1
|
Gnopo YMD, Misra A, Hsu HL, DeLisa MP, Daniel S, Putnam D. Induced fusion and aggregation of bacterial outer membrane vesicles: Experimental and theoretical analysis. J Colloid Interface Sci 2020; 578:522-532. [PMID: 32540551 PMCID: PMC7487024 DOI: 10.1016/j.jcis.2020.04.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/15/2022]
Abstract
Recombinantly engineered bacterial outer membrane vesicles (OMVs) are promising vaccine delivery vehicles. The diversity of exogenous antigens delivered by OMVs can be enhanced by induced fusion of OMV populations. To date there are no reports of induced fusion of bacterial OMVs. Here we measure the pH and salt-induced aggregation and fusion of OMVs and analyze the processes against the Derjaguin-Landau-Verwey-Overbeek (DLVO) colloidal stability model. Vesicle aggregation and fusion kinetics were investigated for OMVs isolated from native E. coli (Nissle 1917) and lipopolysaccharide (LPS) modified E. coli (ClearColi) strains to evaluate the effect of lipid type on vesicle aggregation and fusion. Electrolytes and low pHs induced OMV aggregation for both native and modified LPS constructs, approaching a calculated fusion efficiency of ~25% (i.e. ~1/4 of collision events lead to fusion). However, high fusion efficiency was achieved for Nissle OMVs solely with decreased pH as opposed to a combination of low pH and increased divalent counterion concentration for ClearColi OMVs. The lipid composition of the OMVs from Nissle negatively impacted fusion in the presence of electrolytes, causing higher deviations from DLVO-predicted critical coagulation concentrations with monovalent counterions. The outcome of the work is a defined set of conditions under which investigators can induce OMVs to fuse and make various combinations of vesicle compositions.
Collapse
Affiliation(s)
- Yehou M D Gnopo
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Aditya Misra
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hung-Lun Hsu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David Putnam
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Hohl A, Ramms AS, Dohmen C, Mantwill K, Bielmeier A, Kolk A, Ruppert A, Nawroth R, Holm PS. Adenovirus Particle Quantification in Cell Lysates Using Light Scattering. Hum Gene Ther Methods 2017; 28:268-276. [DOI: 10.1089/hgtb.2017.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Adrian Hohl
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | - Anne Sophie Ramms
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | | | - Klaus Mantwill
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | - Andrea Bielmeier
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technische Universität, München, Germany
| | | | - Roman Nawroth
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
| | - Per Sonne Holm
- Klinikum Rechts der Isar, Technische Universität München, Klinik und Poliklinik für Urologie, München, Germany
- XVir Therapeutics GmbH, München, Germany
| |
Collapse
|
3
|
Goñi FM, Montes LR, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Prog Lipid Res 2012; 51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
4
|
LCM and Nanoparticle Subpopulations for Drug Delivery. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-444-53798-0.00018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
Maurer KJ, Carey MC, Fox JG. Roles of infection, inflammation, and the immune system in cholesterol gallstone formation. Gastroenterology 2009; 136:425-40. [PMID: 19109959 PMCID: PMC2774219 DOI: 10.1053/j.gastro.2008.12.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/05/2008] [Accepted: 12/08/2008] [Indexed: 12/12/2022]
Abstract
Cholesterol gallstone formation is a complex process mediated by genetic and environmental factors. Until recently, the role of the immune system in the pathogenesis of cholesterol gallstones was not considered a valid topic of research interest. This review collates and interprets an extensive body of basic literature, some of which is not customarily considered to be related to cholelithogenesis, describing the multiple facets of the immune system that appear to be involved in cholesterol cholelithogenesis. A thorough understanding of the immune interactions with biliary lipids and cholecystocytes should modify current views of the pathogenesis of cholesterol gallstones, promote further research on the pathways involved, and lead to novel diagnostic tools, treatments, and preventive measures.
