1
|
Chen J, Tang Q, Guo S, Lu C, Le S, Yan J. Parallel triplex structure formed between stretched single-stranded DNA and homologous duplex DNA. Nucleic Acids Res 2017; 45:10032-10041. [PMID: 28973442 PMCID: PMC5622322 DOI: 10.1093/nar/gkx628] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/11/2017] [Indexed: 02/01/2023] Open
Abstract
The interaction between the single-stranded DNA and the homologous duplex DNA is essential for DNA homologous repair. Here, we report that parallel triplex structure can form spontaneously between a mechanically extended ssDNA and a homologous dsDNA in protein-free condition. The triplex has a contour length close to that of a B-form DNA duplex and remains stable after force is released. The binding energy between the ssDNA and the homologous dsDNA in the triplex is estimated to be comparable to the basepairing energy in a B-form dsDNA. As ssDNA is in a similar extended conformation within recombinase-coated nucleoprotein filaments, we propose that the parallel triplex may form and serve as an intermediate during recombinase-catalyzed homologous joint formation.
Collapse
Affiliation(s)
- Jin Chen
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Qingnan Tang
- Department of Physics, National University of Singapore, 117542, Singapore
| | - Shiwen Guo
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Chen Lu
- Mechanobiology Institute, National University of Singapore, 117411, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, 117546, Singapore
| | - Shimin Le
- Mechanobiology Institute, National University of Singapore, 117411, Singapore.,Department of Physics, National University of Singapore, 117542, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, 117411, Singapore.,Department of Physics, National University of Singapore, 117542, Singapore.,Centre for Bioimaging Sciences, National University of Singapore, 117546, Singapore
| |
Collapse
|
2
|
Blouin S, Craggs TD, Lafontaine DA, Penedo JC. Functional Studies of DNA-Protein Interactions Using FRET Techniques. Methods Mol Biol 2016; 1334:115-41. [PMID: 26404147 DOI: 10.1007/978-1-4939-2877-4_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein-DNA interactions underpin life and play key roles in all cellular processes and functions including DNA transcription, packaging, replication, and repair. Identifying and examining the nature of these interactions is therefore a crucial prerequisite to understand the molecular basis of how these fundamental processes take place. The application of fluorescence techniques and in particular fluorescence resonance energy transfer (FRET) to provide structural and kinetic information has experienced a stunning growth during the past decade. This has been mostly promoted by new advances in the preparation of dye-labeled nucleic acids and proteins and in optical sensitivity, where its implementation at the level of individual molecules has opened a new biophysical frontier. Nowadays, the application of FRET-based techniques to the analysis of protein-DNA interactions spans from the classical steady-state and time-resolved methods averaging over large ensembles to the analysis of distances, conformational changes, and enzymatic reactions in individual protein-DNA complexes. This chapter introduces the practical aspects of applying these methods for the study of protein-DNA interactions.
Collapse
Affiliation(s)
- Simon Blouin
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Daniel A Lafontaine
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 Boulevard de L'Université, Sherbrooke, QC, Canada, J1K 2R1.
| | - J Carlos Penedo
- School of Physics and Astronomy, University of St. Andrews, St. Andrews, UK
| |
Collapse
|
3
|
Peacock-Villada A, Yang D, Danilowicz C, Feinstein E, Pollock N, McShan S, Coljee V, Prentiss M. Complementary strand relocation may play vital roles in RecA-based homology recognition. Nucleic Acids Res 2012; 40:10441-51. [PMID: 22941658 PMCID: PMC3488227 DOI: 10.1093/nar/gks769] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RecA-family proteins mediate homologous recombination and recombinational DNA repair through homology search and strand exchange. Initially, the protein forms a filament with the incoming single-stranded DNA (ssDNA) bound in site I. The RecA–ssDNA filament then binds double-stranded DNA (dsDNA) in site II. Non-homologous dsDNA rapidly unbinds, whereas homologous dsDNA undergoes strand exchange yielding heteroduplex dsDNA in site I and the leftover outgoing strand in site II. We show that applying force to the ends of the complementary strand significantly retards strand exchange, whereas applying the same force to the outgoing strand does not. We also show that crystallographically determined binding site locations require an intermediate structure in addition to the initial and final structures. Furthermore, we demonstrate that the characteristic dsDNA extension rates due to strand exchange and free RecA binding are the same, suggesting that relocation of the complementary strand from its position in the intermediate structure to its position in the final structure limits both rates. Finally, we propose that homology recognition is governed by transitions to and from the intermediate structure, where the transitions depend on differential extension in the dsDNA. This differential extension drives strand exchange forward for homologs and increases the free energy penalty for strand exchange of non-homologs.
