1
|
Bahadoran Z, Mirmiran P, Ghasemi A. Adipose organ dysfunction and type 2 diabetes: Role of nitric oxide. Biochem Pharmacol 2024; 221:116043. [PMID: 38325496 DOI: 10.1016/j.bcp.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Adipose organ, historically known as specialized lipid-handling tissue serving as the long-term fat depot, is now appreciated as the largest endocrine organ composed of two main compartments, i.e., subcutaneous and visceral adipose tissue (AT), madding up white and beige/brown adipocytes. Adipose organ dysfunction manifested as maldistribution of the compartments, hypertrophic, hypoxic, inflamed, and insulin-resistant AT, contributes to the development of type 2 diabetes (T2D). Here, we highlight the role of nitric oxide (NO·) in AT (dys)function in relation to developing T2D. The key aspects determining lipid and glucose homeostasis in AT depend on the physiological levels of the NO· produced via endothelial NO· synthases (eNOS). In addition to decreased NO· bioavailability (via decreased expression/activity of eNOS or scavenging NO·), excessive NO· produced by inducible NOS (iNOS) in response to hypoxia and AT inflammation may be a critical interfering factor diverting NO· signaling to the formation of reactive oxygen and nitrogen species, resulting in AT and whole-body metabolic dysfunction. Pharmacological approaches boosting AT-NO· availability at physiological levels (by increasing NO· production and its stability), as well as suppression of iNOS-NO· synthesis, are potential candidates for developing NO·-based therapeutics in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Delle Monache S, Calgani A, Sanità P, Zazzeroni F, Gentile Warschauer E, Giuliani A, Amicucci G, Angelucci A. Adipose-derived stem cells sustain prolonged angiogenesis through leptin secretion. Growth Factors 2016; 34:87-96. [PMID: 27362575 DOI: 10.1080/08977194.2016.1191481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies suggest that adipose-derived stem cells (ASCs) play a role in tissue remodeling through the release of cytokines and growth factors. We compared the secreted cytokine profile of hypoxia-conditioned ASCs (hASCs) with normoxic ASCs (nASCs) and we analyzed the effect of ASCs conditioned medium (CM) on endothelial cells. We found that hypoxia induced a transient upregulation of VEGF in ASCs and a notable and enduring upregulation of leptin mRNA expression 30-fold greater than control after 24 h and up to 60-fold greater than control at day 7. CM from hASC stimulated EC tube formation to a significantly greater extent than CM from nASC. This might be due to leptin-secreted factor. Indeed, exogenous leptin stimulated the expression of HIF2-α, but not HIF1-α, and upregulated the expression of Flt-1 and Tie-1 proangiogenic receptors. In conclusion, hASCs may be particularly efficient in sustaining angiogenesis through the release of leptin.
Collapse
Affiliation(s)
| | - Alessia Calgani
- a Department of Biotechnological and Applied Clinical Sciences and
| | - Patrizia Sanità
- a Department of Biotechnological and Applied Clinical Sciences and
| | | | - Emilio Gentile Warschauer
- a Department of Biotechnological and Applied Clinical Sciences and
- b Division of Surgery , University of L'Aquila , L'Aquila , Italy
| | - Antonio Giuliani
- a Department of Biotechnological and Applied Clinical Sciences and
- b Division of Surgery , University of L'Aquila , L'Aquila , Italy
| | - Gianfranco Amicucci
- a Department of Biotechnological and Applied Clinical Sciences and
- b Division of Surgery , University of L'Aquila , L'Aquila , Italy
| | | |
Collapse
|
3
|
Leggio A, Catalano S, De Marco R, Barone I, Andò S, Liguori A. Therapeutic potential of leptin receptor modulators. Eur J Med Chem 2014; 78:97-105. [DOI: 10.1016/j.ejmech.2014.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 12/19/2013] [Accepted: 03/15/2014] [Indexed: 01/13/2023]
|
4
|
Jaubert AM, Penot G, Niang F, Durant S, Forest C. Rapid nitration of adipocyte phosphoenolpyruvate carboxykinase by leptin reduces glyceroneogenesis and induces fatty acid release. PLoS One 2012; 7:e40650. [PMID: 22808220 PMCID: PMC3394747 DOI: 10.1371/journal.pone.0040650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/11/2012] [Indexed: 01/29/2023] Open
Abstract
Fatty acid (FA) release from white adipose tissue (WAT) is the result of the balance between triglyceride breakdown and FA re-esterification. The latter relies on the induction of cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), the key enzyme for glyceroneogenesis. We previously demonstrated that long-term (18 h) leptin treatment of rat epididymal WAT explants reduced glyceroneogenesis through nitric oxide (NO)-induced decrease in PEPCK-C expression. We investigated the effect of a short-term leptin treatment (2 h) on PEPCK-C expression and glyceroneogenesis in relation to NO production. We demonstrate that in WAT explants, leptin-induced NO synthase III (NOS III) phosphorylation was associated with reduced PEPCK-C level and glyceroneogenesis, leading to FA release, while PEPCK-C gene expression remained unaffected. These effects were absent in WAT explants from leptin receptor-deficient Zucker rat. Immunoprecipitation and western blot experiments showed that the leptin-induced decrease in PEPCK-C level was correlated with an increase in PEPCK-C nitration. All these effects were abolished by the NOS inhibitor Nω-nitro-L-arginine methyl ester and mimicked by the NO donor S-nitroso-N-acetyl-DL penicillamine. We propose a mechanism in which leptin activates NOS III and induces NO that nitrates PEPCK-C to reduce its level and glyceroneogenesis, therefore limiting FA re-esterification in WAT.
