1
|
Benkhira I, Zermane F, Cheknane B, Trache D, Brosse N, Paolone A, Chader H, Sobhi W. Preparation and characterization of amidated pectin-gelatin-oxidized tannic acid hydrogel films supplemented with in-situ reduced silver nanoparticles for wound-dressing applications. Int J Biol Macromol 2024; 277:134158. [PMID: 39059528 DOI: 10.1016/j.ijbiomac.2024.134158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Wound dressings play a crucial role in protecting injured tissues and promoting the healing process. Traditional fabrication of antibacterial wound dressings can be complex and may involve toxic components. In this study, we developed an innovative hydrogel film (AP:GE@OTA/Ag) composed of amidated pectin (AP), gelatin (GE), oxidized tannic acid (OTA) at varying concentrations, and in-situ reduced silver nanoparticles (AgNPs). FTIR and XRD analyses confirmed that crosslinking occurs via interactions between OTA quinone groups and free amino groups in AP and GE. TEM imaging demonstrated the well-dispersed AgNPs with an average particle size of 58.64 nm, while the TG measurements indicated the enhancement of the thermal stability compared to AP:GE films. The AP:GE@OTA/Ag films exhibited superior fluid uptake ability (90.96 % at 2 h), water retention capacity (91.69 % at 2 h), and water vapor transmission rate (1903.29 g/m2/day), alongside improved tensile strength (38 MPa). Additionally, these films showed excellent cytocompatibility and sustained potent antimicrobial activity against S. aureus and E. coli with low AgNPs loadings of 1.02 ± 0.13 μg/cm2. NIT-1 mouse insulinoma cells demonstrated robust proliferation when cultured with the prepared dressings. These films significantly accelerated wound repair in a skin excision model, indicating their potential clinical applications for wound healing.
Collapse
Affiliation(s)
- Ilyas Benkhira
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria.
| | - Faiza Zermane
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria
| | - Benamar Cheknane
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria
| | - Djalal Trache
- Energetic Materials Laboratory (EMLab), Teaching and Research Unit of Energetic Processes, Polytechnic Military School, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Nicolas Brosse
- LERMAB, Faculty of Science and Technology, University of Lorraine, Vandoeuvre-Les-Nancy, 54506, France
| | - Annalisa Paolone
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Henni Chader
- Department of Pharmacy, Faculty of Medicine, University of Algiers 1, Algiers 16001, Algeria
| | - Widad Sobhi
- Research Center of Biotechnology (CRBt), Constantine 25000, Algeria
| |
Collapse
|
2
|
Sebouai M, Hamma-Faradji S, Rezgui A, Sobhi W, Belaouni HA, Ben Salah R, Aksas A, Bendali F. Encapsulated probiotic Lactiplantibacillus strains with promising applications as feed additives for broiler chickens. Comp Immunol Microbiol Infect Dis 2024; 111:102213. [PMID: 38941742 DOI: 10.1016/j.cimid.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024]
Abstract
Lactic acid bacteria (LAB), particularly Lactobacilli strains, represent a widely studied and promising group of probiotics with numerous potential health benefits. In this study, we isolated LAB strains from fecal samples of healthy broiler chickens and characterized their probiotic properties. Out of 62 initial isolates, five strains were selected for further investigations based on their antibacterial activity against pathogenic bacteria. These selected strains were identified as Lactiplantibacillus species. They exhibited desirable probiotic traits, including non-hemolyis, non-cytotoxicity, lack of antibiotic resistance, acid tolerance, auto-aggregation, and antioxidative potential. Encapsulation of these strains in alginate beads enhanced their survival compared to free cells, in stomach (69-87 % vs. 34-47 %) and intestinal (72-100 % vs. 27-51 %) juices, after 120 min exposure. These findings suggest that encapsulated Lactiplantibacillus strains could be used as feed additives for broiler chickens. Nevertheless, further studies are needed to set on their probiotic potential in vivo.
Collapse
Affiliation(s)
- Manel Sebouai
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biotechnologie végétale et ethnobotanique, Bejaia 06000, Algeria
| | - Samia Hamma-Faradji
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria
| | - Abdelmalek Rezgui
- Centre National de Recherche en Biotechnologie (CRBt), Ali Mendjli, Constantine, Algeria
| | - Widad Sobhi
- Centre National de Recherche en Biotechnologie (CRBt), Ali Mendjli, Constantine, Algeria
| | | | - Riadh Ben Salah
- Laboratoire de Biotechnologie Microbienne et d'Ingenierie enzymatqiue (LBMIE), Centre de Biotechnologie de Sfax, B.P 1177, Sfax 3018, Tunisia
| | - Ali Aksas
- Université de Bejaia, Faculté des Sciences de la Nature et de la Vie, Laboratoire de Biotechnologie végétale et ethnobotanique, Bejaia 06000, Algeria
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Algeria.
| |
Collapse
|
3
|
Menevse AN, Ammer LM, Vollmann-Zwerenz A, Kupczyk M, Lorenz J, Weidner L, Hussein A, Sax J, Mühlbauer J, Heuschneider N, Rohrmus C, Mai LS, Jachnik B, Stamova S, Volpin V, Durst FC, Sorrentino A, Xydia M, Milenkovic VM, Bader S, Braun FK, Wetzel C, Albert NL, Tonn JC, Bartenstein P, Proescholdt M, Schmidt NO, Linker RA, Riemenschneider MJ, Beckhove P, Hau P. TSPO acts as an immune resistance gene involved in the T cell mediated immune control of glioblastoma. Acta Neuropathol Commun 2023; 11:75. [PMID: 37158962 PMCID: PMC10165826 DOI: 10.1186/s40478-023-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/14/2023] [Indexed: 05/10/2023] Open
Abstract
Glioblastoma (GB) IDH-wildtype is the most malignant primary brain tumor. It is particularly resistant to current immunotherapies. Translocator protein 18 kDa (TSPO) is upregulated in GB and correlates with malignancy and poor prognosis, but also with increased immune infiltration. Here, we studied the role of TSPO in the regulation of immune resistance of human GB cells. The role of TSPO in tumor immune resistance was experimentally determined in primary brain tumor initiating cells (BTICs) and cell lines through genetic manipulation of TSPO expression and subsequent cocultures with antigen specific cytotoxic T cells and autologous tumor-infiltrating T cells. Death inducing intrinsic and extrinsic apoptotic pathways affected by TSPO were investigated. TSPO-regulated genes mediating apoptosis resistance in BTICs were identified through gene expression analysis and subsequent functional analyses. TSPO transcription in primary GB cells correlated with CD8+ T cell infiltration, cytotoxic activity of T cell infiltrate, expression of TNFR and IFNGR and with the activity of their downstream signalling pathways, as well as with the expression of TRAIL receptors. Coculture of BTICs with tumor reactive cytotoxic T cells or with T cell-derived factors induced TSPO up-regulation through T cell derived TNFα and IFNγ. Silencing of TSPO sensitized BTICs against T cell-mediated cytotoxicity. TSPO selectively protected BTICs against TRAIL-induced apoptosis by regulating apoptosis pathways. TSPO also regulated the expression of multiple genes associated with resistance against apoptosis. We conclude that TSPO expression in GB is induced through T cell-derived cytokines TNFα and IFNγ and that TSPO expression protects GB cells against cytotoxic T cell attack through TRAIL. Our data thereby provide an indication that therapeutic targeting of TSPO may be a suitable approach to sensitize GB to immune cell-mediated cytotoxicity by circumventing tumor intrinsic TRAIL resistance.
Collapse
Affiliation(s)
- Ayse N Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Laura-Marie Ammer
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Marcell Kupczyk
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Lorraine Weidner
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Jasmin Mühlbauer
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Nicole Heuschneider
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Celine Rohrmus
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Laura S Mai
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Birgit Jachnik
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Slava Stamova
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Valentina Volpin
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Franziska C Durst
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Antonio Sorrentino
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Maria Xydia
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Frank K Braun
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christian Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Molecular Neurosciences, 93053, Regensburg, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 80336, Munich, Germany
| | - Martin Proescholdt
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Nils O Schmidt
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Neurosurgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany
| | | | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy (LIT), 93053, Regensburg, Germany.
- Department of Internal Medicine III, University Hospital Regensburg, 93053, Regensburg, Germany.
- LIT - Leibniz Institute for Immunotherapy (former RCI), c/o Universitätsklinikum Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital Regensburg, 93053, Regensburg, Germany.
- Department of Neurology -NeuroOncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Barden M, Holzinger A, Velas L, Mezősi-Csaplár M, Szöőr Á, Vereb G, Schütz GJ, Hombach AA, Abken H. CAR and TCR form individual signaling synapses and do not cross-activate, however, can co-operate in T cell activation. Front Immunol 2023; 14:1110482. [PMID: 36817444 PMCID: PMC9929185 DOI: 10.3389/fimmu.2023.1110482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
In engineered T cells the CAR is co-expressed along with the physiological TCR/CD3 complex, both utilizing the same downstream signaling machinery for T cell activation. It is unresolved whether CAR-mediated T cell activation depends on the presence of the TCR and whether CAR and TCR mutually cross-activate upon engaging their respective antigen. Here we demonstrate that the CD3ζ CAR level was independent of the TCR associated CD3ζ and could not replace CD3ζ to rescue the TCR complex in CD3ζ KO T cells. Upon activation, the CAR did not induce phosphorylation of TCR associated CD3ζ and, vice versa, TCR activation did not induce CAR CD3ζ phosphorylation. Consequently, CAR and TCR did not cross-signal to trigger T cell effector functions. On the membrane level, TCR and CAR formed separate synapses upon antigen engagement as revealed by total internal reflection fluorescence (TIRF) and fast AiryScan microscopy. Upon engaging their respective antigen, however, CAR and TCR could co-operate in triggering effector functions through combinatorial signaling allowing logic "AND" gating in target recognition. Data also imply that tonic TCR signaling can support CAR-mediated T cell activation emphasizing the potential relevance of the endogenous TCR for maintaining T cell capacities in the long-term.
Collapse
Affiliation(s)
- Markus Barden
- Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Astrid Holzinger
- Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, University Regensburg, Regensburg, Germany
| | - Lukas Velas
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Marianna Mezősi-Csaplár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary,ELKH-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Andreas A. Hombach
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany,Department I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy (LIT), Division of Genetic Immunotherapy, University Regensburg, Regensburg, Germany,*Correspondence: Hinrich Abken,
| |
Collapse
|
5
|
A CD19-Anti-ErbB2 scFv Engager Protein Enables CD19-Specific CAR T Cells to Eradicate ErbB2 + Solid Cancer. Cells 2023; 12:cells12020248. [PMID: 36672182 PMCID: PMC9856536 DOI: 10.3390/cells12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The efficacy of CD19-specific CAR T cells in the treatment of leukemia/lymphoma relies, at least in part, on the unique properties of the particular CAR and the presence of healthy B cells that enhance the target cell lysis and cytokine secretion through repetitive stimulation. Here, we report to apply the same CAR to target solid tumors, such as ErbB2+ carcinoma. CD19 CAR T cells are redirected towards the ErbB2+ cells by a fusion protein that is composed of the herceptin-derived anti-ErbB2 scFv 4D5 linked to the CD19 exodomain. The CD19-4D5scFv engager enabled CD19 CAR T cells to recognize the ErbB2+ cancer cells and to suppress the ErbB2+ tumor growth. The primary killing capacity by the ErbB2-redirected CD19 CAR T cells was as efficient as by the ErbB2 CAR T cells, however, adding CD19+ B cells furthermore reinforced the activation of the CD19 CAR T cells, thereby improving the anti-tumor activities. The ErbB2-redirected CD19 CAR T cells, moreover, showed a 100-fold superior selectivity in targeting cancer cells versus healthy fibroblasts, which was not the case for the ErbB2 CAR T cells. The data demonstrate that the CD19 CAR T cells can be high-jacked by a CD19-scFv engager protein to attack specifically solid cancer, thereby expanding their application beyond the B cell malignancies.
