00992-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mouse monoclonal antibody 38C2 is the prototype of a new class of catalytic antibodies that were generated by reactive immunization. Through a reactive lysine, 38C2 catalyzes aldol and retro-aldol reactions using the enamine mechanism of natural aldolases. In addition to its remarkable versatility and efficacy in synthetic organic chemistry, 38C2 has been used for the selective activation of prodrugs in vitro and in vivo and thereby emerged as a promising tool for selective chemotherapy. Adding another application with relevance for cancer therapy, designated adaptor immunotherapy, we have recently shown that 38C2 can be chemically programmed to target tumors by formation of a covalent bond of defined stoichiometry with a beta-diketone derivative of an integrin alpha(v)beta(3) targeting RGD peptidomimetic. However, a major limitation for the transition from preclinical to clinical evaluation is the human anti-mouse antibody immune response that mouse 38C2 is likely to elicit in a majority of patients after single administration. Here, we report the humanization of mouse 38C2 based on rational design guided by molecular modeling. In essence, the catalytic center of mouse 38C2, which encompasses a deep hydrophobic pocket with a reactive lysine residue at the bottom, was grafted into a human antibody framework. Humanized 38C2 IgG1 was found to bind to beta-diketone haptens with conserved affinities and revealed strong catalytic activity with identical k(cat) and slightly higher K(M) values compared to the parental mouse antibody. Furthermore, humanized 38C2 IgG1 revealed efficiency in prodrug activation and chemical programming comparable to the parental mouse antibody.
Collapse
Affiliation(s)
- Christoph Rader
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tanaka F, Thayumanavan R, Barbas CF. Fluorescent detection of carbon-carbon bond formation. J Am Chem Soc 2003; 125:8523-8. [PMID: 12848558 DOI: 10.1021/ja034069t] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed a new spectroscopic system for detecting carbon-carbon bond formation by fluorescence to enhance high-throughput catalyst screening and rapid characterization of catalysts on a small scale. Fluorogenic substrates composed of a fluorophore possessing an amino group are readily prepared as amides of alpha,beta-unsaturated carbonyl compounds and generally exhibit low fluorescence, while Michael or Diels-Alder reactions of these fluorogenic substrates provide products of significantly increased fluorescence. The product's fluorescence is approximately 20- to 100-fold higher than that of the substrate. The assay system was validated by screening potential catalysts of the Michael reaction and in solvent optimization experiments. The covalent combination of fluorophores possessing an amino group with alpha,beta-unsaturated carbonyl compounds should provide a diverse range of fluorogenic substrates that may be used to rapidly screen catalysts and to optimize reaction conditions.
Collapse
Affiliation(s)
- Fujie Tanaka
- The Skaggs Institute for Chemical Biology and the Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
31
|
Rader C, Sinha SC, Popkov M, Lerner RA, Barbas CF. Chemically programmed monoclonal antibodies for cancer therapy: adaptor immunotherapy based on a covalent antibody catalyst. Proc Natl Acad Sci U S A 2003; 100:5396-400. [PMID: 12702756 PMCID: PMC154356 DOI: 10.1073/pnas.0931308100] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Proposing that a blend of the chemical diversity of small synthetic molecules with the immunological characteristics of the antibody molecule will lead to therapeutic agents with superior properties, we here present a device that equips small synthetic molecules with both effector function and long serum half-life of a generic antibody molecule. As a prototype, we developed a targeting device that is based on the formation of a covalent bond of defined stoichiometry between a 1,3-diketone derivative of an integrin alpha(v)beta(3) and alpha(v)beta(5) targeting Arg-Gly-Asp peptidomimetic and the reactive lysine of aldolase antibody 38C2. The resulting complex was shown to (i) spontaneously assemble in vitro and in vivo, (ii) selectively retarget antibody 38C2 to the surface of cells expressing integrins alpha(v)beta(3) and alpha(v)beta(5), (iii) dramatically increase the circulatory half-life of the Arg-Gly-Asp peptidomimetic, and (iv) effectively reduce tumor growth in animal models of human Kaposi's sarcoma and colon cancer. This immunotherapeutic has the potential to target a variety of human cancers, acting on both the vasculature that supports tumor growth as well as the tumor cells themselves. Further, by use of a generic antibody molecule that forms a covalent bond with a 1,3-diketone functionality, essentially any compound can be turned into an immunotherapeutic agent thereby not only increasing the diversity space that can be accessed but also multiplying the therapeutic effect.
Collapse
Affiliation(s)
- Christoph Rader
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|