1
|
Sheridan C, Boyer NP, Crouch RK, Koutalos Y. RPE65 and the Accumulation of Retinyl Esters in Mouse Retinal Pigment Epithelium. Photochem Photobiol 2017; 93:844-848. [PMID: 28500718 PMCID: PMC5673077 DOI: 10.1111/php.12738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 01/12/2023]
Abstract
The RPE65 protein of the retinal pigment epithelium (RPE) enables the conversion of retinyl esters to the visual pigment chromophore 11-cis retinal. Fresh 11-cis retinal is generated from retinyl esters following photoisomerization of the visual pigment chromophore to all-trans during light detection. Large amounts of esters accumulate in Rpe65-/- mice, indicating their continuous formation when 11-cis retinal generation is blocked. We hypothesized that absence of light, by limiting the conversion of esters to 11-cis retinal, would also result in the build-up of retinyl esters in the RPE of wild-type mice. We used HPLC to quantify ester levels in organic extracts of the RPE from wild-type and Rpe65-/- mice. Retinyl ester levels in Sv/129 wild-type mice that were dark adapted for various intervals over a 4-week period were similar to those in mice raised in cyclic light. In C57BL/6 mice however, which contain less Rpe65 protein, dark adaptation was accompanied by an increase in ester levels compared to cyclic light controls. Retinyl ester levels were much higher in Rpe65-/- mice compared to wild type and kept increasing with age. The results suggest that the RPE65 role in retinyl ester homeostasis extends beyond enabling the formation of 11-cis retinal.
Collapse
Affiliation(s)
- Colleen Sheridan
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Nicholas P. Boyer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Rosalie K. Crouch
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| | - Yiannis Koutalos
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
2
|
Babino D, Perkins BD, Kindermann A, Oberhauser V, von Lintig J. The role of 11-cis-retinyl esters in vertebrate cone vision. FASEB J 2014; 29:216-26. [PMID: 25326538 DOI: 10.1096/fj.14-261693] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A cycle of cis-to-trans isomerization of the chromophore is intrinsic to vertebrate vision where rod and cone photoreceptors mediate dim- and bright-light vision, respectively. Daylight illumination can greatly exceed the rate at which the photoproduct can be recycled back to the chromophore by the canonical visual cycle. Thus, an additional supply pathway(s) must exist to sustain cone-dependent vision. Two-photon microscopy revealed that the eyes of the zebrafish (Danio rerio) contain high levels of 11-cis-retinyl esters (11-REs) within the retinal pigment epithelium. HPLC analyses demonstrate that 11-REs are bleached by bright light and regenerated in the dark. Pharmacologic treatment with all-trans-retinylamine (Ret-NH2), a potent and specific inhibitor of the trans-to-cis reisomerization reaction of the canonical visual cycle, impeded the regeneration of 11-REs. Intervention with 11-cis-retinol restored the regeneration of 11-REs in the presence of all-trans-Ret-NH2. We used the XOPS:mCFP transgenic zebrafish line with a functional cone-only retina to directly demonstrate that this 11-RE cycle is critical to maintain vision under bright-light conditions. Thus, our analyses reveal that a dark-generated pool of 11-REs helps to supply photoreceptors with the chromophore under the varying light conditions present in natural environments.
Collapse
Affiliation(s)
- Darwin Babino
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian D Perkins
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA; and
| | - Aljoscha Kindermann
- Albert-Ludwigs Universität Freiburg, Institut für Biologie I, Neurobiologie und Tiephysiologie, Freiburg, Germany
| | - Vitus Oberhauser
- Albert-Ludwigs Universität Freiburg, Institut für Biologie I, Neurobiologie und Tiephysiologie, Freiburg, Germany
| | - Johannes von Lintig
- Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA;
| |
Collapse
|
3
|
Abstract
Cone photoreceptors mediate our daytime vision and function under bright and rapidly-changing light conditions. As their visual pigment is destroyed in the process of photoactivation, the continuous function of cones imposes the need for rapid recycling of their chromophore and regeneration of their pigment. The canonical retinoid visual cycle through the retinal pigment epithelium cells recycles chromophore and supplies it to both rods and cones. However, shortcomings of this pathway, including its slow rate and competition with rods for chromophore, have led to the suggestion that cones might use a separate mechanism for recycling of chromophore. In the past four decades biochemical studies have identified enzymatic activities consistent with recycling chromophore in the retinas of cone-dominant animals, such as chicken and ground squirrel. These studies have led to the hypothesis of a cone-specific retina visual cycle. The physiological relevance of these studies was controversial for a long time and evidence for the function of this visual cycle emerged only in very recent studies and will be the focus of this review. The retina visual cycle supplies chromophore and promotes pigment regeneration only in cones but not in rods. This pathway is independent of the pigment epithelium and instead involves the Müller cells in the retina, where chromophore is recycled and supplied selectively to cones. The rapid supply of chromophore through the retina visual cycle is critical for extending the dynamic range of cones to bright light and for their rapid dark adaptation following exposure to light. The importance of the retina visual cycle is emphasized also by its preservation through evolution as its function has now been demonstrated in species ranging from salamander to zebrafish, mouse, primate, and human.