Collapse
|
6
|
Hombach A, Barden M, Hannappel L, Chmielewski M, Rappl G, Sachinidis A, Abken H. IL12 integrated into the CAR exodomain converts CD8 + T cells to poly-functional NK-like cells with superior killing of antigen-loss tumors. Mol Ther 2022; 30:593-605. [PMID: 34678512 PMCID: PMC8821972 DOI: 10.1016/j.ymthe.2021.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 08/30/2021] [Accepted: 10/10/2021] [Indexed: 02/04/2023] Open
Abstract
Chimeric antigen receptor (CAR)-redirected T cell therapy often fails to control tumors in the long term due to selecting cancer cells that downregulated or lost CAR targeted antigen. To reprogram the functional capacities specifically of engineered CAR T cells, we inserted IL12 into the extracellular moiety of a CD28-ζ CAR; both the CAR endodomain and IL12 were functionally active, as indicated by antigen-redirected effector functions and STAT4 phosphorylation, respectively. The IL12-CAR reprogrammed CD8+ T cells toward a so far not recognized natural killer (NK) cell-like signature and a CD94+CD56+CD62Lhigh phenotype closely similar, but not identical, to NK and cytokine induced killer (CIK) cells. In contrast to conventional CAR T cells, IL12-CAR T cells acquired antigen-independent, human leukocyte antigen E (HLA-E) restricted cytotoxic capacities eliminating antigen-negative cancer cells in addition to eliminating cancer cells with CAR cognate antigen. Simultaneous signaling through both the CAR endodomain and IL12 were required for inducing maximal NK-like cytotoxicity; adding IL12 to conventional CAR T cells was not sufficient. Antigen-negative tumors were attacked by IL12-CAR T cells, but not by conventional CAR T cells. Overall, we present a prototype of a new family of CARs that augments tumor recognition and elimination through expanded functional capacities by an appropriate cytokine integrated into the CAR exodomain.
Collapse
Affiliation(s)
- Andreas Hombach
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany,Department I Internal Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Markus Barden
- RCI, Regensburg Center for Interventional Immunology, Department Genetic Immunotherapy, and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lisa Hannappel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Markus Chmielewski
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany,Department I Internal Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Gunter Rappl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany,University of Cologne, Faculty of Medicine and Center for Physiology, University Hospital Cologne, 50931 Cologne, Germany
| | - Hinrich Abken
- RCI, Regensburg Center for Interventional Immunology, Department Genetic Immunotherapy, and University Hospital Regensburg, 93053 Regensburg, Germany,Corresponding author: Hinrich Abken, RCI, Regensburg Center for Interventional Immunology, Department Genetic Immunotherapy, and University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
7
|
Carrasco-Carballo A, Guadalupe Hernández-Linares M, Cárdenas-García M, Sandoval-Ramírez J. Synthesis and biological in vitro evaluation of the effect of hydroxyimino steroidal derivatives on breast cancer cells. Steroids 2021; 166:108787. [PMID: 33383064 DOI: 10.1016/j.steroids.2020.108787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023]
Abstract
Breast cancer is the most common cause of cancer death in women, according to Global Cancer Observatory. This fact forces scientists to continue in the search for effective treatments against this aggressive type of cancer. Breast cancer frequently metastasizes to other organs, most often the bones, lungs, and liver. Breast cancer is normally associated with estrogen and progestogen levels and can be hormone or non-hormone dependent. In current experiments herein reported, some hydroxyimino spirostan derivatives showed great potential against MCF-7 breast cancer, a Luminal-A cancer. On the other hand, a set of synthesized 6-hydroxyimino-22-oxocholestane compounds had excellent activity against the MDA-MB-231 breast cancer cell line. The synthesis of hydroxyamino derivatives from spirostan and 22-oxocholestane compounds was improved. The hydroxyimino compounds enhanced the bioactivity when compared with their parent carbonyl skeletons.
Collapse
Affiliation(s)
- Alan Carrasco-Carballo
- Facultad de Ciencias Químicas, Laboratorio de Elucidación y Síntesis en Química Orgánica, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - María Guadalupe Hernández-Linares
- Herbario y Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Mexico; Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - Maura Cárdenas-García
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico
| | - Jesús Sandoval-Ramírez
- Facultad de Ciencias Químicas, Laboratorio de Elucidación y Síntesis en Química Orgánica, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico.
| |
Collapse
|
8
|
Ponsoda X, Gómez-Lechón MJ, Castell JV. Toxicity and Cell Density Monitoring in Monolayer and Three-dimensional Cultures with the XTT Assay. Altern Lab Anim 2020. [DOI: 10.1177/026119299802600308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The application of viability criteria (MTT and XTT tests) to monolayer cultures and immobilised cells in three-dimensional systems was investigated in order to assess cell viability and cell proliferation. The suitability and accuracy of these tests were compared with the conventional criteria (cellular protein and DNA content) used in monolayer cultures for the same purpose. The colorimetric assay based on the metabolic reduction of the tetrazolium salt XTT to a water-soluble formazan proved to be very useful, rapid and sensitive. This automated spectrophotometric enzymatic method, due to its lack of toxicity, also permits repeated nondestructive assays on a single cellular culture for the long-term monitoring of cytotoxicity, cell survival and cell proliferation, and can be performed in 96-well plates with minimal handling. This method could offer a solution for cellular density evaluation in complex cell cultures that do not permit visual examination; it is also the best choice for protein-based, three-dimensional systems such as collagen gels.
Collapse
Affiliation(s)
- Xavier Ponsoda
- Departament de Parasitologia, i Biologia Cellular, Facultat de Ciències Biològiques, Universitat de València, Avda Dr Moliner 50, 46100 Burjassot, Spain
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, Avda Campanar 21, 46009 Valencia, Spain
| | - Maria Jose Gómez-Lechón
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, Avda Campanar 21, 46009 Valencia, Spain
| | - Jose V. Castell
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital Universitario La Fe, Avda Campanar 21, 46009 Valencia, Spain
- Departament de Bioquimíca i Biologia Molecular, Facultat de Medicina, Universitat de València, Avda Blasco Ibáñez 10, 46010 Valencia, Spain
| |
Collapse
|
9
|
Hombach AA, Geumann U, Günther C, Hermann FG, Abken H. IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) Improve A CAR T Cell Attack Against Colorectal Cancer Cells. Cells 2020; 9:cells9040873. [PMID: 32260097 PMCID: PMC7226757 DOI: 10.3390/cells9040873] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor (CAR) redirected T cells are efficacious in the treatment of leukemia/lymphoma, however, showed less capacities in eliminating solid tumors which is thought to be partly due to the lack of cytokine support in the tumor lesion. In order to deliver supportive cytokines, we took advantage of the inherent ability of mesenchymal stem cells (MSCs) to actively migrate to tumor sites and engineered MSCs to release both IL7 and IL12 to promote homeostatic expansion and Th1 polarization. There is a mutual interaction between engineered MSCs and CAR T cells; in presence of CAR T cell released IFN-γ and TNF-α, chronic inflammatory Th2 MSCs shifted towards a Th17/Th1 pattern with IL2 and IL15 release that mutually activated CAR T cells with extended persistence, amplification, killing and protection from activation induced cell death. MSCs releasing IL7 and IL12 were superior over non-modified MSCs in supporting the CAR T cell response and improved the anti-tumor attack in a transplant tumor model. Data demonstrate the first use of genetically modified MSCs as vehicles to deliver immuno-modulatory proteins to the tumor tissue in order to improve the efficacy of CAR T cells in the treatment of solid malignancies.
Collapse
Affiliation(s)
- Andreas A. Hombach
- Center for Molecular Medicine Cologne, Tumor Genetics, University of Cologne, and Department I Internal Medicine, University Hospital Cologne, D-50931 Cologne, Germany;
| | - Ulf Geumann
- Apceth Biopharma GmbH, D-81377 Munich, Germany; (U.G.); (F.G.H.)
| | | | - Felix G. Hermann
- Apceth Biopharma GmbH, D-81377 Munich, Germany; (U.G.); (F.G.H.)
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, Tumor Genetics, University of Cologne, and Department I Internal Medicine, University Hospital Cologne, D-50931 Cologne, Germany;
- Department for Genetic Immunotherapy, Regensburg Center for Interventional Immunology, and University Hospital Regensburg, D-93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-941-944-381-11; Fax: +49-941-944-381-13
| |
Collapse
|
10
|
Hoffman S, Aviv Cohen N, Carroll IM, Tulchinsky H, Borovok I, Dotan I, Maharshak N. Faecal Proteases from Pouchitis Patients Activate Protease Activating Receptor-2 to Disrupt the Epithelial Barrier. J Crohns Colitis 2019; 13:1558-1568. [PMID: 31056700 DOI: 10.1093/ecco-jcc/jjz086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS The pathogenesis of pouch inflammation may involve epithelial barrier disruption. We investigated whether faecal proteolytic activity is increased during pouchitis and results in epithelial barrier dysfunction through protease activating receptor [PAR] activation, and assessed whether the intestinal microbiome may be the source of the proteases. METHODS Faecal samples were measured for protease activity using a fluorescein isothiocyanate [FITC]-casein florescence assay. Caco-2 cell monolayers were exposed to faecal supernatants to assess permeability to FITC-dextran. Tight junction protein integrity and PAR activation were assessed by immunoblot and immunofluorescence. A truncated PAR2 protein in Caco-2 cells was achieved by stable transfection using CRISPR/Cas9 plasmid. PAR2 activation in pouch biopsies was examined using antibodies directed to the N-terminus of the protein. Microbial composition was analysed based on 16S rRNA gene sequence analysis. RESULTS Ten pouchitis patients, six normal pouch [NP] patients and nine healthy controls [HC] were recruited. The pouchitis patients exhibited a 5.19- and 5.35-fold higher faecal protease [FP] activity [p ≤ 0.05] compared to the NP and HC participants, respectively. The genus Haemophilus was positively associated with FP activity [R = 0.718, false discovery rate < 0.1]. Faecal supernatants from pouchitis patients activated PAR2 on Caco-2 monolayers, disrupted tight junction proteins and increased epithelial permeability. PAR2 truncation in Caco-2 abrogated faecal protease-mediated permeability. Pouch biopsies obtained from pouchitis patients, but not from NP patients, displayed PAR2 activation. CONCLUSIONS Protease-producing bacteria may increase faecal proteolytic activity that results in pouch inflammation through disruption of tight junction proteins and increased epithelial permeability in a PAR2-dependent manner. This mechanism may initiate or propagate pouch inflammation.
