1
|
Kanuri B, Fong V, Ponny SR, Tallman KA, Rao SR, Porter N, Fliesler SJ, Patel SB. Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz syndrome. J Lipid Res 2020; 62:100002. [PMID: 33410752 PMCID: PMC7890206 DOI: 10.1194/jlr.ra120001101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-Δ7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral, and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with aging and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or in female Dhcr7L-KO mice, suggesting that hepatic disruption of postsqualene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Fong
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Sithara Raju Ponny
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo-State University of New York, Buffalo, NY, USA
| | - Ned Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo-State University of New York, Buffalo, NY, USA; Graduate Program in Neuroscience, University at Buffalo- State University of New York, Buffalo, NY, USA; Research Service, VA Western New York Healthcare System, Buffalo, NY, USA
| | - Shailendra B Patel
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Lütjohann D, Stellaard F, Björkhem I. Levels of 7alpha-hydroxycholesterol and/or 7alpha-hydroxy-4-cholest-3-one are the optimal biochemical markers for the evaluation of treatment of cerebrotendinous xanthomatosis. J Neurol 2019; 267:572-573. [PMID: 31781930 DOI: 10.1007/s00415-019-09650-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| |
Collapse
|
3
|
|
4
|
Othman RA, Myrie SB, Mymin D, Roullet JB, DeBarber AE, Steiner RD, Jones PJ. Thyroid Hormone Status in Sitosterolemia Is Modified by Ezetimibe. J Pediatr 2017; 188. [PMID: 28625503 PMCID: PMC5572543 DOI: 10.1016/j.jpeds.2017.05.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To assess the association between biomarkers of thyroid status and 5α-stanols in patients with sitosterolemia treated with ezetimibe (EZE). STUDY DESIGN Eight patients with sitosterolemia (16-56 years of age) were studied during 14 weeks off EZE therapy and 14 weeks on EZE (10 mg/day). Serum thyroid biomarkers (free triiodothyronine [FT3], free thyroxine [FT4], FT3/FT4 ratio, thyroid-stimulating hormone), 5α-stanols (sitostanol and cholestanol), and cholestanol precursors (total cholesterol and its synthesis marker lathosterol, and 7α-hydroxy-4-cholesten-3-one cholestenol) were measured at baseline and during the 14 weeks off EZE and on EZE. RESULTS EZE increased FT3/FT4 (10% ± 4%; P = .02). EZE reduced plasma and red blood cells sitostanol (-38% ± 6% and -20% ± 4%; all P < .05) and cholestanol (-18% ± 6% and -13% ± 3%; all P < .05). The change in plasma cholestanol level on EZE inversely correlated with the change in FT3/FT4 (r = -0.86; P = .01). EZE lowered total cholesterol (P < .0001) and did not affect 7α-hydroxy-4-cholesten-3-one cholestanol. EZE increased (P < .0001) lathosterol initially, but the level was not sustained, resulting in similar levels at week 14 off EZE and on EZE. CONCLUSION In patients with STSL, 5α-stanols levels might be associated with thyroid function. EZE reduces circulating 5α-stanols while increasing FT3/FT4, implying increased conversion of T4 to T3, thus possibly improving thyroid hormone status. TRIAL REGISTRATION ClinicalTrials.govNCT01584206.
Collapse
Affiliation(s)
- Rgia A. Othman
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Semone B. Myrie
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Mymin
- Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jean-Baptiste Roullet
- College of Pharmacy, Washington State University, Spokane, Washington,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Andrea E. DeBarber
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon
| | - Robert D. Steiner
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Peter J.H. Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada,Richardson Center for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Neuvonen M, Manna M, Mokkila S, Javanainen M, Rog T, Liu Z, Bittman R, Vattulainen I, Ikonen E. Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes. PLoS One 2014; 9:e103743. [PMID: 25157633 PMCID: PMC4144813 DOI: 10.1371/journal.pone.0103743] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/01/2014] [Indexed: 11/19/2022] Open
Abstract
Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone.
