1
|
Jana M, Prieto S, Gorai S, Dasarathy S, Kundu M, Pahan K. Muscle-building supplement β-hydroxy β-methylbutyrate stimulates the maturation of oligodendroglial progenitor cells to oligodendrocytes. J Neurochem 2024; 168:1340-1358. [PMID: 38419348 PMCID: PMC11260247 DOI: 10.1111/jnc.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Oligodendrocytes are the myelinating cells in the CNS and multiple sclerosis (MS) is a demyelinating disorder that is characterized by progressive loss of myelin. Although oligodendroglial progenitor cells (OPCs) should be differentiated into oligodendrocytes, for multiple reasons, OPCs fail to differentiate into oligodendrocytes in MS. Therefore, increasing the maturation of OPCs to oligodendrocytes may be of therapeutic benefit for MS. The β-hydroxy β-methylbutyrate (HMB) is a muscle-building supplement in humans and this study underlines the importance of HMB in stimulating the maturation of OPCs to oligodendrocytes. HMB treatment upregulated the expression of different maturation markers including PLP, MBP, and MOG in cultured OPCs. Double-label immunofluorescence followed by immunoblot analyses confirmed the upregulation of OPC maturation by HMB. While investigating mechanisms, we found that HMB increased the maturation of OPCs isolated from peroxisome proliferator-activated receptor β-/- (PPARβ-/-) mice, but not PPARα-/- mice. Similarly, GW6471 (an antagonist of PPARα), but not GSK0660 (an antagonist of PPARβ), inhibited HMB-induced maturation of OPCs. GW9662, a specific inhibitor of PPARγ, also could not inhibit HMB-mediated stimulation of OPC maturation. Furthermore, PPARα agonist GW7647, but neither PPARβ agonist GW0742 nor PPARγ agonist GW1929, alone increased the maturation of OPCs. Finally, HMB treatment of OPCs led to the recruitment of PPARα, but neither PPARβ nor PPARγ, to the PLP gene promoter. These results suggest that HMB stimulates the maturation of OPCs via PPARα and that HMB may have therapeutic prospects in remyelination.
Collapse
Affiliation(s)
- Malabendu Jana
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| | - Shelby Prieto
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Madhuchhanda Kundu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
2
|
Zhang FF, Wang H, Zhou YM, Yu HY, Zhang M, Du X, Wang D, Zhang F, Xu Y, Zhang JG, Zhang HT. Inhibition of phosphodiesterase-4 in the spinal dorsal horn ameliorates neuropathic pain via cAMP-cytokine-Cx43 signaling in mice. CNS Neurosci Ther 2022; 28:749-760. [PMID: 35156776 PMCID: PMC8981432 DOI: 10.1111/cns.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 01/21/2023] Open
Abstract
Background The spinal phosphodiesterase‐4 (PDE4) plays an important role in chronic pain. Inhibition of PDE4, an enzyme catalyzing the hydrolysis of cyclic adenosine monophosphate AMP (cAMP), produces potent antinociceptive activity. However, the antinociceptive mechanism remains largely unknown. Connexin43 (Cx43), a gap junction protein, has been shown to be involved in controlling pain transduction at the spinal level; restoration of Cx43 expression in spinal astrocytes to the normal levels reduces nerve injury‐induced pain. Here, we evaluate the novel mechanisms involving spinal cAMP‐Cx43 signaling by which PDE4 inhibitors produce antinociceptive activity. Methods First, we determined the effect of PDE4 inhibitors rolipram and roflumilast on partial sciatic nerve ligation (PSNL)‐induced mechanical hypersensitivity. Next, we observed the role of cAMP‐Cx43 signaling in the effect of PDE4 inhibitors on PSNL‐induced mechanical hypersensitivity. Results Single or repeated, intraperitoneal or intrathecal administration of rolipram or roflumilast significantly reduced mechanical hypersensitivity in mice following PSNL. In addition, repeated intrathecal treatment with either of PDE4 inhibitors reduced PSNL‐induced downregulation of cAMP and Cx43, and upregulation of proinflammatory cytokines tumor necrosis factor‐α (TNF‐α) and interleukin‐1β. Furthermore, the antinociceptive effects of PDE4 inhibitors were attenuated by the protein kinase A (PKA) inhibitor H89, TNF‐α, or Cx43 antagonist carbenoxolone. Finally, PSNL‐induced upregulation of PDE4B and PDE4D, especially the PDE4B subtype, was reduced by treatment with either of the PDE4 inhibitors. Conclusions The results suggest that the antinociceptive effect of PDE4 inhibitors is contributed by increasing Cx43 expression via cAMP‐PKA‐cytokine signaling in the spinal dorsal horn.