Collapse
Affiliation(s)
- Sarit Hoffman
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| | - Nathaniel Aviv Cohen
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,IBD Center, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| | - Ian M Carroll
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hagit Tulchinsky
- Division of Surgery Colorectal Unit, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| | - Ilya Borovok
- Department of Molecular and Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| | - Nitsan Maharshak
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,IBD Center, Tel Aviv Medical Center, Tel Aviv, Israel.,Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Regiospecific synthesis by copper- and ruthenium-catalyzed azide–alkyne 1,3-dipolar cycloaddition, anticancer and anti-inflammatory activities of oleanolic acid triazole derivatives. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, Abdoli S, Modarressi MH, Abolhassani M. Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. IRANIAN BIOMEDICAL JOURNAL 2019. [PMID: 31677604 PMCID: PMC6984713 DOI: 10.29252/ibj.24.2.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Recently, modification of T cells with CAR has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a scFv. Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a specific antigen-binding fragment derived from camelid that has great homology to human VH and low immunogenic potential. Therefore, in this study, nanobody was employed instead of scFv in CAR construct. Methods: In this study, a CAR was constructed based on a nanobody against PSMA (NBPII-CAR). At first, Jurkat cells were electroporated with NBPII-CAR, and then flow cytometry was performed for NBPII-CAR expression. For functional analysis, CAR T cells were co-cultured with prostate cancer cells and analyzed for IL-2 secretion, CD25 expression, and cell proliferation. Results: Flow cytometry results confirmed the expression of NBPII-CAR on the transfected Jurkat cells. Our data showed the specificity of engineered Jurkat cells against prostate cancer cells by not only increasing the IL-2 cytokine (about 370 pg/ml) but also expressing the T-cell activation marker CD25 (about 30%). In addition, proliferation of engineered Jurkat cells increased nearly 60% when co-cultured with LNCaP (PSMA+), as compared with DU145 (PSMA-). Conclusion: Here, we describe the ability of nanobody-based CAR to recognize PSMA that leads to the activation of Jurkat cells. This construct might be used as a promising candidate for clinical applications in prostate cancer therapy.
Collapse
Affiliation(s)
- Mahmoud Hassani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mohammad Hossein Modarressi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abolhassani
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Hombach AA, Rappl G, Abken H. Blocking CD30 on T Cells by a Dual Specific CAR for CD30 and Colon Cancer Antigens Improves the CAR T Cell Response against CD30 - Tumors. Mol Ther 2019; 27:1825-1835. [PMID: 31331813 DOI: 10.1016/j.ymthe.2019.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cells are efficacious in controlling advanced leukemia and lymphoma, however, they fail in the treatment of solid cancer, which is thought to be due to insufficient T cell activation. We revealed that the immune response of CAR T cells with specificity for carcinoembryonic antigen (CEA) was more efficacious against CEA+ cancer cells when simultaneously incubated with an anti-CD30 immunotoxin or anti-CD30 CAR T cells, although the targeted cancer cells lack CD30. The same effect was achieved when the anti-CD30 single-chain variable fragment (scFv) was integrated into the extracellular domain of the anti-CEA CAR. Improvement in T cell activation was due to interfering with the T cell CD30-CD30L interaction by the antagonistic anti-CD30 scFv HRS3; an agonistic anti-CD30 scFv or targeting the high-affinity interleukin-2 (IL-2) receptor was not effective. T cells with the anti-CD30/CEA CAR showed superior immunity against established CEA+ CD30- tumors in a mouse model. The concept is broadly applicable since anti-CD30/TAG72 CAR T cells also showed improved elimination of TAG72+ CD30- cancer cells. Taken together, targeting CD30 on CAR T cells by the HRS3 scFv within the anti-tumor CAR improves the redirected immune response against solid tumors.
Collapse
Affiliation(s)
- Andreas A Hombach
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.
| | - Gunter Rappl
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Hinrich Abken
- RCI, Regensburg Center for Interventional Immunology, University of Regensburg and University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Aleksandrova K, Leise J, Priesner C, Melk A, Kubaink F, Abken H, Hombach A, Aktas M, Essl M, Bürger I, Kaiser A, Rauser G, Jurk M, Goudeva L, Glienke W, Arseniev L, Esser R, Köhl U. Functionality and Cell Senescence of CD4/ CD8-Selected CD20 CAR T Cells Manufactured Using the Automated CliniMACS Prodigy® Platform. Transfus Med Hemother 2019; 46:47-54. [PMID: 31244581 DOI: 10.1159/000495772] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/23/2018] [Indexed: 12/28/2022] Open
Abstract
Clinical studies using autologous CAR T cells have achieved spectacular remissions in refractory CD19+ B cell leukaemia, however some of the patient treatments with CAR T cells failed. Beside the heterogeneity of leukaemia, the distribution and senescence of the autologous cells from heavily pretreated patients might be further reasons for this. We performed six consecutive large-scale manufacturing processes for CD20 CAR T cells from healthy donor leukapheresis using the automated CliniMACS Prodigy® platform. Starting with a CD4/CD8-positive selection, a high purity of a median of 97% T cells with a median 65-fold cell expansion was achieved. Interestingly, the transduction rate was significantly higher for CD4+ compared to CD8+ T cells and reached in a median of 23%. CD20 CAR T cells showed a good specific IFN-γ secretion after cocultivation with CD20+ target cells which correlated with good cytotoxic activity. Most importantly, 3 out of 5 CAR T cell products showed an increase in telomere length during the manufacturing process, while telomere length remained consistent in one and decreased in another process. In conclusion, this shows for the first time that beside heterogeneity among healthy donors, CAR T cell products also differ regarding cell senescence, even for cells manufactured in a standardised automated process.
Collapse
Affiliation(s)
- Krasimira Aleksandrova
- Cellular Therapy Centre, Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Jana Leise
- Cellular Therapy Centre, Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Christoph Priesner
- Cellular Therapy Centre, Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Anette Melk
- Clinic for Paediatric Nephrology, Hepatology and Metabolic Disorders, Hannover Medical School (MHH), Hanover, Germany
| | - Fanni Kubaink
- Clinic for Paediatric Nephrology, Hepatology and Metabolic Disorders, Hannover Medical School (MHH), Hanover, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, and Dept I Internal Medicine, University Hospital Cologne, Cologne, Germany.,RCI, Chair Gene-Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hombach
- Center for Molecular Medicine Cologne, University of Cologne, and Dept I Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Murat Aktas
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Mike Essl
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Iris Bürger
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | - Georg Rauser
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Marion Jurk
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Lilia Goudeva
- Institute for Transfusion Medicine, Hannover Medical School (MHH), Hanover, Germany
| | - Wolfgang Glienke
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Lubomir Arseniev
- Cellular Therapy Centre, Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Ruth Esser
- ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany
| | - Ulrike Köhl
- Cellular Therapy Centre, Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany.,ATMP-GMP Development Unit, Institute of Cellular Therapeutics, Hannover Medical School (MHH), Hanover, Germany.,Institute of Clinical Immunology, University Hospital and Medical Faculty, University of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
15
|
Hassani M, Hajari Taheri F, Sharifzadeh Z, Arashkia A, Hadjati J, van Weerden WM, Modarressi MH, Abolhassani M. Construction of a chimeric antigen receptor bearing a nanobody against prostate a specific membrane antigen in prostate cancer. J Cell Biochem 2019; 120:10787-10795. [PMID: 30672018 DOI: 10.1002/jcb.28370] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
Adoptive transfer of T cells expressing chimeric antigen receptors (CARs) is considered to be a novel anticancer therapy. To date, in most cases, single-chain variable fragments (scFvs) of murine origin have been used in CARs. However, this structure has limitations relating to the potential immunogenicity of mouse antigens in humans and the relatively large size of scFvs. For the first time, we used camelid nanobody (VHH) to construct CAR T cells against prostate specific membrane antigen (PSMA). The nanobody against PSMA (NBP) was used to show the feasibility of CAR T cells against prostate cancer cells. T cells were transfected, and then the surface expression of the CAR T cells was confirmed. Then, the functions of VHH-CAR T cell were evaluated upon coculture with prostate cancer cells. At the end, the cytotoxicity potential of NBPII-CAR in T cells was approximated by determining the cell surface expression of CD107a after encountering PSMA. Our data show the specificity of VHH-CAR T cells against PSMA+ cells (LNCaP), not only by increasing the interleukin 2 (IL-2) cytokine (about 400 pg/mL), but also the expression of CD69 by almost 38%. In addition, VHH-CAR T cells were proliferated by nearly 60% when cocultured with LNCaP, as compared with PSMA negative prostate cancer cell (DU-145), which led to the upregulation of CD107a in T cells upto 31%. These results clearly show the possibility of using VHH-based CAR T cells for targeted immunotherapy, which may be developed to target virtually any tumor-associated antigen for adoptive T-cell immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Mahmoud Hassani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Sharifzadeh
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Hossein Modarressi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abolhassani
- Department of Immunology, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
16
|
Słomiak K, Łazarenkow A, Chęcińska L, Kusz J, Ochocki J, Nawrot-Modranka J. Synthesis, Spectroscopic Analysis and Assessment of the Biological Activity of New Hydrazine and Hydrazide Derivatives of 3-Formylchromone. Molecules 2018; 23:E2067. [PMID: 30126150 PMCID: PMC6222780 DOI: 10.3390/molecules23082067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/28/2023] Open
Abstract
The hydrazine and hydrazide derivatives of benzo-γ-pyrones with fluorine substituents remain an unexplored group of chemical compounds. This preliminary study reports the synthesis, structural assessment, initial microbiological screening and biological testing of the synthesized compounds on cell lines using the XTT-assay. A series of 10 novel hydrazine and hydrazide derivatives of 3-formylchromone were synthesized and their structures determined. Structural assessment consisted of elemental analysis, IR, ¹H-NMR, 13C-NMR, MS and crystallographic studies. Antimicrobial activity was tested on standard strains representing different groups of microorganisms. The tested compounds were found to inhibit microbial growth. Concentrations of 0.01⁻1250 µmol/L were found to influence cell proliferation, demonstrating antiproliferative and stimulation of proliferation against two cell lines: the L929 cell line (mouse fibroblast cell line) and the EA.hy926 cell line (the human umbilical vein, somatic cell hybrid).
Collapse
Affiliation(s)
- Krzysztof Słomiak
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Andrzej Łazarenkow
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Lilianna Chęcińska
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Łódź, Poland.
| | - Joachim Kusz
- Department of Physics of Crystals, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland.
| | - Justyn Ochocki
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Jolanta Nawrot-Modranka
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszyńskiego 1, 90-151 Łódź, Poland.
| |
Collapse
|
17
|
Schmidt A, Wolf M, Rothmiller S, Worek F, Steinritz D, Thiermann H. Cytostatic resistance profile of the sulfur mustard resistant keratinocyte cell line HaCaT/SM. Toxicol Lett 2018; 293:16-20. [PMID: 29551593 DOI: 10.1016/j.toxlet.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND The cell line HaCaT/SM was developed as a sulfur mustard (SM) resistant cell line from the human keratinocyte cell line HaCaT. This cell line was established to learn more about the effect of SM and possible therapeutic approaches to counteract the cytotoxic effects of SM. The aim of this study was to clarify whether the SM-resistant cell line HaCaT/SM exhibit also resistance to other alkylating agents or cytotoxic drugs with different mechanism of action. MATERIAL AND METHOD The chemosensitivity of SM-resistant human keratinocyte cell line HaCaT/SM and the original cell line HaCaT were tested using the XTT assay. Nine cytotoxic drugs from five different substance groups were investigated. RESULTS HaCaT/SM showed a significant increase in resistance against all tested drugs. From the substance class of the alkylating agents, HaCaT/SM showed the strongest resistance increase against chlorambucil (1.7 fold increase). Whereas over all substances strongest increase was observed against cisplatin (5.1 fold increase). DISCUSSION The highest resistance was observed for cisplatin. The SM resistant cells revealed changes in the miRNA profile as described before. The resistance to cisplatin is also connected to a specific miRNA profile. Interestingly, changes of miRNA-203 and miRNA-21 levels were found in HaCaT/SM as well as in cisplatin resistant cells. It is therefore conceivable that the same resistance pathways are involved for both substances.