Collapse
Affiliation(s)
- Anne-Marie Jaubert
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
- Département de Biochimie et de Biologie Moléculaire, Faculté de Médecine Paris-Ile de France-Ouest; Université de Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Graziella Penot
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Fatoumata Niang
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Sylvie Durant
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| | - Claude Forest
- Institut National de la Santé et de la Recherche Médicale UMR-S 747; Université Paris Descartes, Pharmacologie Toxicologie et Signalisation Cellulaire, Paris, France
| |
Collapse
|
5
|
Niang F, Benelli C, Ribière C, Collinet M, Mehebik-Mojaat N, Penot G, Forest C, Jaubert AM. Leptin induces nitric oxide-mediated inhibition of lipolysis and glyceroneogenesis in rat white adipose tissue. J Nutr 2011; 141:4-9. [PMID: 21068181 DOI: 10.3945/jn.110.125765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Leptin is secreted by white adipose tissue (WAT) and induces lipolysis and nonesterified fatty acid (NEFA) oxidation. During lipolysis, NEFA efflux is the result of triglyceride breakdown, NEFA oxidation, and re-esterification via glyceroneogenesis. Leptin's effects on glyceroneogenesis remain unexplored. We investigated the effect of a long-term treatment with leptin at a physiological concentration (10 μg/L) on lipolysis and glyceroneogenesis in WAT explants and analyzed the underlying mechanisms. Exposure of rat WAT explants to leptin for 2 h resulted in increased NEFA and glycerol efflux. However, a longer treatment with leptin (18 h) did not affect NEFA release and reduced glycerol output. RT-qPCR showed that leptin significantly downregulated the hormone-sensitive lipase (HSL), cytosolic phosphoenolpyruvate carboxykinase (Pck1), and PPARγ genes. In agreement with its effect on mRNA, leptin also decreased the levels of PEPCK-C and HSL proteins. Glyceroneogenesis, monitored by [1-(14) C] pyruvate incorporation into lipids, was reduced. Because leptin increases nitric oxide (NO) production in adipocytes, we explored the role of NO in the leptin signaling pathway. Pretreatment of explants with the NO synthase inhibitor Nω-nitro-l-arginine methyl ester eliminated the effect of leptin on lipolysis, glyceroneogenesis, and expression of the HSL, Pck1, and PPARγ genes. The NO donor S-nitroso-N-acetyl-DL penicillamine mimicked leptin effects, thus demonstrating the role of NO in these pathways. The inverse time-dependent action of leptin on WAT is consistent with a process that limits NEFA re-esterification and energy storage while reducing glycerol release, thus preventing hypertriglyceridemia.