Collapse
|
4
|
Ragunathan K, Joo C, Ha T. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 2011; 19:1064-73. [PMID: 21827943 DOI: 10.1016/j.str.2011.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/23/2011] [Accepted: 06/07/2011] [Indexed: 11/25/2022]
Abstract
RecA binds to single-stranded (ss) DNA to form a helical filament that catalyzes strand exchange with a homologous double-stranded (ds) DNA. The study of strand exchange in ensemble assays is limited by the diffusion limited homology search process, which masks the subsequent strand exchange reaction. We developed a single-molecule fluorescence assay with a few base-pair and millisecond resolution that can separate initial docking from the subsequent propagation of joint molecule formation. Our data suggest that propagation occurs in 3 bp increments with destabilization of the incoming dsDNA and concomitant pairing with the reference ssDNA. Unexpectedly, we discovered the formation of a dynamic complex between RecA and the displaced DNA that remains bound transiently after joint molecule formation. This finding could have important implications for the irreversibility of strand exchange. Our model for strand exchange links structural models of RecA to its catalytic function.
Collapse
Affiliation(s)
- Kaushik Ragunathan
- Center for Biophysics and Computational Biology, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
5
|
Conover AJ, Danilowicz C, Gunaratne R, Coljee VW, Kleckner N, Prentiss M. Changes in the tension in dsDNA alter the conformation of RecA bound to dsDNA-RecA filaments. Nucleic Acids Res 2011; 39:8833-43. [PMID: 21768124 PMCID: PMC3203582 DOI: 10.1093/nar/gkr561] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The RecA protein is an ATPase that mediates recombination via strand exchange. In strand exchange a single-stranded DNA (ssDNA) bound to RecA binding site I in a RecA/ssDNA filament pairs with one strand of a double-stranded DNA (dsDNA) and forms heteroduplex dsDNA in site I if homology is encountered. Long sequences are exchanged in a dynamic process in which initially unbound dsDNA binds to the leading end of a RecA/ssDNA filament, while heteroduplex dsDNA unbinds from the lagging end via ATP hydrolysis. ATP hydrolysis is required to convert the active RecA conformation, which cannot unbind, to the inactive conformation, which can unbind. If dsDNA extension due to RecA binding increases the dsDNA tension, then RecA unbinding must decrease tension. We show that in the presence of ATP hydrolysis decreases in tension induce decreases in length whereas in the absence of hydrolysis, changes in tension have no systematic effect. These results suggest that decreases in force enhance dissociation by promoting transitions from the active to the inactive RecA conformation. In contrast, increases in tension reduce dissociation. Thus, the changes in tension inherent to strand exchange may couple with ATP hydrolysis to increase the directionality and stringency of strand exchange.
Collapse
Affiliation(s)
- Alyson J Conover
- Department of Physics and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | |
Collapse
|
6
|
Tsai YC, Wang Y, Urena DE, Kumar S, Chen J. Heterology tolerance and recognition of mismatched base pairs by human Rad51 protein. DNA Repair (Amst) 2011; 10:363-72. [PMID: 21239234 DOI: 10.1016/j.dnarep.2010.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 12/15/2022]
Abstract
Human Rad51 (hRad51) promoted homology recognition and subsequent strand exchange are the key steps in human homologous recombination mediated repair of DNA double-strand breaks. However, it is still not clear how hRad51 deals with sequence heterology between the two homologous chromosomes in eukaryotic cells, which would lead to mismatched base pairs after strand exchange. Excessive tolerance of sequence heterology may compromise the fidelity of repair of DNA double-strand breaks. In this study, fluorescence resonance energy transfer (FRET) was used to monitor the heterology tolerance of human Rad51 mediated strand exchange reactions, in real time, by introducing either G-T or I-C mismatched base pairs between the two homologous DNA strands. The strand exchange reactions were much more sensitive to G-T than to I-C base pairs. These results imply that the recognition of homology and the tolerance of heterology by hRad51 may depend on the local structural motif adopted by the base pairs participating in strand exchange. AnhRad51 mutant protein (hRad51K133R), deficient in ATP hydrolysis, showed greater heterology tolerance to both types of mismatch base pairing, suggesting that ATPase activity may be important for maintenance of high fidelity homologous recombination DNA repair.