Collapse
Affiliation(s)
- Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Universität der Bundeswehr München, Faculty of Human Sciences, Department for Sports Sciences, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany.
| | - Markus Wolf
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximillians- University of Munich, Goethestr. 33, 80336 Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximillians- University of Munich, Goethestr. 33, 80336 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937 Munich, Germany
| |
Collapse
|
18
|
Hombach AA, Abken H. Most Do, but Some Do Not: CD4⁺CD25 - T Cells, but Not CD4⁺CD25⁺ Treg Cells, Are Cytolytic When Redirected by a Chimeric Antigen Receptor (CAR). Cancers (Basel) 2017; 9:cancers9090112. [PMID: 28850063 PMCID: PMC5615327 DOI: 10.3390/cancers9090112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 01/30/2023] Open
Abstract
Evidences are accumulating that CD4⁺ T cells can physiologically mediate antigen specific target cell lysis. By circumventing major histocompatibility complex (MHC)-restrictions through an engineered chimeric antigen receptor (CAR), CD4⁺ T cells lyse defined target cells as efficiently as do CD8⁺ T cells. However, the cytolytic capacity of redirected CD4⁺CD25- T cells, in comparison with CD4⁺CD25⁺ regulatory T (Treg) cells was so far not thoroughly defined. Treg cells require a strong CD28 signal together with CD3ζ for activation. We consequently used a CAR with combined CD28-CD3ζ signalling for redirecting CD4⁺CD25- T cells and CD4⁺CD25⁺ Treg cells from the same donor. CAR redirected activation of these T cell subsets and induced a distinct cytokine pattern with high IL-10 and a lack of IL-2 release by Treg cells. Despite strong antigen-specific activation, CAR Treg cells produced only weak target cell lysis, whereas CD4⁺CD25- CAR T cells were potent killers. Cytolysis did not correlate with the target cell sensitivity to Fas/FasL mediated killing; CD4⁺CD25- T cells upregulated perforin and granzyme B upon CAR activation, whereas Treg cells did less. The different cytolytic capacities of CAR redirected conventional CD4⁺ cells and Treg cells imply their use for different purposes in cell therapy.
Collapse
Affiliation(s)
- Andreas A Hombach
- Department I Internal Medicine, University Hospital Cologne, Cologne D-50931, Germany.
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, Cologne D-50931, Germany.
| |
Collapse
|
19
|
Pixuna virus modifies host cell cytoskeleton to secure infection. Sci Rep 2017; 7:5757. [PMID: 28720756 PMCID: PMC5515931 DOI: 10.1038/s41598-017-05983-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/31/2017] [Indexed: 11/08/2022] Open
Abstract
Pixuna virus (PIXV) is an enzootic member of the Venezuelan Equine Encephalitis Virus complex and belongs to the New World cluster of alphaviruses. Herein we explore the role of the cellular cytoskeleton during PIXV replication. We first identified that PIXV undergoes an eclipse phase consisting of 4 h followed by 20 h of an exponential phase in Vero cells. The infected cells showed morphological changes due to structural modifications in actin microfilaments (MFs) and microtubules (MTs). Cytoskeleton-binding agents, that alter the architecture and dynamics of MFs and MTs, were used to study the role of cytoskeleton on PIXV replication. The virus production was significantly affected (p < 0.05) after treatment with paclitaxel or nocodazole due to changes in the MTs network. Interestingly, disassembly of MFs with cytochalasin D, at early stage of PIXV replication cycle, significantly increased the virus yields in the extracellular medium (p < 0.005). Furthermore, the stabilization of actin network with jasplakinolide had no effect on virus yields. Our results demonstrate that PIXV relies not only on intact MTs for the efficient production of virus, but also on a dynamic actin network during the early steps of viral replication.
Collapse
|
20
|
Pertuit D, Larshini M, Brahim MA, Markouk M, Mitaine-Offer AC, Paululat T, Delemasure S, Dutartre P, Lacaille-Dubois MA. Triterpenoid saponins from the roots of Spergularia marginata. PHYTOCHEMISTRY 2017; 139:81-87. [PMID: 28432923 DOI: 10.1016/j.phytochem.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/23/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
Phytochemical investigations of the roots of Spergularia marginata had led to the isolation of four previously undescribed triterpenoid saponins, a known one and one spinasterol glycoside. Their structures were established by extensive NMR and mass spectroscopic techniques as 3-O-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-α-L- arabinopyranosyl ester, 3-O-β-D-glucopyranosyl-(1 → 3)-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)- α-L-arabinopyranosyl ester, 3-O-β-D-glucopyranosyl-(1 → 4)-3-O-sulfate-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyl ester, and 3-O-β-D-glucopyranosyl-(1 → 4)-β-D-glucuronopyranosyl 21-O-acetyl acacic acid. Their cytotoxicity was evaluated against two human cancer cell lines SW480 and MCF-7. The most active compound showed a cytotoxicity with IC50 14.2 ± 0.8 μM (SW480), and 18.7 ± 0.8 μM (MCF-7), respectively.
Collapse
Affiliation(s)
- David Pertuit
- Laboratoire de Pharmacognosie, PEPITE EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd Jeanne d'Arc, BP 87900, 21079, Dijon Cedex, France
| | - Mustafa Larshini
- Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Biologie, Laboratoire de Biotechnologie, Protection, et Valorisation des Phytoressources (Unité associée au CNRST URAC35), BP 2390, 40000, Marrakech, Morocco
| | - Malika Aitsidi Brahim
- Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Biologie, Laboratoire de Biotechnologie, Protection, et Valorisation des Phytoressources (Unité associée au CNRST URAC35), BP 2390, 40000, Marrakech, Morocco
| | - Mohamed Markouk
- Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Biologie, Laboratoire de Biotechnologie, Protection, et Valorisation des Phytoressources (Unité associée au CNRST URAC35), BP 2390, 40000, Marrakech, Morocco
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, PEPITE EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd Jeanne d'Arc, BP 87900, 21079, Dijon Cedex, France
| | - Thomas Paululat
- Universität Siegen, Organische Chemie II, Naturwissenschaftlich-Technische Fakultät, Adolf-Reichwein-Str. 2, D-57076, Siegen, Germany
| | | | - Patrick Dutartre
- Cohiro, UFR Médecine, 7, Bd Jeanne d'Arc, BP 87900, 21079, Dijon Cedex, France
| | - Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, PEPITE EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd Jeanne d'Arc, BP 87900, 21079, Dijon Cedex, France.
| |
Collapse
|
21
|
Durlu YK, Tamai M. Transplantation of Retinal Pigment Epithelium Using Viable Cryopreserved Cells. Cell Transplant 2017; 6:149-62. [PMID: 9142447 DOI: 10.1177/096368979700600209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transplantation of retinal pigment epithelium (RPE) may have potential clinical application for the surgical treatment of RPE-specific retinal degeneration, including age-related macular degeneration. The feasibility of an RPE storage bank has been investigated by experimenting with transplantation using viable, cryopreserved RPE cells. Fresh and cultured fetal human and bovine RPE cells were cryopreserved in 90% fetal bovine serum containing 10% dimethyl sulfoxide. The viability of the cells before and after cryopreservation was evaluated by trypan blue dye exclusion test, microculture tetrazolium assay (MTA), tissue culture, and transplantation after cryopreservation. The origin of RPE cells before and after cryopreservation was assessed by immunocytochemistry, immunoblotting, and indirect ELISA of RPE-marker protein using cytokeratin for cultured fetal human RPE cells and by immunocytochemistry of cellular retinaldehyde-binding protein (CR-ALBP) for cultured bovine RPE cells. Freshly isolated and cryopreserved uncultured bovine RPE cells were transplanted by posterior transscleral approach into the subretinal spaces of adult albino rabbits and 23-day-old Royal College of Surgeons (RCS) rats with a 33 gauge Hamilton syringe. Following surgery, artificial retinal blebs were confirmed by fundus examination. Morphologic examination was performed postoperatively by light and electron microscopy in albino rabbits and by light microscopy in RCS rats up to 3 mo. Control subretinal injections using vehicle solution also were performed in RCS rats. Cultured fetal human and bovine RPE cells after cryopreservation were found to be viable, based on the results of trypan blue dye exclusion test, MTA, tissue culture, and transplantation. Expression and reexpression of cytokeratin intermediate filaments in cultured fetal human RPE were demonstrated by immunocytochemistry, immunoblotting, and indirect ELISA before and after cryopreservation. Immunocytochemistry of CRALBP before and after cryopreservation in uncultured bovine RPE cells disclosed expression and reexpression of RPE cell marker protein. No uncultured fetal human RPE cells showed proliferation in tissue culture after cryopreservation. In rabbits, light and electron microscopy disclosed xenografted RPE cells residing on Bruch's membrane of the host retina. No sign of graft vs. host reaction was observed. No morphologic difference was noted between the fresh and 10-day-old cryopreserved RPE cells in situ following transplantation at day 25. In RCS rats, subretinal injection of 3-wk-old cryopreserved bovine RPE cells partially rescued photoreceptor cells locally at the transplanted area observed at 3 mo postoperatively. The retinal photoreceptors at the inferior hemisphere of the transplanted eye and the eye injected with vehicle solution showed no rescue effect. We found that cryopreserved cultured fetal human RPE cells and uncultured and cultured bovine RPE cells can be used for RPE transplantation studies. The ability to create an RPE storage bank as a source of donor cells may result in several clinical advantages.
Collapse
Affiliation(s)
- Y K Durlu
- Department of Ophthalmology, Tohoku University School of Medicine, Miyagi, Japan
| | | |
Collapse
|
22
|
Koychev S, Dommisch H, Chen H, Pischon N. Antimicrobial Effects of Mastic Extract Against Oral and Periodontal Pathogens. J Periodontol 2017; 88:511-517. [DOI: 10.1902/jop.2017.150691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Stefka Koychev
- Department of Periodontology and Synoptic Dentistry, Charité Medical University of Berlin, Berlin, Germany
| | - Henrik Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité Medical University of Berlin, Berlin, Germany
| | - Hong Chen
- Department of Periodontology and Synoptic Dentistry, Charité Medical University of Berlin, Berlin, Germany
- Department of Stomatology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Nicole Pischon
- Department of Periodontology and Synoptic Dentistry, Charité Medical University of Berlin, Berlin, Germany
| |
Collapse
|
23
|
Barwal I, Kumar R, Kateriya S, Dinda AK, Yadav SC. Targeted delivery system for cancer cells consist of multiple ligands conjugated genetically modified CCMV capsid on doxorubicin GNPs complex. Sci Rep 2016; 6:37096. [PMID: 27872483 PMCID: PMC5118717 DOI: 10.1038/srep37096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Targeted nano-delivery vehicles were developed from genetically modified Cowpea chlorotic mottle virus (CCMV) capsid by ligands bioconjugation for efficient drug delivery in cancer cells. RNA binding (N 1-25aa) and β-hexamer forming (N 27-41aa) domain of capsid was selectively deleted by genetic engineering to achieve the efficient in vitro assembly without natural cargo. Two variants of capsids were generated by truncating 41 and 26 amino acid from N terminus (NΔ41 and NΔ26) designated as F1 and F2 respectively. These capsid were optimally self-assembled in 1:2 molar ratio (F1:F2) to form a monodisperse nano-scaffold of size 28 nm along with chemically conjugated modalities for visualization (fluorescent dye), targeting (folic acid, FA) and anticancer drug (doxorubicin). The cavity of the nano-scaffold was packed with doxorubicin conjugated gold nanoparticles (10 nm) to enhance the stability, drug loading and sustained release of drug. The chimeric system was stable at pH range of 4–8. This chimeric nano-scaffold system showed highly specific receptor mediated internalization (targeting) and ~300% more cytotoxicity (with respect to FA− delivery system) to folate receptor positive Michigan Cancer Foundation-7 (MCF7) cell lines. The present system may offer a programmable nano-scaffold based platform for developing chemotherapeutics for cancer.