Collapse
Affiliation(s)
- Fang-Fang Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hao Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Yan-Meng Zhou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hai-Yang Yu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Melanie Zhang
- Department of Neurobiology, Northwestern University Feinberg School of Medicine, Evanston, Illinois, USA
| | - Xian Du
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Dong Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Feng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Ji-Guo Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China.,Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Hong SA, Seo JH, Wi S, Jung ES, Yu J, Hwang GH, Yu JH, Baek A, Park S, Bae S, Cho SR. In vivo gene editing via homology-independent targeted integration for adrenoleukodystrophy treatment. Mol Ther 2022; 30:119-129. [PMID: 34058389 PMCID: PMC8753287 DOI: 10.1016/j.ymthe.2021.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Abstract
Adrenoleukodystrophy (ALD) is caused by various pathogenic mutations in the X-linked ABCD1 gene, which lead to metabolically abnormal accumulations of very long-chain fatty acids in many organs. However, curative treatment of ALD has not yet been achieved. To treat ALD, we applied two different gene-editing strategies, base editing and homology-independent targeted integration (HITI), in ALD patient-derived fibroblasts. Next, we performed in vivo HITI-mediated gene editing using AAV9 vectors delivered via intravenous administration in the ALD model mice. We found that the ABCD1 mRNA level was significantly increased in HITI-treated mice, and the plasma levels of C24:0-LysoPC (lysophosphatidylcholine) and C26:0-LysoPC, sensitive diagnostic markers for ALD, were significantly reduced. These results suggest that HITI-mediated mutant gene rescue could be a promising therapeutic strategy for human ALD treatment.
Collapse
Affiliation(s)
- Sung-Ah Hong
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Soohyun Wi
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Eul Sik Jung
- Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, South Korea; JES Clinic, Incheon 21550, South Korea
| | - Jihyeon Yu
- Division of Life Science, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Gue-Ho Hwang
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea
| | - Ji Hea Yu
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, South Korea
| | - Soeon Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sangsu Bae
- Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04673, South Korea.
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea; Graduate Program of Nano Science and Technology, Yonsei University, Seoul 03722, South Korea; Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
4
|
Li G, Chang L, Zhang G, Song Z, Wan D, Xie C, Wang H, Fan Z. Oral administration of dibutyryl adenosine cyclophosphate improved growth performance in weaning piglets by enhancing lipid fatty acids metabolism. ACTA ACUST UNITED AC 2018; 4:260-264. [PMID: 30182065 PMCID: PMC6117734 DOI: 10.1016/j.aninu.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/01/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022]
Abstract
Dibutyryl adenosine cyclophosphate (dbcAMP-Ca), an analog of cyclic adenosine monophosphate (cAMP), plays greater roles in regulating physiological activities and energy metabolism than cAMP. The aim of this study was to investigate the effect of oral administration of dbcAMP-Ca on growth performance and fatty acids metabolism in weaning piglets. A total of 14 early weaning piglets (7 ± 1 d of age, 3.31 ± 0.09 kg, Landrace × Large White × Duroc) were randomly divided into 2 groups: control group and dbcAMP-Ca group, and the piglets received 7 mL of 0.9% NaCl or 1.5 mg dbcAMP-Ca dissolved in 7 mL of 0.9% NaCl per day for 10 d, respectively. The results showed that the average daily gain (ADG) increased by 109.17% (P < 0.05) in the dbcAMP-Ca group compared with the control group. Besides, dbcAMP-Ca significantly decreased blood high density lipoprotein cholesterol (HDLC) concentration (P < 0.05) and significantly increased blood low density lipoprotein cholesterol (LDLC) concentration (P < 0.05) compared with the control group. Further, liver C18:2n6t content significantly increased in dbcAMP-Ca group (P < 0.05) compared with the control group. With the increase of C18:2n6t content, the mRNA expression levels of peroxisome proliferator-activated receptor α (PPARα) and hormone sensitive glycerol three lipase (HSL), of which genes are related to lipid metabolism, were also significantly increased (P < 0.05 or P < 0.01). All of the results indicated that dbcAMP-Ca improved the ADG, which was probably done by regulating fatty acids metabolism in the liver of weaning piglets.
Collapse
Affiliation(s)
- Guanya Li
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China
| | - Ling Chang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guanglei Zhang
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zehe Song
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, China
| | - Chunyan Xie
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Corresponding authors.
| | - Hong Wang
- Meiya Hai'an Pharmaceutical Co., Ltd., Hai'an, 226600, China
| | - Zhiyong Fan
- Hunan Co-Innovation Center of Safety Animal Production, College of Animal Science and Technology and College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Corresponding authors.