Collapse
Affiliation(s)
- Yu-Cheng Tsai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
7
|
Danilowicz C, Hatch K, Conover A, Ducas T, Gunaratne R, Coljee V, Prentiss M. Study of force induced melting of dsDNA as a function of length and conformation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:414106. [PMID: 21386589 PMCID: PMC4752207 DOI: 10.1088/0953-8984/22/41/414106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We measure the constant force required to melt double-stranded (ds) DNA as a function of length for lengths from 12 to 100,000 base pairs, where the force is applied to the 3'3' or 5'5' ends of the dsDNA. Molecules with 32 base pairs or fewer melt before overstretching. For these short molecules, the melting force is independent of the ends to which the force is applied and the shear force as a function of length is well described by de Gennes theory with a de Gennes length of less than 10 bp. Molecules with lengths of 500 base pairs or more overstretch before melting. For these long molecules, the melting force depends on the ends to which the force is applied. The melting force as a function of length increases even when the length exceeds 1000 bp, where the length dependence is inconsistent with de Gennes theory. Finally, we expand de Gennes melting theory to 3'5' pulling and compare the predictions with experimental results.
Collapse
Affiliation(s)
| | - Kristi Hatch
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Alyson Conover
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Theodore Ducas
- Department of Physics, Wellesley College, Wellesley, MA 02481, USA
| | - Ruwan Gunaratne
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Vincent Coljee
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Volodin AA, Bocharova TN, Smirnova EA, Camerini-Otero RD. Reversibility, equilibration, and fidelity of strand exchange reaction between short oligonucleotides promoted by RecA protein from escherichia coli and human Rad51 and Dmc1 proteins. J Biol Chem 2009; 284:1495-504. [PMID: 19004837 PMCID: PMC2615514 DOI: 10.1074/jbc.m800612200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 10/21/2008] [Indexed: 11/06/2022] Open
Abstract
We demonstrate the reversibility of RecA-promoted strand exchange reaction between short oligonucleotides in the presence of adenosine 5'-O-(thiotriphosphate). The reverse reaction proceeds without the dissociation of RecA from DNA. The reaction reaches equilibrium and its yield depends on the homology between the reaction substrates. We estimate the tolerance of the RecA-promoted strand exchange to individual base substitutions for a comprehensive set of possible base combinations in a selected position along oligonucleotide substrates for strand exchange and find, in agreement with previously reported estimations, that this tolerance is higher than in the case of free DNA. It is demonstrated that the short oligonucleotide-based approach can be applied to the human recombinases Rad51 and Dmc1 when strand exchange is performed in the presence of calcium ions and ATP. Remarkably, despite the commonly held belief that the eukaryotic recombinases have an inherently lower strand exchange activity, in our system their efficiencies in strand exchange are comparable with that of RecA. Under our experimental conditions, the human recombinases exhibit a significantly higher tolerance to interruptions of homology due to point base substitutions than RecA. Finding conditions where a chemical reaction is reversible and reaches equilibrium is critically important for its thermodynamically correct description. We believe that the experimental system described here will substantially facilitate further studies on different aspects of the mechanisms of homologous recombination.
Collapse
Affiliation(s)
- Alexander A Volodin
- Institute of Molecular Genetics of the Russian Academy of Sciences, Kurchatov Square, 123182 Moscow, Russia
| | | | | | | |
Collapse
|
9
|
Blouin S, Craggs TD, Lafontaine DA, Penedo JC. Functional studies of DNA-protein interactions using FRET techniques. Methods Mol Biol 2009; 543:475-502. [PMID: 19378182 DOI: 10.1007/978-1-60327-015-1_28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-DNA interactions underpin life and play key roles in all cellular processes and functions including DNA transcription, packaging, replication, and repair. Identifying and examining the nature of these interactions is therefore a crucial prerequisite to understand the molecular basis of how these fundamental processes take place. The application of fluorescence techniques and in particular fluorescence resonance energy transfer (FRET) to provide structural and kinetic information has experienced a stunning growth during the past decade. This has been mostly promoted by new advances in the preparation of dye-labeled nucleic acids and proteins and in optical sensitivity, where its implementation at the level of individual molecules has opened a new biophysical frontier. Nowadays, the application of FRET-based techniques to the analysis of protein-DNA interactions spans from the classical steady-state and time-resolved methods averaging over large ensembles to the analysis of distances, conformational changes, and enzymatic reactions in individual Protein-DNA complexes. This chapter introduces the practical aspects of applying these methods for the study of Protein-DNA interactions.