Collapse
Affiliation(s)
- Indu Barwal
- TERI University, Vasant Kunj, New Delhi, 110070, India.,TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| | - Rajiv Kumar
- School of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Subhash Chandra Yadav
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.,Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
24
|
Hassan LEA, Dahham SS, Saghir SAM, Mohammed AMA, Eltayeb NM, Majid AMSA, Majid ASA. Chemotherapeutic potentials of the stem bark of Balanite aegyptiaca (L.) Delile: an antiangiogenic, antitumor and antioxidant agent. Altern Ther Health Med 2016; 16:396. [PMID: 27760539 PMCID: PMC5069806 DOI: 10.1186/s12906-016-1369-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022]
Abstract
Background Balanite aegyptiaca (L.) Delile, is a plant with extensive medicinal properties. Its stem bark is traditionally known for its spasmolytic and antiepileptic properties and used to treat yellow fever, jaundice and syphilis. Angiogenesis (sprouting of new blood vessels) is crucial for tumor growth and metastasis. The goal of this study is investigate the antiangiogenic, cytotoxicity and antioxidant activity as well as antitumor in vivo properties of B. aegyptiaca stem bark extracts. Method The dried powder of stem bark was extracted sequentially with n-hexane, chloroform, methanol and water. Rat aorta ring assay (RARA) was used as a platform to screen for antiangiogenic affect. The most active extract was subjected to further confirmatory antiangiogenic tests i.e. cell migration, tube formation and VEGF inhibition and finally evaluated for its in vivo antitumor efficacy in nude mice. The cytotoxicity of extracts on four cancer cell lines (HCT-116, K562, U937 and MCF-7) and one normal cells line (HUVEC) was evaluated. To assess the antioxidant activity screening, four methods were used, (DPPH•) and ABTS radical scavenging activity, as well as total flavonoids and phenolic contents. Results Methanol extract of B. aegyptiaca stem bark (MBA) showed the highest antiangiogenic, antioxidant and anticancer properties. It was found selectively cytotoxic to leukemia cell lines as well as breast cancer cell line MCF-7. (MBA) thus exhibited antiangiogenic in ex-vivo rat aorta ring model; it was found to excel its antiangiogenic effect via inhibition of the key growth factor (VEGF) as well as to halt HUVEC cell migration and tube formation, furthermore animals bearing colon cancer treated with (MBA) showed significant reduction in tumor growth. Conclusion Different extracts of B. aegyptiaca stem bark showed various anticancer and antiangiogenic properties. MBA demonstrated potent antiangiogenic, antioxidant and antitumor in vivo. The outcome of this study suggests the potential of stem bark of the B. aegyptiaca for developing chemotherapeutic agent against solid tumor as well as leukemia.
Collapse
|
25
|
New pregnane and phenolic glycosides from Solenostemma argel. Fitoterapia 2016; 114:98-104. [DOI: 10.1016/j.fitote.2016.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 11/23/2022]
|
26
|
Chouaïb K, Delemasure S, Dutartre P, Jannet HB. Microwave-assisted synthesis, anti-inflammatory and anti-proliferative activities of new maslinic acid derivatives bearing 1,5- and 1,4-disubstituted triazoles. J Enzyme Inhib Med Chem 2016; 31:130-147. [DOI: 10.1080/14756366.2016.1193733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Karim Chouaïb
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité. Equipe: Chimie Médicinale et Produits Naturels, Département de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’Environnement, Monastir, Tunisie and
| | | | - Patrick Dutartre
- COHIRO Biotechnology, Facultés de Médecine et Pharmacie, Dijon, France
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité. Equipe: Chimie Médicinale et Produits Naturels, Département de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’Environnement, Monastir, Tunisie and
| |
Collapse
|
27
|
Sherwood RL, House RV, Ratajczak HV, Freudenthal RI, Henrich RT. Immunotoxicity Evaluation of Resorcinol Bis-Diphenylphosphate (Fyrolflex RDP) in B6C3F1 Mice. Int J Toxicol 2016. [DOI: 10.1080/10915810050202079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
RDP was administered daily to groups of female B6C3F1 mice by oral gavage for 28 days at dose levels of 500, 1500, or 5000 mg/kg/day body weight (BW). Control animals were sham dosed. Animals were euthanized 1 day following final exposure or following a 60-day recovery period. End point observations included necropsy and histopathology, spleen and thymus weights and cellularity, peritoneal cell numbers and differential cell analysis, splenic natural killer (NK) cell activity, lymphocyte blastogenesis, antibody-forming cell (AFC) response, peritoneal macrophage phagocytic activity, and host susceptibility to Listeria monocytogenes infection. In-life observations included weekly clinical examinations and body weights. No adverse clinical signs were noted and the only significant finding was an increase in body weight in high dose mice on week 4 as compared to sham controls. Small changes in body weight gain were seen in all dose groups as compared to sham controls after completion of dosing on weeks 5 and 6 and in mid-dose mice on weeks 7 and 12. No significant differences were found in spleen and thymus weights or in cellularity. No changes were found in peritoneal cell numbers or cell types, peritoneal macrophage phagocytic activity, or host susceptibility to infection. Likewise, splenic NK cell activity, lymphocyte blastogenesis, and AFC function were also unaffected. No histopathologic changes were observed. All animals that received positive-control substances demonstrated a significant effect in the respective tests. In conclusion, a standardized and validated battery of immune function tests demonstrated no immunotoxicity following daily oral exposure to up to 5000 mg/kg BW of RDP for 28 days.
Collapse
Affiliation(s)
- R. L. Sherwood
- IIT Research Institute, Life Sciences Operation, Chicago, Illinois, USA
| | - R. V. House
- IIT Research Institute, Life Sciences Operation, Chicago, Illinois, USA
| | - H. V. Ratajczak
- IIT Research Institute, Life Sciences Operation, Chicago, Illinois, USA
| | | | - R. T. Henrich
- Akzo Nobel Chemicals Inc., Dobbs Ferry, New York, USA
| |
Collapse
|
28
|
Tabopda TK, Mitaine-Offer AC, Paululat T, Delemasure S, Dutartre P, Ngadjui BT, Lacaille-Dubois MA. Steroidal saponins from Chlorophytum deistelianum. PHYTOCHEMISTRY 2016; 126:34-40. [PMID: 27012932 DOI: 10.1016/j.phytochem.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Phytochemical investigation of the aerial parts of Chlorophytum deistelianum led to the isolation of four previously undescribed steroidal saponins called chlorodeistelianosides A-D with five known ones. Their structures were established mainly by extensive 1D and 2D NMR spectroscopic techniques and mass spectrometry as (25R)-3β-[(β-D-glucopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→4)]-β-D-xylopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosyl)oxy]-5α-spirostan-12-one, (24S,25S)-24-[(β-D-glucopyranosyl)oxy]-3β-[(β-d-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosyl)oxy]-5α-spirostan-12-one, (25R)-26-[(β-D-glucopyranosyl)oxy]-2α-hydroxy-22α-methoxy-5α-furostan-3β-yl β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside, and (25R)-26-[(β-D-glucopyranosyl)oxy]-3β-[(β-D-glucopyranosyl-(1→2)-[β-D-xylopyranosyl-(1→3)]-β-D-glucopyranosyl-(1→4)-β-D-galactopyranosyl)oxy]-5α-furost-20(22)-en-12-one. Cytotoxicity of most compounds was evaluated against one human cancer cell line (SW480) and one rat cardiomyoblast cell line (H9c2). Among them, three known spirostane-type glycosides exhibited cytotoxicity on both cell lines with IC50 ranging from 8 to 10 μM.
Collapse
Affiliation(s)
- Turibio Kuiate Tabopda
- Laboratoire de Pharmacognosie, EA 4267/UFC, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France; Département de Chimie Organique, Université de Yaoundé 1, BP 812 Yaoundé, Cameroon
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, EA 4267/UFC, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Thomas Paululat
- Universität Siegen, FB8, OC-II (AK Ihmels), Adolf-Reichwein-Strasse 2, D-57068 Siegen, Germany
| | - Stéphanie Delemasure
- Cohiro, UFR des Sciences de Santé, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Patrick Dutartre
- Cohiro, UFR des Sciences de Santé, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | | | - Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, EA 4267/UFC, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France.
| |
Collapse
|
29
|
Superior Therapeutic Index in Lymphoma Therapy: CD30(+) CD34(+) Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack. Mol Ther 2016; 24:1423-34. [PMID: 27112062 DOI: 10.1038/mt.2016.82] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/16/2016] [Indexed: 12/17/2022] Open
Abstract
Recent clinical trials with chimeric antigen receptor (CAR) redirected T cells targeting CD19 revealed particular efficacy in the treatment of leukemia/lymphoma, however, were accompanied by a lasting depletion of healthy B cells. We here explored CD30 as an alternative target, which is validated in lymphoma therapy and expressed by a broad variety of Hodgkin's and non-Hodgkin's lymphomas. As a safty concern, however, CD30 is also expressed by lymphocytes and hematopoietic stem and progenitor cells (HSPCs) during activation. We revealed that HRS3scFv-derived CAR T cells are superior since they were not blocked by soluble CD30 and did not attack CD30(+) HSPCs while eliminating CD30(+) lymphoma cells. Consequently, normal hemato- and lymphopoiesis was not affected in the long-term in the humanized mouse; the number of blood B and T cells remained unchanged. We provide evidence that the CD30(+) HSPCs are protected against a CAR T-cell attack by substantially lower CD30 levels than lymphoma cells and higher levels of the granzyme B inactivating SP6/PI9 serine protease, which furthermore increased upon activation. Taken together, adoptive cell therapy with anti-CD30 CAR T cells displays a superior therapeutic index in the treatment of CD30(+) malignancies leaving healthy activated lymphocytes and HSPCs unaffected.
Collapse
|
30
|
Rezgui A, Mitaine-Offer AC, Miyamoto T, Tanaka C, Delemasure S, Dutartre P, Lacaille-Dubois MA. Oleanolic acid and hederagenin glycosides from Weigela stelzneri. PHYTOCHEMISTRY 2016; 123:40-47. [PMID: 26805449 DOI: 10.1016/j.phytochem.2015.12.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Four previously undescribed and one known oleanolic acid glycosides were isolated from the roots of Weigela stelzneri, and one previously undescribed and three known hederagenin glycosides were isolated from the leaves. Their structures were elucidated mainly by 2D NMR spectroscopic analysis and mass spectrometry as 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyloleanolic acid, 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranosyloleanolic acid, 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-glucopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranosyloleanolic acid, 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyloleanolic acid 28-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranosyl ester, and 3-O-β-D-glucopyranosyl-(1 → 2)-α-L-arabinopyranosylhederagenin 28-O-β-D-xylopyranosyl-(1 → 6)-[α-L-rhamnopyranosyl-(1 → 2)]-β-D-glucopyranosyl ester. The majority of the isolated compounds were evaluated for their cytotoxicity against two tumor cell lines (SW480 and EMT-6), and for their anti-inflammatory activity. The compounds 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-α-L-arabinopyranosyloleanolic acid and 3-O-β-D-glucopyranosyl-(1 → 2)-[β-D-xylopyranosyl-(1 → 4)]-β-D-xylopyranosyl-(1 → 4)-β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)-β-D-xylopyranosyloleanolic acid exhibited the strongest cytotoxicity on both cancer cell lines. They revealed a 50% significant inhibitory effect of the IL-1β production by PBMCs stimulated with LPS at a concentration inducing a very low toxicity of 23% and 28%, respectively.