| |
Collapse
|
5
|
Boneh A. Signal transduction in inherited metabolic disorders: a model for a possible pathogenetic mechanism. J Inherit Metab Dis 2015; 38:729-40. [PMID: 25735935 DOI: 10.1007/s10545-015-9820-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
Signal transduction is the process by which external or internal signals exert their intracellular biological effects and by which intracellular communication is regulated. An important component of the signalling pathway is the second messenger, which is produced upon stimulation of the cell and mediates its effects downstream through phosphorylation and dephosphorylation of target proteins. Intracellular accumulation or deficiency of metabolites that serve as second messengers, due to inborn errors of their metabolism, may lead to perturbation of signalling pathways and disruption of the balance between them, serving as a missing link between the genotype, biochemical phenotype and clinical phenotype. The main second messengers that are putatively associated with the pathogenesis of IEM are 'bioactive lipids' (complex lipids and long-chain fatty acids), 'calcium', 'stress' (osmotic, reactive oxygen/nitorgen species, misfolded proteins and others) and 'metabolic' (AMP/ATP ratio, leucine, glutamine). They act through protein kinase C, calcium dependent kinases (CamK) and phosphatase (CN), 'stress-mediated' kinases (MAPK) and AMP/ATP-dependent kinase (AMPK). These signalling pathways lead to cell proliferation, inflammatory response, autophagy (and mitophagy) and apoptosis, suggesting that there are only few final common pathways involved in this pathogenetic mechanism. Questions remain regarding the complexity of the effects of the accumulating metabolites on different signalling pathways, and regarding the relative role and origin of 'proxy' second messengers such as reactive oxygen species. A better understanding of the signalling pathways in IEM may enhance the development of novel therapies in situations where normalising intracellular concentrations of the second messenger is impossible or impractical.
Collapse
Affiliation(s)
- Avihu Boneh
- Metabolic Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Vic, 3052, Melbourne, Australia,
| |
Collapse
|
6
|
Yamada H, Izumi T. Manifestation of neurofibromatosis 1 in a patient with X-linked adrenoleukodystrophy. Pediatr Neurol 2009; 41:211-4. [PMID: 19664540 DOI: 10.1016/j.pediatrneurol.2009.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
A patient with X-linked adrenoleukodystrophy exhibited a phenotype of neurofibromatosis 1. He had large and multiple café-au-lait spots, and had elevated serum levels of very long chain fatty acids. The patient's mother and elder sister also had X-linked adrenoleukodystrophy. This case represents novel manifestations of neurofibromatosis 1 in a patient with X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Hiroshi Yamada
- Department of Pediatrics and Child Neurology, Oita University, 1-1 Idaigaoka; Hasama, Yufu, Oita 879-5593, Japan.
| | | |
Collapse
|
7
|
Singh J, Khan M, Singh I. Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy. J Lipid Res 2008; 50:135-47. [PMID: 18723473 DOI: 10.1194/jlr.m800321-jlr200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
X-linked adrenoleukodystrophy is a metabolic disorder arising from a mutation/deletion in the ABCD1 gene, leading to a defect in the peroxisomal adrenoleukodystrophy protein (ALDP), which inhibits the oxidation of very long chain fatty acids (VLCFAs). Thus, these VLCFAs accumulate. In a cerebral form of ALD (cALD), VLCFA accumulation induces neuroinflammation that leads to loss of oligodendrocytes and myelin, which ultimately shortens the lifespan. To establish a relationship between the metabolic disease and inflammatory disease induction, we document that small interfering RNA (siRNA)-mediated silencing of Abcd1 (ALDP) and Abcd2 [adrenoleukodystrophy-related protein (ALDRP)] genes in mice primary astrocyte cultures resulted in accumulation of VLCFA and induction of an inflammatory response characteristic of human cALD. Correction of the metabolic defect using monoenoic FAs in Abcd1/Abcd2-silenced cultured astrocytes decreased inducible nitric oxide synthase and inflammatory cytokine expression, suggesting a link between VLCFA accumulation and inflammation. The inflammatory response was found to be mediated by transcription factors NF-kappaB, AP-1, and C/EBP in Abcd1/Abcd2-silenced mouse primary astrocytes. Although mechanisms of VLCFA-mediated induction of the inflammatory response have been investigated here in vitro, the in vivo mediators remain elusive. Our data represent the first study to suggest a direct link between the accumulation of VLCFA and the induction of inflammatory mediators.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
8
|
Gueugnon F, Gondcaille C, Leclercq S, Bellenger J, Bellenger S, Narce M, Pineau T, Bonnetain F, Savary S. Dehydroepiandrosterone up-regulates the Adrenoleukodystrophy-related gene (ABCD2) independently of PPARα in rodents. Biochimie 2007; 89:1312-21. [PMID: 17686565 DOI: 10.1016/j.biochi.2007.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Accepted: 06/29/2007] [Indexed: 11/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC transporter, ALDP, supposed to participate in the transport of very long chain fatty acids (VLCFA). The adrenoleukodystrophy-related protein (ALDRP), which is encoded by the ABCD2 gene, is the closest homolog of ALDP and is considered as a potential therapeutic target since functional redundancy has been demonstrated between the two proteins. Pharmacological induction of Abcd2 by fibrates through the activation of PPARalpha has been demonstrated in rodent liver. DHEA, the most abundant steroid in human, is described as a PPARalpha activator and also as a prohormone able to mediate induction of several genes. Here, we explored the in vitro and in vivo effects of DHEA on the expression of peroxisomal ABC transporters. We show that Abcd2 and Abcd3 but not Abcd4 are induced in primary culture of rat hepatocytes by DHEA-S. We also demonstrate that Abcd2 and Abcd3 but not Abcd4 are inducible by an 11-day treatment with DHEA in the liver of male rodents but not in brain, testes and adrenals. Finally and contrary to Abcd3, we show that the mechanism of induction of Abcd2 is independent of PPARalpha.