Collapse
Affiliation(s)
- Simon Blouin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boul. Université, Sherbrooke, QC, Canada, J1K 2R1
| | | | | | | |
Collapse
|
10
|
Homologous recombination in real time: DNA strand exchange by RecA. Mol Cell 2008; 30:530-8. [PMID: 18498754 DOI: 10.1016/j.molcel.2008.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 11/02/2007] [Accepted: 03/07/2008] [Indexed: 11/20/2022]
Abstract
Homologous recombination, the exchange of strands between different DNA molecules, is essential for proper maintenance and accurate duplication of the genome. Using magnetic tweezers, we monitor RecA-driven homologous recombination of individual DNA molecules in real time. We resolve several key aspects of DNA structure during and after strand exchange. Changes in DNA length and twist yield helical parameters for the protein-bound three-stranded structure in conditions in which ATP was not hydrolyzed. When strand exchange was completed under ATP hydrolysis conditions that allow protein dissociation, a "D wrap" structure formed. During homologous recombination, strand invasion at one end and RecA dissociation at the other end occurred at the same rate, and our single-molecule analysis indicated that a region of only about 80 bp is actively involved in the synapsis at any time during the entire reaction involving a long ( approximately 1 kb) region of homology.
Collapse
|
11
|
Lim TC, Bailey VJ, Ho YP, Wang TH. Intercalating dye as an acceptor in quantum-dot-mediated FRET. NANOTECHNOLOGY 2008; 19:075701. [PMID: 21817649 DOI: 10.1088/0957-4484/19/7/075701] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fluorescence resonance energy transfer (FRET) is a popular tool to study intermolecular distances and characterize structural or conformational changes of biological macromolecules. We investigate a novel inorganic/organic FRET pair with quantum dots (QDs) as donors and DNA intercalating dyes, BOBO-3, as acceptors by using DNA as a linker. Typically, FRET efficiency increases with the number of stained DNA linked to a QD. However, with the use of intercalating dyes, we demonstrate that FRET efficiency at a fixed DNA:QD ratio can be further enhanced by increasing the number of dyes stained to a DNA strand through the use of an increased staining dye/bp ratio. We exploit this flexibility in the staining ratio to maintain a high FRET efficiency of >0.90 despite a sixfold decrease in DNA concentration. Having characterized this new QD-mediated FRET system, we test this system in a cellular environment using nanocomplexes generated by encapsulating DNA with commercial non-viral gene carriers. Using this novel FRET pair, we are able to monitor the configuration changes and fate of the DNA nanocomplexes during intracellular delivery, thereby providing an insight into the mechanistic study of gene delivery.
Collapse
Affiliation(s)
- Teck Chuan Lim
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA
| | | | | | | |
Collapse
|
12
|
Lanzov VA. RecA homologous DNA transferase: Functional activities and a search for homology by recombining DNA molecules. Mol Biol 2007. [DOI: 10.1134/s0026893307030077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Singleton SF, Roca AI, Lee AM, Xiao J. Probing the structure of RecA-DNA filaments. Advantages of a fluorescent guanine analog. Tetrahedron 2007; 63:3553-3566. [PMID: 17955055 PMCID: PMC2031864 DOI: 10.1016/j.tet.2006.10.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The RecA protein of Escherichia coli plays a crucial roles in DNA recombination and repair, as well as various aspects of bacterial pathogenicity. The formation of a RecA-ATP-ssDNA complex initiates all RecA activities and yet a complete structural and mechanistic description of this filament has remained elusive. An analysis of RecA-DNA interactions was performed using fluorescently labeled oligonucleotides. A direct comparison was made between fluorescein and several fluorescent nucleosides. The fluorescent guanine analog 6-methylisoxanthopterin (6MI) demonstrated significant advantages over the other fluorophores and represents an important new tool for characterizing RecA-DNA interactions.