Collapse
Affiliation(s)
- Abdelmalek Rezgui
- Laboratoire de Pharmacognosie, EA 4267, FDE, Université de Bourgogne Franche-Comté, UFR Sciences de Santé, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, EA 4267, FDE, Université de Bourgogne Franche-Comté, UFR Sciences de Santé, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Stéphanie Delemasure
- Cohiro, UFR Sciences de Santé, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Patrick Dutartre
- Cohiro, UFR Sciences de Santé, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, EA 4267, FDE, Université de Bourgogne Franche-Comté, UFR Sciences de Santé, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France.
| |
Collapse
|
31
|
Abstract
OBJECTIVE Unpredictability in graft retention remains a significant drawback of fat grafting. Processing of fat grafts has been the focus of several studies to improve graft survival. The objective of this study was to systematically review the outcomes of different fat graft processing techniques with the goal of (1) deriving clinically oriented insights and (2) identifying gaps in knowledge to stimulate future research. METHODS PubMed, EMBASE, and Cochrane Databases were searched to identify studies that compared different fat graft processing techniques. Outcome measures of interest were any subjective or objective measures of fat graft survival or reports of adverse events. RESULTS A total of 2056 abstracts were generated from the literature searches; 13 studies met the criteria for data extraction and analysis. Processing methods assessed included decantation, washing, gauze filtration, and centrifugation. Each processing method was found to be better than other methods, depending on the outcome measure used to study graft survival. As well, several studies found statistical equipoise in the outcome measures when analyzing the results of the different techniques. Adverse events were rarely reported and did not correlate with any processing method in particular. CONCLUSIONS No firm concluding recommendation can be made to deem 1 processing technique superior to the others. However, it would seem that techniques, which use a combination of gentle washing and centrifugation, strike the optimal balance of preserving adipocyte viability while removing bulk of the contaminants.
Collapse
|
32
|
Shrivastava M, Subbiah V. Elevated caspase 3 activity and cytosolic cytochrome c in NT2 cybrids containing amyotrophic lateral sclerosis subject mtDNA. Int J Neurosci 2015; 126:839-49. [PMID: 26268635 DOI: 10.3109/00207454.2015.1074902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apoptosis of motor neurons is an important feature in amyotrophic lateral sclerosis (ALS). A vital role of mitochondria in apoptosis and cell survival is well documented. Eventually mitochondria have shown to be an early target in the pathogenesis of ALS. On account of these facts, we investigated the involvement of mitochondrial-dependent apoptosis in ALS and control (CTR) cybrids, generated fusing human platelets with mitochondrial DNA-depleted NT2-neuroteratocarcinoma cells. After a 6 week selection process during which transferred subject mtDNA repopulated the NT2 cells and restored mitochondrial oxygen consumption, we assessed cell viability and two programmed cell death parameters, caspase 3 activity and cytosolic cytochrome c levels. Compared to the control cybrid lines (n = 5), the ALS cybrid lines (n = 10) showed 45% less XTT reduction and higher caspase 3 activity ( p < 0.05, two-way Student's t test) exhibiting lesser cell viability and execution of apoptosis. Elevated cytosolic cytochrome c levels in ALS cybrid lines (n = 8) than in CTR (n = 4) ( p < 0.05, two-way Student's t-test) indicating its mitochondrial release and initiation of apoptosis. This indicates apoptosis as one of the possible mechanisms of cell death in ALS. Our findings support the view that in ALS, subject's mitochondria are altered in non-degenerating tissues in such a way that intrinsic apoptotic pathway activity is relatively increased.
Collapse
Affiliation(s)
- Mohita Shrivastava
- a Department of Neurobiochemistry , All India Institute of Medical Sciences , New Delhi , India
| | - Vivekanandhan Subbiah
- a Department of Neurobiochemistry , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
33
|
Pertuit D, Mitaine-Offer AC, Miyamoto T, Tanaka C, Delemasure S, Dutartre P, Lacaille-Dubois MA. A New Aromatic Compound from the Stem Bark of Terminalia catappa. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new aromatic compound 3,4,5-trimethoxyphenyl-1- O-(4-sulfo)-β-D-glucopyranoside (1), in addition to two triterpenoid saponins (chebuloside II, arjunoglucoside II), two triterpenes (arjunolic acid and 3-betulinic acid) and sitosterol-3- O-β-D-glucopyranoside have been isolated from the barks of Terminalia catappa. Their structures have been established on the basis of spectroscopic techniques (1D/2D NMR) and MS. Their cytotoxicity and anti-inflammatory activity, together with the antioxidant capacity of compound 1 were also evaluated.
Collapse
Affiliation(s)
- David Pertuit
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812–8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812–8582, Japan
| | - Stéphanie Delemasure
- Cohiro, UFR des Sciences de Santé, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Patrick Dutartre
- Cohiro, UFR des Sciences de Santé, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR des Sciences de Santé, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| |
Collapse
|
34
|
Babiaka SB, Ntie-Kang F, Lifongo LL, Ndingkokhar B, Mbah JA, Yong JN. The chemistry and bioactivity of Southern African flora I: a bioactivity versus ethnobotanical survey of alkaloid and terpenoid classes. RSC Adv 2015. [DOI: 10.1039/c5ra01912e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
As a whole, the African continent is highly endowed with a huge floral biodiversity.
Collapse
Affiliation(s)
- Smith B. Babiaka
- Department of Chemistry
- Chemical and Bioactivity Information Centre
- Faculty of Science
- University of Buea
- Buea
| | - Fidele Ntie-Kang
- Department of Chemistry
- Chemical and Bioactivity Information Centre
- Faculty of Science
- University of Buea
- Buea
| | - Lydia L. Lifongo
- Department of Chemistry
- Chemical and Bioactivity Information Centre
- Faculty of Science
- University of Buea
- Buea
| | - Bakoh Ndingkokhar
- Department of Chemistry
- Chemical and Bioactivity Information Centre
- Faculty of Science
- University of Buea
- Buea
| | - James A. Mbah
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea
- Cameroon
| | - Joseph N. Yong
- Department of Chemistry
- Faculty of Science
- University of Buea
- Buea
- Cameroon
| |
Collapse
|
35
|
Chandrasekaran V, Kalyan S, Biel V, Lettau M, Nerdal PT, Oberg HH, Wesch D, Lindhorst TK, Kabelitz D. Novel synthesis of fluorochrome-coupled zoledronate with preserved functional activity on gamma/delta T cells and tumor cells. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00063g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fluorescent derivative of bisphosphonate zoledronate was synthesized and shown to have comparable functional activity as native zoledronate.
Collapse
Affiliation(s)
| | - Shirin Kalyan
- Institute of Immunology
- Christian-Albrechts-University of Kiel
- D-24105 Kiel
- Germany
| | - Valentina Biel
- Institute of Immunology
- Christian-Albrechts-University of Kiel
- D-24105 Kiel
- Germany
| | - Marcus Lettau
- Institute of Immunology
- Christian-Albrechts-University of Kiel
- D-24105 Kiel
- Germany
| | | | - Hans-Heinrich Oberg
- Institute of Immunology
- Christian-Albrechts-University of Kiel
- D-24105 Kiel
- Germany
| | - Daniela Wesch
- Institute of Immunology
- Christian-Albrechts-University of Kiel
- D-24105 Kiel
- Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry
- Christian-Albrechts-University of Kiel
- D-24118 Kiel
- Germany
| | - Dieter Kabelitz
- Institute of Immunology
- Christian-Albrechts-University of Kiel
- D-24105 Kiel
- Germany
| |
Collapse
|
36
|
Shokrzadeh N, Winkler AM, Dirin M, Winkler J. Oligonucleotides conjugated with short chemically defined polyethylene glycol chains are efficient antisense agents. Bioorg Med Chem Lett 2014; 24:5758-5761. [PMID: 25453815 PMCID: PMC4263527 DOI: 10.1016/j.bmcl.2014.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022]
Abstract
Ligand conjugation is an attractive approach to rationally modify the poor pharmacokinetic behavior and cellular uptake properties of antisense oligonucleotides. Polyethylene glycol (PEG) attachment is a method to increase solubility of oligonucleotides and prevent the rapid elimination, thus increasing tissue distribution. On the other hand, the attachment of long PEG chains negatively influences the pharmacodynamic effect by reducing the hybridization efficiency. We examined the use of short PEG ligands on the in vitro effect of antisense agents. Circular dichroism showed that the tethering of PEG12-chains to phosphodiester and phosphorothioate oligonucleotides had no influence on their secondary structure and did not reduce the affinity to the counter strand. In an in vitro tumor model, a luciferase reporter assay indicated unchanged gene silencing activity compared to unmodified compounds, and even slightly superior target down regulation was found after treatment with a phosphorothioate modified conjugate.
Collapse
Affiliation(s)
- Nasrin Shokrzadeh
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Anna-Maria Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Mehrdad Dirin
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria
| | - Johannes Winkler
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
37
|
Shi Y, Elkhabaz A, Yousef Yengej FA, van den Dikkenberg J, Hennink WE, van Nostrum CF. π-π Stacking induced enhanced molecular solubilization, singlet oxygen production, and retention of a photosensitizer loaded in thermosensitive polymeric micelles. Adv Healthc Mater 2014; 3:2023-31. [PMID: 25388924 DOI: 10.1002/adhm.201400455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/09/2014] [Indexed: 01/01/2023]
Abstract
Cancer photodynamic therapy (PDT) by photosensitizers (PS)-loaded polymeric micelles (PM) is hampered by the tendency of PS to aggregate in PM and/or by premature release of PS in the blood circulation. In the present study, aromatic thermosensitive PM, characterized by π-π stacking interaction, are used to encapsulate an axially solketal-substituted silicon phthalocyanine (Si(sol)2 Pc) with enhanced loading capacity, smaller size, and significantly improved retention of Si(sol)2 Pc compared with systems based on thermosensitive PM lacking aromatic groups. Interestingly, Si(sol)2 Pc is much less prone to aggregation in the aromatic PM, i.e., the amount of Si(sol)2 Pc that could be encapsulated without aggregation is 330 times higher in the aromatic PM than in the nonaromatic PM. Furthermore, Si(sol)2 Pc in the aromatic PM in a molecularly dissolved (non-aggregated) form displays three times more efficient singlet oxygen production than Si(sol)2 Pc aggregated in the non-aromatic PM. As a result, the photocytotoxicity of Si(sol)2 Pc-loaded aromatic PM to B16F10 cells is increased, compared with that of the non-aromatic PM, while no significant cytotoxicity is observed in the dark. Fluorescence-activated cell sorting (FACS) and confocal laser scanning microscopy (CLSM) analysis shows cell uptake of Si(sol)2 Pc loaded in the aromatic PM, and the Si(sol)2 Pc is taken up by the cells together with the micelles. The efficient singlet oxygen production of Si(sol)2 Pc dissolved in the aromatic PM makes it an interesting formulation for cancer PDT.