Collapse
Affiliation(s)
- Jin-Shan Wang
- Department of Ophthalmology & Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | | |
Collapse
|
4
|
Radu RA, Hu J, Peng J, Bok D, Mata NL, Travis GH. Retinal pigment epithelium-retinal G protein receptor-opsin mediates light-dependent translocation of all-trans-retinyl esters for synthesis of visual chromophore in retinal pigment epithelial cells. J Biol Chem 2008; 283:19730-8. [PMID: 18474598 DOI: 10.1074/jbc.m801288200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Visual perception begins with the absorption of a photon by an opsin pigment, inducing isomerization of its 11-cis-retinaldehyde chromophore. After a brief period of activation, the resulting all-trans-retinaldehyde dissociates from the opsin apoprotein rendering it insensitive to light. Restoring light sensitivity to apo-opsin requires thermal re-isomerization of all-trans-retinaldehyde to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle in retinal pigment epithelial (RPE) cells. Vertebrates can see over a 10(8)-fold range of background illumination. This implies that the visual cycle can regenerate a visual chromophore over a similarly broad range. However, nothing is known about how the visual cycle is regulated. Here we show that RPE cells, functionally or physically separated from photoreceptors, respond to light by mobilizing all-trans-retinyl esters. These retinyl esters are substrates for the retinoid isomerase and hence critical for regenerating visual chromophore. We show in knock-out mice and by RNA interference in human RPE cells that this mobilization is mediated by a protein called "RPE-retinal G protein receptor" (RGR) opsin. These data establish that RPE cells are intrinsically sensitive to light. Finally, we show that in the dark, RGR-opsin inhibits lecithin:retinol acyltransferase and all-trans-retinyl ester hydrolase in vitro and that this inhibition is released upon exposure to light. The results of this study suggest that RGR-opsin mediates light-dependent translocation of all-trans-retinyl esters from a storage pool in lipid droplets to an "isomerase pool" in membranes of the endoplasmic reticulum. This translocation permits insoluble all-trans-retinyl esters to be utilized as substrate for the synthesis of a new visual chromophore.
Collapse
|
5
|
Muniz A, Villazana-Espinoza ET, Hatch AL, Trevino SG, Allen DM, Tsin ATC. A novel cone visual cycle in the cone-dominated retina. Exp Eye Res 2007; 85:175-84. [PMID: 17618621 PMCID: PMC2001262 DOI: 10.1016/j.exer.2007.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/02/2007] [Accepted: 05/02/2007] [Indexed: 11/19/2022]
Abstract
The visual processing of humans is primarily reliant upon the sensitivity of cone photoreceptors to light during daylight conditions. This underscores the importance of understanding how cone photoreceptors maintain the ability to detect light. The vertebrate retina consists of a combination of both rod and cone photoreceptors. Subsequent to light exposure, both rod and cone photoreceptors are dependent upon the recycling of vitamin A to regenerate photopigments, the proteins responsible for detecting light. Metabolic processing of vitamin A in support of rod photopigment renewal, the so-called "rod visual cycle", is well established. However, the metabolic processing of vitamin A in support of cone photopigment renewal remains a challenge for characterization in the recently discovered "cone visual cycle". In this review we summarize the research that has defined the rod visual cycle and our current concept of the novel cone visual cycle. Here, we highlight the research that supports the existence of a functional cone-specific visual cycle: the identification of novel enzymatic activities that contribute to retinoid recycling, the observation of vitamin A recycling in cone-dominated retinas, and the localization of some of these activities to the Müller cell. In the opinions of the authors, additional research on the possible interactions between these two visual cycles in the duplex retina is needed to understand visual detection in the human retina.