Collapse
Affiliation(s)
- Scott F. Singleton
- Division of Medicinal Chemistry & Natural Products, School of Pharmacy, The University of North Carolina at Chapel Hill, CB 7360, Chapel Hill, NC 27599-7360, USA
| | | | | | | |
Collapse
|
14
|
Egel R. RecA-DNA filament topology: the overlooked alternative of an unconventional syn-syn duplex intermediate. DNA Repair (Amst) 2007; 6:669-75. [PMID: 17317338 DOI: 10.1016/j.dnarep.2006.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/17/2006] [Accepted: 12/21/2006] [Indexed: 10/23/2022]
Abstract
The helical filaments of RecA protein mediate strand exchange for homologous recombination, but the paths of the interacting DNAs have yet to be determined. Although this interaction is commonly limited to three strands, it is reasoned here that the intrinsic symmetry relationships of quadruplex topology are superior in explaining a range of observations. In particular, this topology suggests the potential of post-exchange base pairing in the unorthodox configuration of syn-syn glycosidic bonds between the nucleotide bases and the pentose rings in the sugar-phosphate backbone, which would transiently be stabilized by the external scaffolding of the RecA protein filament.
Collapse
Affiliation(s)
- Richard Egel
- Institute of Molecular Biology and Physiology, University of Copenhagen, Ole Maaløe Vej 5, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
15
|
Genetics of recombination in the model bacterium Escherichia coli. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
The bacterial RecA protein: structure, function, and regulation. MOLECULAR GENETICS OF RECOMBINATION 2007. [DOI: 10.1007/978-3-540-71021-9_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Gavory G, Symmons MF, Ghosh YK, Klenerman D, Balasubramanian S. Structural analysis of the catalytic core of human telomerase RNA by FRET and molecular modeling. Biochemistry 2006; 45:13304-11. [PMID: 17073451 PMCID: PMC2196208 DOI: 10.1021/bi061150a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Telomerase is the ribonucleoprotein reverse transcriptase involved in the maintenance of the telomeres, the termini of eukaryotic chromosomes. The RNA component of human telomerase (hTR) consists of 451 nucleotides with the 5' half folding into a highly conserved catalytic core comprising the template region and an adjacent pseudoknot domain (nucleotides 1-208). While the secondary structure of hTR is established, there is little understanding of its three-dimensional (3D) architecture. Here, we have used fluorescence resonance energy transfer (FRET) between fluorescently labelled peptide nucleic acids, hybridized to defined single stranded regions of full length hTR, to evaluate long-range distances. Using molecular modeling, the distance constraints derived by FRET were subsequently used, together with the known secondary structure, to generate a 3D model of the catalytic core of hTR. An overlay of a large set of models generated has provided a low-resolution structure (6.5-8.0 A) that can readily be refined as new structural information becomes available. A notable feature of the modeled structure is the positioning of the template adjacent to the pseudoknot, which brings a number of conserved nucleotides close in space.
Collapse
Affiliation(s)
- Gérald Gavory
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Martyn F. Symmons
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | | | - David Klenerman
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Shankar Balasubramanian
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, U.K
- To whom correspondence should be addressed. Tel: +44-1223-336347. Fax: +44-1223-336362. E-mail:
| |
Collapse
|
18
|
Xiao J, Lee AM, Singleton SF. Direct evaluation of a kinetic model for RecA-mediated DNA-strand exchange: the importance of nucleic acid dynamics and entropy during homologous genetic recombination. Chembiochem 2006; 7:1265-78. [PMID: 16847846 DOI: 10.1002/cbic.200600038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Escherichia coli RecA protein is the prototype of a class of proteins that play central roles in genomic repair and recombination in all organisms. The unresolved mechanistic strategy by which RecA aligns a single strand of DNA with a duplex DNA and mediates a DNA strand switch is central to understanding homologous recombination. We explored the mechanism of RecA-mediated DNA-strand exchange using oligonucleotide substrates with the intrinsic fluorophore 6-methylisoxanthopterin. Pre-steady-state spectrofluorometric analysis elucidated the earliest transient intermediates formed during recombination and delineated the mechanistic strategy by which RecA facilitates this process. The structural features of the first detectable intermediate and the energetic characteristics of its formation were consistent with interactions between a few bases of the single-stranded DNA and the minor groove of a locally melted or stretched duplex DNA. Further analysis revealed RecA to be an unusual enzyme in that entropic rather than enthalpic contributions dominate its catalytic function, and no unambiguously active role for the protein was detected in the earliest molecular events of recombination. The data best support the conclusion that the mechanistic strategy of RecA likely relies on intrinsic DNA dynamics.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