Collapse
Affiliation(s)
- Yang Shi
- Department of Pharmaceutics; Utrecht Institute for Pharmaceutical Sciences (UIPS); Utrecht University; Universiteitsweg 99 P.O. Box 80082 3508 TB Utrecht The Netherlands
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou 510006 China
| | - Ahmed Elkhabaz
- Department of Pharmaceutics; Utrecht Institute for Pharmaceutical Sciences (UIPS); Utrecht University; Universiteitsweg 99 P.O. Box 80082 3508 TB Utrecht The Netherlands
| | - Fjodor A. Yousef Yengej
- Department of Pharmaceutics; Utrecht Institute for Pharmaceutical Sciences (UIPS); Utrecht University; Universiteitsweg 99 P.O. Box 80082 3508 TB Utrecht The Netherlands
| | - Joep van den Dikkenberg
- Department of Pharmaceutics; Utrecht Institute for Pharmaceutical Sciences (UIPS); Utrecht University; Universiteitsweg 99 P.O. Box 80082 3508 TB Utrecht The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics; Utrecht Institute for Pharmaceutical Sciences (UIPS); Utrecht University; Universiteitsweg 99 P.O. Box 80082 3508 TB Utrecht The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics; Utrecht Institute for Pharmaceutical Sciences (UIPS); Utrecht University; Universiteitsweg 99 P.O. Box 80082 3508 TB Utrecht The Netherlands
| |
Collapse
|
38
|
Wang Z, Hall MD, Rewers-Felkins KA, Quinlin IS, Wright SE. Dendritic cells enhance the activity of human MUC1-stimulated mononuclear cells against breast cancer. Oncoimmunology 2014; 2:e23335. [PMID: 23526065 PMCID: PMC3601184 DOI: 10.4161/onci.23335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Dendritic cells (DCs) are among the most potent antigen-presenting cells (APCs), stimulating peripheral blood mononuclear cells (PBMCs) to generate antigen-specific cytotoxic T lymphocytes (CTLs). The objectives of this study were to determine if interleukin (IL)-4 is beneficial or detrimental for the generation of human DCs in vitro and to understand whether DCs generated in vitro in the presence or absence of IL-4 stimulate the killing of adenocarcinoma cells by CTLs in vivo. Mucin 1 (MUC1), a glycoprotein found on the surface of adenocarcinoma cells was used to load DCs. MUC1-loaded DCs generated in the absence of IL-4 were superior to their counterparts produced with IL-4 in stimulating PBMCs to kill human breast cancer MCF-7 cells in vitro. A corollary in vivo protection experiment was performed by injecting immunodeficient NOD-SCID mice with MCF-7 cells s.c. and MUC1-loaded CTLs, PBMCs, or DCs generated in the absence of IL-4, i.p. Mice that received CTLs and MUC1-loaded DCs on days 0, 2, 4, 9, 14 and 19 were completely protected against the development of MCF-7-derived tumors, while other schedules conferred lower protection. Therefore, tumor antigen-loaded DCs enhance the efficacy of adoptive CTL transfer, and should thus be considered for combinatorial immunotherapeutic regimens.
Collapse
Affiliation(s)
- Zhenyao Wang
- Departments of Internal Medicine and Biomedical Sciences; Texas Tech University Health Sciences Center Schools of Medicine and Pharmacy; Amarillo, TX USA ; Department of Life, Earth and Environmental Sciences; West Texas A & M University; Canyon, TX USA
| | | | | | | | | |
Collapse
|
39
|
Pertuit D, Avunduk S, Mitaine-Offer AC, Miyamoto T, Tanaka C, Paululat T, Delemasure S, Dutartre P, Lacaille-Dubois MA. Triterpenoid saponins from the roots of two Gypsophila species. PHYTOCHEMISTRY 2014; 102:182-188. [PMID: 24725976 DOI: 10.1016/j.phytochem.2014.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 06/03/2023]
Abstract
Two triterpenoid saponins with two known ones have been isolated from the roots of Gypsophila arrostii var. nebulosa, and two new ones from the roots of Gypsophila bicolor. Their structures were established by extensive NMR and mass spectroscopic techniques as 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosylquillaic acid 28-O-β-d-xylopyranosyl-(1→4)-[β-d-glucopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-fucopyranosyl ester (1), 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosylgypsogenin 28-O-β-d-xylopyranosyl-(1→4)-[β-d-glucopyranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-[β-d-glucopyranosyl-(1→4)]-β-d-fucopyranosyl ester (2), 3-O-β-d-galactopyranosyl-(1→2)-[β-d-xylopyranosyl-(1→3)]-β-d-glucuronopyranosylgypsogenin 28-O-β-d-xylopyranosyl-(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-[(4-O-acetyl)-β-d-quinovopyranosyl-(1→4)]-β-d-fucopyranosyl ester (3), gypsogenic acid 28-O-β-d-glucopyranosyl-(1→3)-{6-O-[3-hydroxy-3-methylglutaryl]-β-d-glucopyranosyl-(1→6)}-β-d-galactopyranosyl ester (4). Three compounds were evaluated against one human colon cancer cell line SW480 and one rat cardiomyoblast cell line H9c2.
Collapse
Affiliation(s)
- David Pertuit
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR Pharmacie, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Sibel Avunduk
- Mugla University, Saglık Hizmetleri Meslek Yuksekokulu, Ulusal Egemenlik Cad. No:9 Marmaris, Mugla, Turkey
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR Pharmacie, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Thomas Paululat
- Universität Siegen, Organische Chemie II, Naturwissenschaftlich-Technische Fakultät, Adolf-Reichwein-Str. 2, D-57076 Siegen, Germany
| | | | - Patrick Dutartre
- Cohiro, UFR Médecine, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, EA 4267, FDE/UFC, UFR Pharmacie, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France.
| |
Collapse
|
40
|
Manase MJ, Mitaine-Offer AC, Miyamoto T, Tanaka C, Delemasure S, Dutartre P, Lacaille-Dubois MA. Triterpenoid saponins from Polycarpaea corymbosa Lamk. var. eriantha Hochst. PHYTOCHEMISTRY 2014; 100:150-155. [PMID: 24507482 DOI: 10.1016/j.phytochem.2013.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/22/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
Four triterpenoid saponins (1-4) were isolated from Polycarpaea corymbosa Lamk. var. eriantha Hochst along with the known apoanagallosaponin IV (5). Their structures were elucidated by spectroscopic data analysis. Among the compounds 1, 3-5 which were evaluated for their cytotoxicity against three tumor cell lines (SW480, DU145 and EMT6), compound 1 exhibited cytotoxicity with IC50 values ranging from 4.61 to 22.61 μM, which was greater than that of etoposide. Compound 2 was tested only against SW480 and a cardiomyoblast cell line (H9c2), and was inactive.
Collapse
Affiliation(s)
- Mahenina Jaovita Manase
- EA 4267 (FDE/UFC), Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de Bourgogne, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Anne-Claire Mitaine-Offer
- EA 4267 (FDE/UFC), Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de Bourgogne, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Stéphanie Delemasure
- Cohiro, UFR de Médecine de Dijon, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Patrick Dutartre
- Cohiro, UFR de Médecine de Dijon, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Marie-Aleth Lacaille-Dubois
- EA 4267 (FDE/UFC), Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de Bourgogne, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France.
| |
Collapse
|
41
|
Wright SE, Rewers-Felkins KA, Quinlin I, Chowdhury NI, Ahmed J, Eldridge PW, Srivastava SK, Pastan I. TGFα-PE38 enhances cytotoxic T-lymphocyte killing of breast cancer cells. Oncol Lett 2014; 7:2113-2117. [PMID: 24932299 PMCID: PMC4049764 DOI: 10.3892/ol.2014.1969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/13/2013] [Indexed: 02/04/2023] Open
Abstract
The aim of the present study was to determine whether the combination of two modalities of immunotherapy, targeting two different tumor antigens, may be feasible and non-toxic, yet enhance the killing of a human breast cancer cell line. The first modality was tumor growth factor α-Pseudomonas exotoxin 38 (TGFα-PE38), which specifically targets and kills tumor cells that express the epidermal growth factor receptor. The second modality was mucin-1 (MUC1)-specific cytotoxic T lymphocytes (CTLs), generated by MUC1 stimulation of peripheral blood mononuclear cells, to target the human breast cancer cell line, MCF7. TGFα-PE38 exhibited specific lysis of the MCF7 cells in a concentration- and time-dependent manner. TGFα-PE38 did not kill the normal hematopoietic stem cells or CTLs. Furthermore, TGFα-PE38 was not inhibitory for the growth or differentiation of the normal human hematopoietic stem cells into erythroid and myeloid colonies. In addition, TGFα-PE38 did not inhibit the killing function of CTLs, either when preincubated or co-incubated with CTLs. Finally, therapeutic enhancement was observed, in that TGFα-PE38 and CTLs were additive in the specific lysis of the MCF7 cells. These two modalities of immunotherapy may be beneficial for humans with breast cancer with or without other therapies, including autologous hematopoietic stem cell transplantation, specifically for purging cancer cells from hematopoietic stem cells prior to transplantation.
Collapse
Affiliation(s)
- Stephen E Wright
- Women's Health Research Institute, Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA ; Department of Microbiology and Immunology, School of Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA ; Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA ; Harrington Cancer Center, Amarillo, TX 79106, USA
| | - Kathleen A Rewers-Felkins
- Women's Health Research Institute, Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Imelda Quinlin
- Women's Health Research Institute, Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Nazrul I Chowdhury
- Women's Health Research Institute, Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jewel Ahmed
- Women's Health Research Institute, Department of Internal Medicine, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | - Sanjay K Srivastava
- Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| |
Collapse
|
42
|
Montes EG, Mitaine-Offer AC, Amaro-Luis JM, Paululat T, Delaude C, Pouységu L, Quideau S, Rojas LB, Delemasure S, Dutartre P, Lacaille-Dubois MA. Acylated oleanane-type saponins from Ganophyllum giganteum. PHYTOCHEMISTRY 2014; 98:236-242. [PMID: 24388676 DOI: 10.1016/j.phytochem.2013.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 10/25/2013] [Accepted: 11/03/2013] [Indexed: 06/03/2023]
Abstract
Five oleanane-type saponins, 3-O-β-D-glucuronopyranosylzanhic acid 28-O-β-D-xylopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-(4-O-acetyl)-β-D-fucopyranosyl ester (1), 3-O-β-D-glucopyranosylzanhic acid 28-O-β-D-xylopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-(4-O-acetyl)-β-D-fucopyranosyl ester (2), zanhic acid 28-O-β-D-xylopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-(4-O-acetyl)-β-D-fucopyranosyl ester (3), zanhic acid 28-O-α-L-rhamnopyranosyl-(1→2)-4-O-[(3'-hydroxy-2'-methyl-butyroyloxy)-3-hydroxy-2-methyl-butyroyloxy]-β-D-fucopyranosyl ester (4), medicagenic acid 28-O-α-L-rhamnopyranosyl-(1→2)-4-O-[(3'-hydroxy-2'-methyl-butyroyloxy)-3-hydroxy-2-methyl-butyroyloxy]-β-D-fucopyranosyl ester (5), were isolated from the root barks of Ganophyllum giganteum. Compounds 4 and 5 possessed an unusual substitution of the C-4 position of the β-D-fucopyranosyl moiety by a C10 ester group formed by two symmetrical C5 nilic acid. From a chemotaxonomic point of view, their structures are in accordance with the previous saponins isolated from the Doratoxyleae tribe of the Sapindaceae family. Their cytotoxicity and anti-inflammatory activity were also evaluated.