Collapse
Affiliation(s)
- Maarit Neuvonen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Moutusi Manna
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Sini Mokkila
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Zheng Liu
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, NY, United States of America
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, NY, United States of America
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
- MEMPHYS – Center of Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Elina Ikonen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- * E-mail:
| |
Collapse
|
6
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Steiner RD, Linck LM, Flavell DP, Lin DS, Connor WE. Sterol balance in the Smith-Lemli-Opitz syndrome: reduction in whole body cholesterol synthesis and normal bile acid production. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)33456-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Abstract
Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation. The most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are topics of active investigation. Except for 24, 25-epoxysterols, most oxysterols arise from cholesterol by autoxidation or by specific microsomal or mitochondrial oxidations, usually involving cytochrome P-450 species. Oxysterols are variously metabolized to esters, bile acids, steroid hormones, cholesterol, or other sterols through pathways that may differ according to the type of cell and mode of experimentation (in vitro, in vivo, cell culture). Reliable measurements of oxysterol levels and activities are hampered by low physiological concentrations (approximately 0.01-0.1 microM plasma) relative to cholesterol (approximately 5,000 microM) and by the susceptibility of cholesterol to autoxidation, which produces artifactual oxysterols that may also have potent activities. Reports describing the occurrence and levels of oxysterols in plasma, low-density lipoproteins, various tissues, and food products include many unrealistic data resulting from inattention to autoxidation and to limitations of the analytical methodology. Because of the widespread lack of appreciation for the technical difficulties involved in oxysterol research, a rigorous evaluation of the chromatographic and spectroscopic methods used in the isolation, characterization, and quantitation of oxysterols has been included. This review comprises a detailed and critical assessment of current knowledge regarding the formation, occurrence, metabolism, regulatory properties, and other activities of oxysterols in mammalian systems.
Collapse
Affiliation(s)
- G J Schroepfer
- Departments of Biochemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
9
|
Patel SB, Honda A, Salen G. Sitosterolemia: exclusion of genes involved in reduced cholesterol biosynthesis. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33874-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Salen G, Shefer S, Batta AK, Tint GS, Xu G, Honda A. Abnormal cholesterol biosynthesis in sitosterolaemia and the Smith-Lemli-Opitz syndrome. J Inherit Metab Dis 1996; 19:391-400. [PMID: 8884563 DOI: 10.1007/bf01799100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the enzyme defects in two inherited disorders of cholesterol biosynthesis: sitosterolaemia and the Smith-Lemli-Opitz syndrome. In sitosterolaemic homozygotes, plasma plant sterols (sitosterol and campesterol) concentrations are elevated because of enhanced intestinal absorption and diminished removal. Underlying these changes is very low cholesterol biosynthesis to provide extra sterol for cell growth. Extremely reduced activities of HMG-CoA reductase, the rate-controlling enzyme for cholesterol biosynthesis, caused by deficient HMG-CoA reductase mRNA is responsible and is the suspected inherited abnormality. The Smith-Lemli-Opitz syndrome is caused by a block in the last reaction in the cholesterol biosynthetic pathway, the conversion of 7-dehydrocholesterol to cholesterol, which is catalysed by 7-dehydrocholesterol delta 7-reductase. As a result, low plasma and tissue cholesterol with high 7-dehydrocholesterol levels are found in homozygotes, who show characteristic phenotypes of mental retardation, facial dysmorphism, and organ and limb congenital anomalies. Similar biochemical findings are produced in rats fed BM 15,766, an inhibitor of 7-dehydrocholesterol delta 7-reductase. Interestingly, feeding cholesterol can suppress abnormal cholesterol biosynthesis and improve symptoms in homozygotes and rats fed BM 15,766.
Collapse
Affiliation(s)
- G Salen
- VA Medical Center, East Orange, NJ 07018, USA
| | | | | | | | | | | |
Collapse
|