Collapse
Affiliation(s)
- Fatoumata Niang
- Institut National de la Santé et de la Recherche Médicale UMR-S 747, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lomash S, Nagpal S, Salunke DM. An antibody as surrogate receptor reveals determinants of activity of an innate immune peptide antibiotic. J Biol Chem 2010; 285:35750-8. [PMID: 20837490 PMCID: PMC2975199 DOI: 10.1074/jbc.m110.150516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/15/2010] [Indexed: 11/06/2022] Open
Abstract
Drug discovery initiatives often depend critically on knowledge of ligand-receptor interactions. However, the identity or structure of the target receptor may not be known in every instance. The concept of receptor surrogate, a molecular environment mimic of natural receptor, may prove beneficial under such circumstances. Here, we demonstrate the potential of monoclonal antibodies (mAbs) to act as surrogate receptors for a class of innate immune peptide antibiotics, a strategy that can help comprehend their action mechanism and identify chemical entities crucial for activity. A panel of antibody surrogates was raised against indolicidin, a tryptophan-rich cationic broad spectrum antimicrobial peptide of innate immune origin. Employing an elegant combination of thermodynamics, crystallography, and molecular modeling, interactions of the peptide with a high affinity anti-indolicidin monoclonal antibody were analyzed and were used to identify a motif that contained almost the entire antibiotic activity of native indolicidin. The analysis clarified the interaction of the peptide with previously proposed targets such as bacterial cell membrane and DNA and could further be correlated with antimicrobial compounds whose actions involve varied other mechanisms. These features suggest a multipronged assault pathway for indolicidin. Remarkably, the anti-indolicidin mAb surrogate was able to isolate additional independent bactericidal sequences from a random peptide library, providing compelling evidence as to the physiological relevance of surrogate receptor concept and suggesting applications in receptor-based pharmacophore research.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Anti-Infective Agents/immunology
- Anti-Infective Agents/metabolism
- Anti-Infective Agents/pharmacology
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antimicrobial Cationic Peptides/immunology
- Antimicrobial Cationic Peptides/metabolism
- Antimicrobial Cationic Peptides/pharmacology
- Crystallography, X-Ray
- Epitope Mapping
- Epitopes/chemistry
- Epitopes/immunology
- Epitopes/metabolism
- Escherichia coli/drug effects
- Escherichia coli/growth & development
- Immunity, Innate/immunology
- Immunoglobulin Fragments/chemistry
- Immunoglobulin Fragments/immunology
- Immunoglobulin Fragments/metabolism
- Kinetics
- Mice
- Mice, Inbred BALB C
- Models, Molecular
- Peptide Library
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/growth & development
- Thermodynamics
Collapse
Affiliation(s)
- Suvendu Lomash
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Sushma Nagpal
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
| | - Dinakar M. Salunke
- From the Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Road, New Delhi 110067 and
- the Regional Centre for Biotechnology, Gurgaon 122016, India
| |
Collapse
|
7
|
Mehebik-Mojaat N, Ribière C, Niang F, Forest C, Jaubert AM. Leptin and insulin induce mutual resistance for nitric oxide synthase III activation in adipocytes. J Cell Biochem 2009; 108:982-8. [DOI: 10.1002/jcb.22331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Li YC, Zheng XL, Liu BT, Yang GS. Regulation of ATGL expression mediated by leptin in vitro in porcine adipocyte lipolysis. Mol Cell Biochem 2009; 333:121-8. [PMID: 19626423 DOI: 10.1007/s11010-009-0212-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 07/07/2009] [Indexed: 11/30/2022]
Abstract
Adipose triglyceride lipase (ATGL), as an adipose-enriched protein, is able to hydrolyze triglycerides and plays an important part in triglyceride lipolysis of fat tissue. Leptin, an adipocyte cytokine, can increase the fat decomposition process. Many phenomena indicate that ATGL has a close relationship with leptin's promoting the hydrolysis of triglycerides. However, the regulatory mechanism of ATGL in leptin's promoting fat hydrolysis has not been directly and systematically studied yet. This study demonstrated that ATGL was expressed in vitro by leptin regulation. The amount of ATGL mRNA increased and the amount of ATGL protein decreased based on a dose-dependent manner when leptin concentrations ranged from 5 to 50 ng/ml were used to treat fully differentiated porcine adipocytes for 3 h. In addition, this study revealed that JAK-STAT and MAPK signaling pathways, as well as PPAR gamma all played important roles in the ATGL expression mediated by leptin.