Collapse
Affiliation(s)
- Albert Muniz
- Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
6
|
Tran C, Sorg O, Carraux P, Didierjean L, Saurat JH. Topical Delivery of Retinoids Counteracts the UVB-induced Epidermal Vitamin A Depletion in Hairless Mouse¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0730425tdorct2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
McBee JK, Palczewski K, Baehr W, Pepperberg DR. Confronting complexity: the interlink of phototransduction and retinoid metabolism in the vertebrate retina. Prog Retin Eye Res 2001; 20:469-529. [PMID: 11390257 DOI: 10.1016/s1350-9462(01)00002-7] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Absorption of light by rhodopsin or cone pigments in photoreceptors triggers photoisomerization of their universal chromophore, 11-cis-retinal, to all-trans-retinal. This photoreaction is the initial step in phototransduction that ultimately leads to the sensation of vision. Currently, a great deal of effort is directed toward elucidating mechanisms that return photoreceptors to the dark-adapted state, and processes that restore rhodopsin and counterbalance the bleaching of rhodopsin. Most notably, enzymatic isomerization of all-trans-retinal to 11-cis-retinal, called the visual cycle (or more properly the retinoid cycle), is required for regeneration of these visual pigments. Regeneration begins in rods and cones when all-trans-retinal is reduced to all-trans-retinol. The process continues in adjacent retinal pigment epithelial cells (RPE), where a complex set of reactions converts all-trans-retinol to 11-cis-retinal. Although remarkable progress has been made over the past decade in understanding the phototransduction cascade, our understanding of the retinoid cycle remains rudimentary. The aim of this review is to summarize recent developments in our current understanding of the retinoid cycle at the molecular level, and to examine the relevance of these reactions to phototransduction.
Collapse
Affiliation(s)
- J K McBee
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
8
|
Tran C, Sorg O, Carraux P, Didierjean L, Saurat JH. Topical delivery of retinoids counteracts the UVB-induced epidermal vitamin A depletion in hairless mouse. Photochem Photobiol 2001; 73:425-31. [PMID: 11332039 DOI: 10.1562/0031-8655(2001)073<0425:tdorct>2.0.co;2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
UVB irradiation depletes all-trans-retinol (ROL) and all-trans-retinyl esters (RE) from the hairless mouse epidermis. Prevention of this may be of relevance in counter-acting the long-term side effects of UVB exposure. We studied the effects of a topical treatment with natural retinoids before and after UVB exposure on three parameters involved in vitamin A metabolism: the amount of epidermal ROL and RE, the level of functional cellular retinol-binding protein I (CRBP-I), which is likely to protect ROL from UVB, as well as the cytosolic and microsomal enzyme activities which generate ROL and RE, i.e. all-trans-retinaldehyde (RAL) reductase, acylCoA:retinol acyltransferase (ARAT) and retinyl-ester hydrolase (REH). Topical pretreatment with retinoids promoted a dramatic increase of epidermal ROL, RE and CRBP-I levels, a transient increase of RAL reductase and ARAT activities as well as a decreased activity of REH, indicating a direction of epidermal vitamin A metabolism toward storage. In untreated mice UVB irradiation induced a depletion of epidermal ROL and RE in 10 min and a 50% decrease of CRBP-I after 24 h. In mice treated with topical retinoids, and then exposed to UVB, epidermal RE levels were higher than in vehicle-treated, nonirradiated mice. In contrast, ROL was as much depleted after UVB in pretreated as in untreated animals in spite of an induction of CRBP-I, indicating that CRBP-I does not actually protect ROL from UVB-induced depletion in this model. However, the reconstitution of both epidermal ROL and RE, after their depletion induced by UVB, was accelerated by previous topical treatment with RAL. Our results indicate that topical delivery of retinoids partly counteracts UVB-induced vitamin A depletion and promotes recovery.
Collapse
Affiliation(s)
- C Tran
- Department of Dermatology, University Hospital, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
9
|
Tsin AT, Mata NL, Ray JA, Villazana ET. Substrate specificities of retinyl ester hydrolases in retinal pigment epithelium. Methods Enzymol 2000; 316:384-400. [PMID: 10800689 DOI: 10.1016/s0076-6879(00)16737-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- A T Tsin
- Division of Life Sciences, University of Texas, San Antonio 78249-0662, USA
| | | | | | | |
Collapse
|