Collapse
Affiliation(s)
- Elier Galarraga Montes
- Laboratoire de Pharmacognosie, EA 4267 (FDE/UFC), Faculté de Pharmacie, Université de Bourgogne, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France; Laboratorio de Productos Naturales. Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Anne-Claire Mitaine-Offer
- Laboratoire de Pharmacognosie, EA 4267 (FDE/UFC), Faculté de Pharmacie, Université de Bourgogne, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Juan Manuel Amaro-Luis
- Laboratorio de Productos Naturales. Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Thomas Paululat
- Universität Siegen, OC-II, Naturwissenschaftlich-Technische Fakultät, Adolf-Reichwein-Str. 2, D-57076 Siegen, Germany
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie-B6, Sart Tilman, B-4000 Liège I, Belgium
| | - Laurent Pouységu
- Institut des Sciences Moléculaires, CNRS-UMR 5255 et Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Stéphane Quideau
- Institut des Sciences Moléculaires, CNRS-UMR 5255 et Institut Européen de Chimie et Biologie, Université de Bordeaux, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Luis B Rojas
- Laboratorio de Productos Naturales. Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | - Patrick Dutartre
- Cohiro, UFR Médecine, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Marie-Aleth Lacaille-Dubois
- Laboratoire de Pharmacognosie, EA 4267 (FDE/UFC), Faculté de Pharmacie, Université de Bourgogne, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France.
| |
Collapse
|
43
|
Martey ONK, He X, Xing H, Deng F, Feng S, Li C, Shi X. Periplocymarin is a potential natural compound for drug development: highly permeable with absence of P-glycoprotein efflux and cytochrome P450 inhibitions. Biopharm Drug Dispos 2014; 35:195-206. [DOI: 10.1002/bdd.1884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/28/2013] [Accepted: 11/24/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Orleans N. K. Martey
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Nankai District Tianjin P.R. China 300193
| | - Xin He
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Nankai District Tianjin P.R. China 300193
- Tianjin State Key Laboratory of Modern Chinese Medicine; Tianjin China
| | - Haiyan Xing
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Nankai District Tianjin P.R. China 300193
| | - Fengchun Deng
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Nankai District Tianjin P.R. China 300193
| | - Shan Feng
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Nankai District Tianjin P.R. China 300193
| | - Chao Li
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Nankai District Tianjin P.R. China 300193
| | - Xiaoyan Shi
- School of Chinese Materia Medica; Tianjin University of Traditional Chinese Medicine; Nankai District Tianjin P.R. China 300193
| |
Collapse
|
44
|
Rezgui A, Mitaine-Offer AC, Paululat T, Delemasure S, Dutartre P, Lacaille-Dubois MA. Cytotoxic steroidal glycosides from Allium flavum. Fitoterapia 2013; 93:121-5. [PMID: 24380693 DOI: 10.1016/j.fitote.2013.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Three new spirostane-type glycosides (1-3) were isolated from the whole plant of Allium flavum. Their structures were elucidated mainly by 2D NMR spectroscopic analysis and mass spectrometry as (20S,25R)-2α-hydroxyspirost-5-en-3β-yl O-β-D-xylopyranosyl-(1→3)-[β-D-galactopyranosyl-(1→2)]-β-D-galactopyranosyl-(1→4)-β-D-galactopyranoside (1), (20S,25R)-2α-hydroxyspirost-5-en-3β-yl O-β-D-xylopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→2)]-β-D-galactopyranosyl-(1→4)-β-D-galactopyranoside (2), and (20S,25R)-spirost-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→2)]-β-D-glucopyranoside (3). The three saponins were evaluated for cytotoxicity against a human cancer cell line (colorectal SW480).
Collapse
Affiliation(s)
- Abdelmalek Rezgui
- EA 4267, FDE/UFC, Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de Bourgogne, 21079 Dijon Cedex, France
| | - Anne-Claire Mitaine-Offer
- EA 4267, FDE/UFC, Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de Bourgogne, 21079 Dijon Cedex, France
| | - Thomas Paululat
- Universität Siegen, OC-II, Naturwissenschaftlich-Technische Fakultät, Adolf-Reichwein-Str. 2, D-57076 Siegen, Germany
| | | | - Patrick Dutartre
- Cohiro, UFR Médecine, 7, Bd. Jeanne d'Arc, BP 87900, 21079 Dijon Cedex, France
| | - Marie-Aleth Lacaille-Dubois
- EA 4267, FDE/UFC, Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université de Bourgogne, 21079 Dijon Cedex, France.
| |
Collapse
|
45
|
Wright SE, Rewers-Felkins KA, Chowdhury NI, Ahmed J, Srivastava SK, Lockwood-Cooke PR. Tucaresol down-modulation of MUC1-stimulated human mononuclear cells. Immunol Invest 2013; 43:160-9. [DOI: 10.3109/08820139.2013.860161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
New triterpenoid estersaponins from the root barks of Pittosporum verticillatum subsp. verticillatum and evaluation of cytotoxicities. Fitoterapia 2013; 91:231-235. [DOI: 10.1016/j.fitote.2013.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 11/19/2022]
|
47
|
Hombach AA, Rappl G, Abken H. Arming cytokine-induced killer cells with chimeric antigen receptors: CD28 outperforms combined CD28-OX40 "super-stimulation". Mol Ther 2013; 21:2268-77. [PMID: 23985696 DOI: 10.1038/mt.2013.192] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/13/2013] [Indexed: 12/20/2022] Open
Abstract
Cytokine-induced killer (CIK) cells raised interest for use in cellular antitumor therapy due to their capability to recognize and destroy autologous tumor cells in a HLA-independent fashion. The antitumor attack of CIK cells, predominantly consisting of terminally differentiated CD8(+)CD56(+) cells, can be improved by redirecting by a chimeric antigen receptor (CAR) that recognizes the tumor cell and triggers CIK cell activation. The requirements for CIK cell activation were, however, so far less explored and are likely to be different from those of "younger" T cells. We revealed that CD28 and OX40 CARs produced higher interferon- secretion as compared with the first-generation ζ-CAR; CD28-ζ and the third-generation CD28-ζ-OX40 CAR, however, performed similar in modulating most CIK cell effector functions. Compared with the CD28-ζ CAR, however, the CD28-ζ-OX40 CAR accelerated terminal maturation of CD56(+) CIK cells producing high frequencies in activation-induced cell death (AICD) and reduced antitumor efficiency in vivo. Consequently, CD28-ζ CAR CIK cells of CD56(-) phenotype were superior in redirected tumor cell elimination. CAR-mediated CIK cell activation also increased antigen-independent target cell lysis; the CD28-ζ CAR was more efficient than the CD28-ζ-OX40 CAR. Translated into therapeutic strategies, CAR-redirected CIK cells benefit from CD28 costimulation; "super-costimulation" by the CD28-ζ-OX40 CAR, however, performed less in antitumor efficacy due to increased AICD.
Collapse
Affiliation(s)
- Andreas A Hombach
- 1] Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany [2] Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | | | | |
Collapse
|
48
|
Park B, Lee YM, Kim JS, Her Y, Kang JH, Oh SH, Kim HM. Neutral sphingomyelinase 2 modulates cytotoxic effects of protopanaxadiol on different human cancer cells. Altern Ther Health Med 2013; 13:194. [PMID: 23889969 PMCID: PMC3729373 DOI: 10.1186/1472-6882-13-194] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/16/2013] [Indexed: 11/25/2022]
Abstract
Background Some of ginsenosides, root extracts from Panax ginseng, exert cytotoxicity against cancer cells through disruption of membrane subdomains called lipid rafts. Protopanaxadiol (PPD) exhibits the highest cytotoxic effect among 8 ginsenosides which we evaluated for anti-cancer activity. We investigated if PPD disrupts lipid rafts in its cytotoxic effects and also the possible mechanisms. Methods Eight ginsenosides were evaluated using different cancer cells and cell viability assays. The potent ginsenoside, PPD was investigated for its roles in lipid raft disruption and downstream pathways to apoptosis of cancer cells. Anti-cancer effects of PPD was also investigated in vivo using mouse xenograft model. Results PPD consistently exerts its potent cytotoxicity in 2 cell survival assays using 5 different cancer cell lines. PPD disrupts lipid rafts in different ways from methyl-β-cyclodextrin (MβCD) depleting cholesterol out of the subdomains, since lipid raft proteins were differentially modulated by the saponin. During disruption of lipid rafts, PPD activated neutral sphingomyelinase 2 (nSMase 2) hydrolyzing membrane sphingomyelins into pro-apoptotic intracellular ceramides. Furthermore, PPD demonstrated its anti-cancer activities against K562 tumor cells in mouse xenograft model, confirming its potential as an adjunct or chemotherapeutic agent by itself in vivo. Conclusions This study demonstrates that neutral sphingomyelinase 2 is responsible for the cytotoxicity of PPD through production of apoptotic ceramides from membrane sphingomyelins. Thus neutral sphingomyelinase 2 and its relevant mechanisms may potentially be employed in cancer chemotherapies.
Collapse
|
49
|
Aisha AFA, Ismail Z, Abu-Salah KM, Siddiqui JM, Ghafar G, Abdul Majid AMS. Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:168. [PMID: 23842450 PMCID: PMC3717079 DOI: 10.1186/1472-6882-13-168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 06/10/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Syzygium campanulatum Korth (Myrtaceae) is an evergreen shrub rich in phenolics, flavonoid antioxidants, and betulinic acid. This study sought to investigate antiangiogenic and anti-colon cancer effects of S.C. standardized methanolic extract. METHODS Betulinic acid was isolated from methanolic extract by crystallization and chromatography techniques. S.C. methanolic extract was analyzed by UV-Vis spectrophotometry, FTIR, LC-MS, and HPLC. Antiangiogenic effect was studied on rat aortic rings, matrigel tube formation, cell proliferation and migration, and expression of vascular endothelial growth factor (VEGF). Antitumor effect was studied using a subcutaneous tumor model of HCT 116 colorectal carcinoma cells established in nude mice. RESULTS Analysis by HPLC, LC-MS and FTIR confirm presence of betulinic acid in S.C. methanolic extract. Quantitative analysis by HPLC indicates presence of betulinic acid in S.C. extract at 5.42 ± 0.09% (w/w). Antiangiogenesis study showed potent inhibition of microvessels outgrowth in rat aortic rings, and studies on normal and cancer cells did not show any significant cytotoxic effect. Antiangiogenic effect was further confirmed by inhibition of tube formation on matrigel matrix that involves human endothelial cells (IC50 = 17.6 ± 2.9 μg/ml). S.C. extract also inhibited migration of endothelial cells and suppressed expression of VEGF. In vivo antiangiogenic study showed inhibition of new blood vessels in chicken embryo chorioallantoic membrane (CAM), and in vivo antitumor study showed significant inhibition of tumor growth due to reduction of intratumor blood vessels and induction of cell death. CONCLUSION Collectively, our results indicate S. campanulatum as antiangiogenic and antitumor candidate, and a new source of betulinic acid.
Collapse
|
50
|
Brinkmann K, Hombach A, Seeger JM, Wagner-Stippich D, Klubertz D, Krönke M, Abken H, Kashkar H. Second mitochondria-derived activator of caspase (SMAC) mimetic potentiates tumor susceptibility toward natural killer cell-mediated killing. Leuk Lymphoma 2013; 55:645-51. [PMID: 23697877 DOI: 10.3109/10428194.2013.807925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Resistance to apoptosis is a hallmark of cancer, and represents an important mechanism of how tumor cells resist immune cell destruction. Mitochondria are the central regulators of the apoptotic machinery by releasing pro-apoptotic factors including cytochrome c and second mitochondria-derived activator of caspase (SMAC) upon mitochondrial outer membrane permeabilization (MOMP). Small molecules activating MOMP such as BH3 mimetics or antagonizers of the inhibitor of apoptosis proteins (IAPs) such as SMAC mimetics have recently engendered new optimism for a more individualized and effective cancer therapy. Here we show that a SMAC mimetic potentiates cancer cell killing by natural killer (NK) cells through reactivation of tumor cell apoptosis. Specifically, the SMAC mimetic enhances the susceptibility of tumor cells toward NK cell-mediated effector mechanisms involving death receptors and cytolytic granules containing perforin and granzymes by relieving caspase activity. Our data highlight for the first time the specific use of SMAC mimetics for boosting immune cell-mediated immunotherapy, representing a novel and promising approach in the treatment of cancer.
Collapse
Affiliation(s)
- Kerstin Brinkmann
- Center for Molecular Medicine Cologne (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Institute for Medical Microbiology, Immunology and Hygiene (IMMIH), University of Cologne , Cologne , Germany
| | | | | | | | | | | | | | | |
Collapse
|