Collapse
Affiliation(s)
- F Gueugnon
- INSERM, U866, Universite de Bourgogne, 6, Bd Gabriel, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wanders RJA, Visser WF, van Roermund CWT, Kemp S, Waterham HR. The peroxisomal ABC transporter family. Pflugers Arch 2006; 453:719-34. [PMID: 17039367 DOI: 10.1007/s00424-006-0142-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
This review describes the current state of knowledge about the ABCD family of peroxisomal half adenosine-triphosphate-binding cassette (ABC) transporters. ABCDs are predicted to be present in a variety of eukaryotic organisms, although at present, only ABCDs in the yeast Saccharomyces cerevisiae, the plant Arabidopsis thaliana, and different mammalian species have been identified and characterized to any significant extent. The functional role of none of these ABCDs has been established definitively and awaits successful reconstitution of ABCDs, either as homo- or heterodimers into liposomes, followed by transport studies. Data obtained in S. cerevisiae suggest that the two ABCDs, which have been identified in this organism, form a heterodimer, which actually transports acyl coenzyme A esters across the peroxisomal membrane. In mammals, four ABCDs have been identified, of which one [adrenoleukodystrophy protein (ALDP)] has been implicated in the transport of the coenzyme A esters of very-long-chain fatty acids. Mutations in the gene (ABCD1) encoding ALDP are the cause of a severe X-linked disease, called X-linked adrenoleukodystrophy. The availability of mutant mice in which Abcd1, Abcd2, or Abcd3 have been disrupted will help to resolve the true role of the peroxisomal half-ABC transporters.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Emma Children's Hospital, Laboratory Genetic Metabolic Diseases, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Grandjean-Laquerriere A, Le Naour R, Gangloff SC, Guenounou M. Differential regulation of TNF-alpha, IL-6 and IL-10 in UVB-irradiated human keratinocytes via cyclic AMP/protein kinase A pathway. Cytokine 2003; 23:138-49. [PMID: 12967650 DOI: 10.1016/s1043-4666(03)00224-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pro-inflammatory cytokines are important mediators of cutaneous cellular activities during many skin diseases. In the present study, we investigated the production of tumor necrosis factor-alpha (TNF-alpha), IL-6 and IL-10 by UVB-irradiated human keratinocytes NCTC 2544 cell line in the presence of cAMP-elevating agents and we attempted to determine the implication of cyclic AMP/PKA pathway in the regulation of cytokine gene expression. Cytokine mRNA expression levels and cytokine concentrations were investigated by reverse transcription polymerase chain reaction and by ELISA method, respectively. Treatment of UVB-irradiated NCTC 2544 cells with drugs known to enhance cAMP concentration [dibutyryl cAMP, PGE(2) and cholera toxin] results in a significant decrease of TNF-alpha mRNA expression whereas IL-6 and IL-10 mRNAs were enhanced. In the same experimental conditions, treatment of irradiated keratinocytes with PKA inhibitors [H89 and PKA inhibitor (PKAi)] induced a significant inhibition of mRNA expression for all tested cytokines. Except for IL-10, the pharmacological effect of cAMP-elevating agents or PKA inhibitors on radiation-induced TNF-alpha and IL-6 mRNA expression was associated with a concomitant regulation of cytokine release. Taken together our results showed: (i) a differential regulation of TNF-alpha, IL-6 and IL-10 in UVB-irradiated human keratinocytes via cyclic AMP/protein kinase A pathway, and (ii) a possible reduction of deleterious inflammatory effects of cytokine following UVB-irradiation by using pharmacological agents that regulate both the intracellular cAMP levels and the cellular PKA activity.
Collapse
Affiliation(s)
- Alexia Grandjean-Laquerriere
- Laboratoire d'Immunologie, Virologie et Bactériologie, UFR Pharmacie, EA2070, IFR 53, 1 Avenue du Maréchal Juin, 51100 Reims, France
| | | | | | | |
Collapse
|
11
|
Aravamudan B, Broadie K. Synaptic Drosophila UNC-13 is regulated by antagonistic G-protein pathways via a proteasome-dependent degradation mechanism. JOURNAL OF NEUROBIOLOGY 2003; 54:417-38. [PMID: 12532395 DOI: 10.1002/neu.10142] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
UNC-13 is a highly conserved plasma membrane-associated synaptic protein implicated in the regulation of neurotransmitter release through the direct modulation of the SNARE exocytosis complex. Previously, we characterized the Drosophila homologue (DUNC-13) and showed it to be essential for neurotransmitter release immediately upstream of vesicular fusion ("priming") at the neuromuscular junction (NMJ). Here, we show that the abundance of DUNC-13 in NMJ synaptic boutons is regulated downstream of GalphaS and Galphaq pathways, which have inhibitory and facilitatory roles, respectively. Both cAMP modulation and PKA function are required for DUNC-13 synaptic up-regulation, suggesting that the cAMP pathway enhances synaptic efficacy via DUNC-13. Similarly, PLC function and DAG modulation also regulate the synaptic levels of DUNC-13, through a mechanism that appears independent of PKC. Our results suggest that proteasome-mediated protein degradation is the primary mechanism regulating DUNC-13 levels at the synapse. Both PLC- and PKA-mediated pathways appear to regulate synaptic levels of DUNC-13 through controlling the rate of proteasome-dependent DUNC-13 degradation. We conclude that the functional abundance of DUNC-13 at the synapse, a key determinant of synaptic vesicle priming and neurotransmitter release probability, is primarily regulated by the rate of protein degradation, rather than translocation or transport, convergently controlled via both cAMP and DAG signal transduction pathways.