Collapse
Affiliation(s)
- Yu-cheng Li
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | |
Collapse
|
9
|
OGASAWARA J, ABE T. Amino Acid Mixture Identical to Vespa Larval Saliva Increases both Leptin Secretion and Basal Lipolysis in Rat Adipocytes. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2008. [DOI: 10.3136/fstr.14.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Fazeli M, Zarkesh-Esfahani H, Wu Z, Maamra M, Bidlingmaier M, Pockley AG, Watson P, Matarese G, Strasburger CJ, Ross RJM. Identification of a monoclonal antibody against the leptin receptor that acts as an antagonist and blocks human monocyte and T cell activation. J Immunol Methods 2006; 312:190-200. [PMID: 16690078 DOI: 10.1016/j.jim.2006.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/21/2006] [Accepted: 03/29/2006] [Indexed: 12/31/2022]
Abstract
Nutritional status has a major impact on the immune response and this is in part mediated by leptin, a pro-inflammatory cytokine. Preliminary data suggest that antagonism of leptin may offer a therapeutic approach for the treatment of some inflammatory disorders. We have tested monoclonal antibodies (mAbs) to the human leptin receptor (ObR) for antagonist activity using a leptin signalling bioassay. We identified a mAb, 9F8, which demonstrated dose-dependent antagonist activity in the leptin bioassay. Specificity of the mAb for ObR was confirmed using a plate binding assay. The 9F8 mAb displaced leptin binding to human ObR and enzymatically generated Fab fragments of 9F8 retained antagonist activity. Therefore the Fab fragment of 9F8 was cloned and recombinant 9F8 Fab (rFab) was purified from E. coli periplasmic fraction using a C-terminal His tag. Purified 9F8 rFab bound to human ObR and exhibited leptin antagonist activity. In vitro studies demonstrated that the 9F8 mAb inhibited leptin induced TNF-alpha production from human monocytes and anti-CD3 mAb induced proliferation of human T cells in PBMC culture. In conclusion, this study has identified a mAb to the human leptin receptor which inhibits leptin signalling and acts as a leptin antagonist in vitro.
Collapse
Affiliation(s)
- Mehdi Fazeli
- Division of Clinical Sciences (North), University of Sheffield, Sheffield S5 7AU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mehebik N, Jaubert AM, Sabourault D, Giudicelli Y, Ribière C. Leptin-induced nitric oxide production in white adipocytes is mediated through PKA and MAP kinase activation. Am J Physiol Cell Physiol 2005; 289:C379-87. [PMID: 15772123 DOI: 10.1152/ajpcell.00320.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leptin injection increases plasma levels of nitrites and/or nitrates, an index of nitric oxide (NO) production. Because plasma levels of NO are correlated with fat mass and because adipose tissue is the main source of leptin, it seems that adipose tissue plays a major role in NO release induced by leptin. Adipocytes express both leptin receptors and nitric oxide synthase (NOS; including the endothelial isoform, NOS III, and the inducible isoform, NOS II). In this study, we have demonstrated that physiological concentrations of leptin stimulate NOS activity in adipocytes. This effect of leptin is abolished by 1) AG490, an inhibitor of Janus tyrosine kinase 2/signal transducer and activator of transcription 3; 2) U0126, an inhibitor of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (p42/p44 MAPK); and 3) N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89) or Rp diastereomer of adenosine 3',5'-cyclic phosphorothioate, two inhibitors of protein kinase A, but not by wortmannin, an inhibitor of phosphatidylinositol 3-kinase. Immunoblotting studies have shown that leptin fails to activate Akt but increases p42/p44 MAPK phosphorylation, an effect that is prevented by U0126 but not by H-89. Furthermore, leptin induces NOS III phosphorylation at Ser(1179) and Thr(497), but not when adipocytes are pretreated with H-89 or U0126. Finally, stimulation of adipocyte NOS activity by leptin is either unaltered when protein phosphatase 2A is inhibited by 1 nM okadaic acid or completely abolished when protein phosphatase 1 (PP1) activity is inhibited by 3 nM tautomycin, which supports a crucial role for PP1 in mediating this effect of leptin. On the whole, these experiments demonstrate that NOS activity is a novel target for leptin in adipocytes and that the leptin-induced NOS activity is at least in part the result of NOS III phosphorylations via both protein kinase A and p42/p44 MAPK activation. More generally, this study also leads to the hypothesis of NO as a potentially important factor for leptin signaling in adipocytes.
Collapse
Affiliation(s)
- Nadia Mehebik
- Department of Biochemistry and Molecular Biology (UPRES EA-2493), Faculty of Médecine Paris-Ile de France-Ouest, University of Versailles Saint-Quentin en Yvelines, Paris, France
| | | | | | | | | |
Collapse
|