Collapse
Affiliation(s)
- Kirk J. Maurer
- Division of Gastroenterology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston,Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Martin C. Carey
- Division of Gastroenterology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049309015327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Gudheti MV, Lee SP, Danino D, Wrenn SP. Combined interaction of phospholipase C and apolipoprotein A-I with small unilamellar lecithin-cholesterol vesicles: influence of apolipoprotein A-I concentration and vesicle composition. Biochemistry 2005; 44:7294-304. [PMID: 15882068 DOI: 10.1021/bi047317m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report the combined effects of phospholipase C (PLC), a pronucleating factor, and apolipoprotein A-I (apo A-I), an antinucleating factor, in solutions of model bile. Results indicate that apo A-I inhibits cholesterol nucleation from unilamellar lecithin vesicles by two mechanisms. Initially, inhibition is achieved by apo A-I shielding of hydrophobic diacylglycerol (DAG) moieties so as to prevent vesicle aggregation. Protection via shielding is temporary. It is lost when the DAG/apo A-I molar ratio exceeds a critical value. Subsequently, apo A-I forms small ( approximately 5-15 nm) complexes with lecithin and cholesterol that coexist with lipid-stabilized (400-800 nm) DAG oil droplets. This microstructural transition from vesicles to complexes avoids nucleation of cholesterol crystals and is a newly discovered mechanism by which apo A-I serves as an antinucleating agent in bile. The critical value at which a microstructural transition occurs depends on binding of apo A-I and so varies with the cholesterol mole fraction of vesicles. Aggregation of small, unilamellar, egg lecithin vesicles (SUVs) with varying cholesterol composition (0-60 mol %) was monitored for a range of apo A-I concentrations (2 to 89 microg/mL). Suppression of aggregation persists so long as the DAG-to-bound-apo A-I molar ratio is less than 100. A fluorescence assay involving dansylated lecithin shows that the suppression is an indirect effect of apo A-I rather than a direct inhibition of PLC enzyme activity. The DAG-to-total apo A-I molar ratio at which suppression is lost increases with cholesterol because of differences in apo A-I binding. Above this value, a microstructural transition to DAG droplets and lecithin/cholesterol A-I complexes occurs, as evidenced by sudden increases in turbidity and size and enhancement of Forster resonance energy transfer; structures are confirmed by cryo TEM.
Collapse
Affiliation(s)
- Manasa V Gudheti
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
8
|
Luk AS, Kaler EW, Lee SP. Protein lipid interaction in bile: effects of biliary proteins on the stability of cholesterol-lecithin vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1390:282-92. [PMID: 9487149 DOI: 10.1016/s0005-2760(97)00161-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleation of cholesterol crystals is an obligatory precursor to cholesterol gallstone formation. Nucleation, in turn, is believed to be preceded by aggregation and fusion of cholesterol-rich vesicles. We have investigated the effects of two putative pro-nucleating proteins, a concanavalin A-binding protein fraction and a calcium-binding protein, on the stability of sonicated small unilamellar cholesterol-lecithin vesicles. Vesicle aggregation is followed by monitoring absorbance, and upon addition of the concanavalin A-binding protein fraction the absorbance of a vesicle dispersion increases continuously with time. Vesicle fusion is probed by a fluorescence contents-mixing assay. Vesicles apparently fuse slowly after the addition of the concanavalin A-binding protein, although inner filter effects confound the quantitative measurement of fusion rates. The rates of change of absorbance and fluorescence increase with the concentration of the protein, and the second-order dimerization rate constant increases with both the protein concentration and the cholesterol content of the vesicles. On the other hand, the calcium-binding protein has no effect on the stability of the vesicle dispersion. This protein may therefore affect cholesterol crystal formation not by promoting the nucleation process, but by enhancing crystal growth and packaging. Our results demonstrate that biliary proteins can destabilize lipid vesicles and that different proteins play different roles in the mechanism of cholesterol gallstone formation.
Collapse
Affiliation(s)
- A S Luk
- Department of Chemical Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, DE, USA
| | | | | |
Collapse
|
9
|
Affiliation(s)
- D P O'Leary
- Department of Surgery, Southmead Hospital, Bristol, UK
| |
Collapse
|