Collapse
Affiliation(s)
- Bharathi Aravamudan
- Department of Biological Sciences, Vanderbilt University, VU Station B, Box 351634, Nashville, Tennessee 37235-1634, USA
| | | |
Collapse
|
12
|
Abstract
A model for the possible involvement of Protein Kinase C (PKC) in the pathogenesis of inborn errors of metabolism has been proposed. According to this model, perturbation of PKC activity by the accumulation of naturally occurring compounds serves as a unifying functional link between genotype and phenotype. Recent reports regarding an increasing number of modulating metabolites, specific PKC-subtypes activities, their effect on transcription factors and gene expression in various diseases and additional PKC-substrates expand the model. A re-examination of the proposed model in view of these reports and, vice versa, a review of these reports in the context of the proposed model reveal some common phenotypic outcomes in inborn errors of fatty acid-, cholesterol- and homocystine-metabolism as well as lysosomal and peroxisomal diseases.
Collapse
Affiliation(s)
- Avihu Boneh
- Metabolic Service, Genetic Health Services, Victoria, Australia.
| |
Collapse
|
13
|
Berger J, Moser HW, Forss-Petter S. Leukodystrophies: recent developments in genetics, molecular biology, pathogenesis and treatment. Curr Opin Neurol 2001; 14:305-12. [PMID: 11371752 DOI: 10.1097/00019052-200106000-00007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The combined application of recently developed techniques for genetic and biochemical analysis, neuroimaging and the ability to create animal models has led to remarkable advances in the field of leukodystrophy research. The present review focuses on recent developments in X-linked adrenoleukodystrophy, Alexanders disease, Canavans disease, metachromatic leukodystrophy, globoid cell leukodystrophy (Krabbes disease) and Pelizaeus-Merzbacher disease, and briefly discusses new data on six other rare inherited leukodystrophies. Of the leukodystrophies, 12 can now be diagnosed precisely using noninvasive techniques, and the molecular defect has been identified in nine of these. Disease incidence can be reduced through genetic counselling. Presymptomatic diagnosis provides an opportunity for therapeutic intervention. Study of animal models facilitates elucidation of pathogenic mechanisms and identifies pathways that could be targeted by future therapies.
Collapse
Affiliation(s)
- J Berger
- Brain Research Institute, Division of Neuroimmunology, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
14
|
Pujol A, Troffer-Charlier N, Metzger E, Chimini G, Mandel JL. Characterization of the adrenoleukodystrophy-related (ALDR, ABCD2) gene promoter: inductibility by retinoic acid and forskolin. Genomics 2000; 70:131-9. [PMID: 11087670 DOI: 10.1006/geno.2000.6367] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adrenoleukodystrophy-related gene (ALDR, ABCD2) is a candidate modifier gene and a potential therapeutic target for X-linked adrenoleukodystrophy (ALD), a severe neurodegenerative disease. The ALDR gene is the closest homologue of the ALD gene, which encodes a peroxisomal ABC transporter involved in the catabolism of very-long-chain fatty acids. Administration of fenofibrate upregulates ALDR expression in rodent liver. As a step toward understanding ALDR transcriptional regulation, the mouse and human 5' regions were characterized. The human and mouse genes share a 500-bp conserved region that contains potential Sp1- and AP-2-binding sites but no TATA box. Analysis of the 5'-flanking region of ALDR using a luciferase reporter system revealed that 1.3 kb of human or mouse 5'-upstream region has functional promoter activity. In these transfection experiments, promoter activity of both human and mouse genes could be upregulated by 9-cis-retinoic acid and forskolin, while no effect of PPARalpha could be detected.
Collapse
Affiliation(s)
- A Pujol
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, C.U. de Strasbourg, 67404, France
| | | | | | | | | |
Collapse
|
15
|
Netik A, Hobel A, Rauschka H, Molzer B, Forss-Petter S, Berger J. Rolipram does not normalize very long-chain fatty acid levels in adrenoleukodystrophy protein-deficient fibroblasts and mice. J Inherit Metab Dis 2000; 23:615-24. [PMID: 11032336 DOI: 10.1023/a:1005686114356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In its severe form, X-linked adrenoleukodystrophy (X-ALD) is a lethal neurodegenerative disorder with inflammatory demyelination, in which defective peroxisomal beta-oxidation causes accumulation of very long-chain fatty acids (VLCFA) in tissues and plasma, in particular in the nervous system and adrenal glands. Recently, several drugs have been reported to reduce VLCFA in cultured human fibroblasts of X-ALD patients, and therefore to be potential candidates for novel therapeutic treatments in X-ALD. Among the most promising of these substances is the antidepressant rolipram, because of favourable adverse event profile in clinical studies and its additionally reported anti-inflammatory action. To further elucidate the effects of rolipram on peroxisomal beta-oxidation and VLCFA accumulation, we administered rolipram orally in the diet to ALD protein-deficient mice and ALD protein-deficient cultured human and mouse fibroblasts and assayed the accumulation of VLCFA. In contrast to the previously reported reduction of VLCFA, our data did not demonstrate a decrease in VLCFA content either in vivo or in vitro. NMR spectroscopic analysis verified the structural integrity and purity of the rolipram used here, thus excluding inauthenticity as a reason for the discrepancy. We therefore suggest that rolipram should be excluded from the current list of potential therapeutic agents for X-ALD.
Collapse
Affiliation(s)
- A Netik
- Division of Neuroimmunology, Brain Research Institute, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Cartier N, Guidoux S, Rocchiccioli F, Aubourg P. Simvastatin does not normalize very long chain fatty acids in adrenoleukodystrophy mice. FEBS Lett 2000; 478:205-8. [PMID: 10930569 DOI: 10.1016/s0014-5793(00)01852-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
X-linked adrenoleukodystrophy (ALD) is a genetic demyelinating disorder characterized by accumulation of very long chain fatty acid (VLCFA) in tissues. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, normalizes VLCFA in fibroblasts and plasma from ALD patients. We dietary treated ALD mice with simvastatin, an analog of lovastatin with similar pharmacokinetics and effects on plasma VLCFA in ALD patients at 20 or 60 mg/kg/day for 6-12 weeks. No decrease of VLCFA content was observed in mouse tissues, including the brain. A significant increase of VLCFA was rather observed in the brain of ALD mice at 60 mg/kg/day.
Collapse
Affiliation(s)
- N Cartier
- Inserm U342, Hôpital Saint-Vincent de Paul, 82 avenue Denfert Rochereau, 75014, Paris, France.
| | | | | | | |
Collapse
|
17
|
Ben-Yaacov A, Minichiello J, Newgreen D, Boneh A. Perturbation of protein kinase C subtype activation in X-ALD fibroblasts: possible involvement of protein kinase C in the pathogenesis of adrenoleukodystrophy. J Inherit Metab Dis 2000; 23:416-20. [PMID: 10896308 DOI: 10.1023/a:1005620422703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A Ben-Yaacov
- The Murdoch Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
18
|
Souness JE, Aldous D, Sargent C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. IMMUNOPHARMACOLOGY 2000; 47:127-62. [PMID: 10878287 DOI: 10.1016/s0162-3109(00)00185-5] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J E Souness
- Discovery Biology 1 (JA3-1), Aventis Pharma Ltd., Dagenham Research Centre, Rainham Road South, Dagenham, RM10 7XS, Essex, UK.
| | | | | |
Collapse
|
19
|
Pai GS, Khan M, Barbosa E, Key LL, Craver JR, Curé JK, Betros R, Singh I. Lovastatin therapy for X-linked adrenoleukodystrophy: clinical and biochemical observations on 12 patients. Mol Genet Metab 2000; 69:312-22. [PMID: 10870849 DOI: 10.1006/mgme.2000.2977] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a progressive demyelinating disorder whose neurological signs and symptoms can manifest in childhood as cerebral ALD or in adulthood in the form of a progressive myelopathy (AMN). The consistent metabolic abnormality in all forms of X-ALD is an inherited defect in the peroxisomal beta-oxidation of very long chain (VLC) fatty acids (>C(22:0)) which may in turn lead to a neuroinflammatory process associated with demyelination of the cerebral white matter. The current treatment for X-ALD with Lorenzo's oil aims to lower the excessive quantities of VLC fatty acids that accumulate in the patients' plasma and tissues, but does not directly address the inflammatory process in X-ALD. We have previously demonstrated that lovastatin and other 3-HMG-CoA reductase inhibitors are capable of normalizing VLC fatty acid levels in primary skin fibroblasts derived from X-ALD patients. Lovastatin can block the induction of inducible nitric oxide synthase and proinflammatory cytokines in astrocytes, microglia, and macrophages in vitro. In a preliminary report, we demonstrated that lovastatin therapy can normalize VLC fatty acids in the plasma of patients with X-ALD. Here we report our clinical and biochemical observations on 12 patients with X-ALD who were treated with lovastatin for up to 12 months. Our results show that the high plasma levels of hexacosanoic acid (C(26:0)) showed a decline from pretreatment values within 1 to 3 months of starting therapy with 40 mg of lovastatin per day and stabilized at various levels during a period of observation up to 12 months. The percentage decline from pretreatment values varied and did not correlate with the type of ALD gene mutation (point mutation versus gene deletion). In 6 patients, in whom red cell membrane fatty acid composition was studied, a mean correction of 50% of the excess C(26:0) was observed after 6 months of therapy suggesting sustained benefit. In a few patients who discontinued lovastatin therapy plasma C(26:0) levels reverted to pretreatment values suggesting a cause and effect relationship between these events. Two patients dropped out of the study claiming no clinical benefit, 1 was withdrawn due to adverse effects, and an adult patient with cerebral involvement died during the study. A 10-year-old boy with severe cerebral involvement showed worsening of his neurological status. All patients with AMN remained neurologically stable or showed modest subjective improvement. All patients who did not have Addison's disease at the time of enrollment maintained normal adrenal function throughout the study. The implications of our findings for developing an effective therapy for X-ALD are discussed.
Collapse
Affiliation(s)
- G S Pai
- Department of Pediatrics, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Smith BT, Sengupta TK, Singh I. Intraperoxisomal localization of very-long-chain fatty acyl-CoA synthetase: implication in X-adrenoleukodystrophy. Exp Cell Res 2000; 254:309-20. [PMID: 10640429 DOI: 10.1006/excr.1999.4757] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-adrenoleukodystrophy (X-ALD) is a demyelinating disorder characterized by the accumulation of saturated very-long-chain (VLC) fatty acids (>C(22:0)) due to the impaired activity of VLC acyl-CoA synthetase (VLCAS). The gene responsible for X-ALD was found to code for a peroxisomal integral membrane protein (ALDP) that belongs to the ATP binding cassette superfamily of transporters. To understand the function of ALDP and how ALDP and VLCAS interrelate in the peroxisomal beta-oxidation of VLC fatty acids we investigated the peroxisomal topology of VLCAS protein. Antibodies raised against a peptide toward the C-terminus of VLCAS as well as against the N-terminus were used to define the intraperoxisomal localization and orientation of VLCAS in peroxisomes. Indirect immunofluorescent and electron microscopic studies show that peroxisomal VLCAS is localized on the matrix side. This finding was supported by protease protection assays and Western blot analysis of isolated peroxisomes. To further address the membrane topology of VLCAS, Western blot analysis of total membranes or integral membranes prepared from microsomes and peroxisomes indicates that VLCAS is a peripheral membrane-associated protein in peroxisomes, but an integral membrane in microsomes. Moreover, peroxisomes isolated from cultured skin fibroblasts from X-ALD patients with a mutation as well as a deletion in ALDP showed a normal amount of VLCAS. The consequence of VLCAS being localized to the luminal side of peroxisomes suggests that ALDP may be involved in stabilizing VLCAS activity, possibly through protein-protein interactions, and that loss or alterations in these interactions may account for the observed loss of peroxisomal VLCAS activity in X-ALD.
Collapse
Affiliation(s)
- B T Smith
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
21
|
Berger J, Albet S, Bentejac M, Netik A, Holzinger A, Roscher AA, Bugaut M, Forss-Petter S. The four murine peroxisomal ABC-transporter genes differ in constitutive, inducible and developmental expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:719-27. [PMID: 10504404 DOI: 10.1046/j.1432-1327.1999.00772.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four ATP-binding cassette (ABC) half-transporters have been identified in mammalian peroxisomes: adrenoleukodystrophy protein (ALDP), adrenoleukodystrophy-related protein (ALDRP), 70-kDa peroxisomal membrane protein (PMP70) and PMP70-related protein (P70R). Inherited defects in ALDP cause the neurodegenerative disorder X-linked adrenoleukodystrophy (X-ALD). By comparative Northern blot analyses we found each of the four murine peroxisomal ABC transporter mRNA species at maximum abundance only in a few tissues, which differed for each family member. The four genes were also regulated differentially during mouse brain development: ALDP mRNA was most abundant in embryonic brain and gradually decreased during maturation; ALDRP and P70R mRNA accumulated in the early postnatal period; and the amount of PMP70 transcript increased slightly during the second and third postnatal week. The different expression patterns could explain why beta-oxidation is defective in X-ALD, although ALDRP and PMP70 can replace ALDP functionally in fibroblasts. Dietary fenofibrate had no effect on the ALD and P70R genes, but strongly increased expression of the ALDR and PMP70 genes in mouse liver. However, in P-glycoprotein Mdr1a-deficient mice fenofibrate treatment increased ALDR gene expression also in the brain, suggesting that the multidrug-transporter P-glycoprotein restricts entry of fenofibrate to the brain at the blood-brain barrier. Analysis of the promoter sequences revealed a cryptic nuclear hormone receptor response element of the DR+4 type in the ALDR promoter and a novel 18-bp sequence motif present only in the 5' flanking DNA of the ALDR and PMP70 genes. The mouse ALDR gene uses a single transcription start site but alternative polyadenylation sites. These data are of importance for the use of ALDP-deficient mice as a model in pharmacological gene therapy studies.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily D
- ATP Binding Cassette Transporter, Subfamily D, Member 1
- ATP-Binding Cassette Transporters/genetics
- Animals
- Biological Transport/genetics
- Brain/metabolism
- Fenofibrate/pharmacology
- Gene Expression Regulation, Developmental
- Hypolipidemic Agents/pharmacology
- Liver/metabolism
- Membrane Proteins/genetics
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Molecular Sequence Data
- Peroxisomes/genetics
- Promoter Regions, Genetic
- Proteins/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- J Berger
- Brain Research Institute, University of Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Holzinger A, Mayerhofer P, Berger J, Lichtner P, Kammerer S, Roscher AA. Full length cDNA cloning, promoter sequence, and genomic organization of the human adrenoleukodystrophy related (ALDR) gene functionally redundant to the gene responsible for X-linked adrenoleukodystrophy. Biochem Biophys Res Commun 1999; 258:436-42. [PMID: 10329405 DOI: 10.1006/bbrc.1999.0535] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a functional defect of the ALD Protein (ALDP), an ABC half-transporter localized in the peroxisomal membrane. It is characterized by defective, very long chain fatty acid (VLCFA) beta-oxidation, resulting in progressive cerebral demyelination. Since individual mutations in the ALD gene may result in a variety of clinical phenotypes, the existence of modifying genetic factors has been proposed. The adrenoleukodystrophy related protein (ALDRP), a close homolog of ALDP, has been shown to complement the defect of VLCFA oxidation if transfected into X-ALD cells or chemically induced in ALDP-deficient mice. Chemical ALDRP induction holds a potential for a novel therapeutic strategy. We report here the exclusively peroxisomal localization of human ALDRP, the full length cDNA, the transcriptional start, and 2.4 kb of the putative promoter region DNA sequence. The human ALDR gene extends over 33 kb on chromosome 12q12 and consists of 10 exons. The gene structure is highly similar to the ALD gene, indicating a recent divergence from a common ancestor. The putative human promoter sequence contains a novel motif conserved in peroxisomal ABC transporters in the mouse. Our data will enable sequence analysis in X-ALD patients to determine a possible role of ALDRP as a modifier and provide tools for the study of therapeutic ALDRP induction.
Collapse
Affiliation(s)
- A Holzinger
- Department of Pediatrics, Division of Clinical Chemistry and Metabolism, Dr. v. Hauner Children's Hospital, Ludwig-Maximilian-University, Munich, Lindwurmstrasse 4, 80337, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Netik A, Forss-Petter S, Holzinger A, Molzer B, Unterrainer G, Berger J. Adrenoleukodystrophy-related protein can compensate functionally for adrenoleukodystrophy protein deficiency (X-ALD): implications for therapy. Hum Mol Genet 1999; 8:907-13. [PMID: 10196381 DOI: 10.1093/hmg/8.5.907] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inherited defects in the peroxisomal ATP-binding cassette (ABC) transporter adrenoleukodystrophy protein (ALDP) lead to the lethal peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD), for which no efficient treatment has been established so far. Three other peroxisomal ABC transporters currently are known: adrenoleukodystrophy-related protein (ALDRP), 70 kDa peroxisomal membrane protein (PMP70) and PMP70- related protein. By using transient and stable overexpression of human cDNAs encoding ALDP and its closest relative ALDRP, we could restore the impaired peroxisomal beta-oxidation in fibroblasts of X-ALD patients. The pathognomonic accumulation of very long chain fatty acids could also be prevented by overexpression of ALDRP in immortalized X-ALD cells. Immunofluorescence analysis demonstrated that the functional replacement of ALDP by ALDRP was not due to stabilization of the mutated ALDP itself. Moreover, we were able to restore the peroxisomal beta-oxidation defect in the liver of ALDP-deficient mice by stimulation of ALDRP and PMP70 gene expression through a dietary treatment with the peroxisome proliferator fenofibrate. These results suggest that a correction of the biochemical defect in X-ALD could be possible by drug-induced overexpression or ectopic expression of ALDRP.
Collapse
Affiliation(s)
- A Netik
- Institute of Neurology, University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
24
|
Dubois-Dalcq M, Feigenbaum V, Aubourg P. The neurobiology of X-linked adrenoleukodystrophy, a demyelinating peroxisomal disorder. Trends Neurosci 1999; 22:4-12. [PMID: 10088993 DOI: 10.1016/s0166-2236(98)01319-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adrenoleukodystrophy (ALD) is caused by mutations in an ATP-binding-cassette transporter located in the peroxisomal membrane, which result in a fatal demyelinating disease in boys and a milder phenotype in men and some heterozygous women. There is no molecular signature to indicate a particular clinical course. The underlying molecular mechanisms of this disease have yet to be targeted clinically. Is the increase in very-long-chain fatty acids (VLCFA) the disease trigger? Why is there no phenotype in ALD null mice that show this increase? Do VLCFA destabilize human myelin, once formed, and lead to the inflammation seen in this genetic disease? Bone-marrow transplantation might save a child by providing normal brain macrophages and allowing myelin regeneration early in disease. The processes that underlie ALD challenge neuroscientists to elucidate peroxisomal transporter functions in the nervous system and to pursue the gene-transfer strategies leading to remyelination until a preventive therapy emerges.
Collapse
Affiliation(s)
- M Dubois-Dalcq
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
25
|
|