19
|
Lee AM, Xiao J, Singleton SF. Origins of sequence selectivity in homologous genetic recombination: insights from rapid kinetic probing of RecA-mediated DNA strand exchange. J Mol Biol 2006; 360:343-59. [PMID: 16756994 DOI: 10.1016/j.jmb.2006.04.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/24/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Despite intense effort over the past 30 years, the molecular determinants of sequence selectivity in RecA-mediated homologous recombination have remained elusive. Here, we describe when and how sequence homology is recognized between DNA strands during recombination in the context of a kinetic model for RecA-mediated DNA strand exchange. We characterized the transient intermediates of the reaction using pre-steady-state kinetic analysis of strand exchange using oligonucleotide substrates containing a single fluorescent G analog. We observed that the reaction system was sensitive to heterology between the DNA substrates; however, such a "heterology effect" was not manifest when functional groups were added to or removed from the edges of the base-pairs facing the minor groove of the substrate duplex. Hence, RecA-mediated recombination must occur without the involvement of a triple helix, even as a transient intermediate in the process. The fastest detectable reaction phase was accelerated when the structure or stability of the substrate duplex was perturbed by internal mismatches or the replacement of G.C by I.C base-pairs. These findings indicate that the sequence specificity in recombination is achieved by Watson-Crick pairing in the context of base-pair dynamics inherent to the extended DNA structure bound by RecA during strand exchange.
Collapse
Affiliation(s)
- Andrew M Lee
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7360, USA
| | | | | |
Collapse
|
20
|
Xiao J, Lee AM, Singleton SF. Construction and evaluation of a kinetic scheme for RecA-mediated DNA strand exchange. Biopolymers 2006; 81:473-96. [PMID: 16421856 DOI: 10.1002/bip.20446] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Escherichia coli RecA protein is the prototype of a class of proteins playing a central role in genomic repair and recombination in all organisms. The unresolved mechanistic strategy by which RecA aligns a single strand of DNA with a duplex DNA and mediates a DNA strand switch is central to understanding its recombinational activities. Toward a molecular-level understanding of RecA-mediated DNA strand exchange, we explored its mechanism using oligonucleotide substrates and the intrinsic fluorescence of 6-methylisoxanthopterin (6MI). Steady- and presteady-state spectrofluorometric data demonstrate that the reaction proceeds via a sequential four-step mechanism comprising a rapid, bimolecular association step followed by three slower unimolecular steps. Previous authors have proposed multistep mechanisms involving two or three steps. Careful analysis of the differences among the experimental systems revealed a previously undiscovered intermediate (N1) whose formation may be crucial in the kinetic discrimination of homologous and heterologous sequences. This observation has important implications for probing the fastest events in DNA strand exchange using 6MI to further elucidate the molecular mechanisms of recombination and recombinational repair.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
21
|
Shi WX, Larson RG. Atomic force microscopic study of aggregation of RecA-DNA nucleoprotein filaments into left-handed supercoiled bundles. NANO LETTERS 2005; 5:2476-81. [PMID: 16351198 DOI: 10.1021/nl051783v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
RecA and its complexes with double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) are responsible for homologous recombination and DNA repair. In this study, we have observed, by atomic force microscopy (AFM), two-filament left-handed superhelices of RecA-dsDNA filaments that further interwind into four- or six-filament bundles, in addition to previously reported left-handed bundles of three or six filaments. Also revealed are four-filament bundles formed by further interwinding of two intrafilament superhelices of individual filaments. Pitches of superhelices of RecA-DNA filaments are similar to each other regardless the number of component filaments, and those formed on Phix174 RFII dsDNA and pNEB206A dsDNA are measured as 339.3 +/- 6.2 nm (690 counts of pitch/2) and 321.6 +/- 11.7 nm (101 counts of pitch/2), respectively, consistent with earlier measurements made by electron microscopy with a much smaller sample size. The study of these structures provides insight into the self-interactions of RecA and RecA-like proteins, which are present in all living cells, and into the general phenomenon of bundling, which is relevant to both biological and nonbiological filaments.
Collapse
Affiliation(s)
- Wei-Xian Shi
- Department of Chemical Engineering, University of Michigan, 3074 H.H. Dow, 2300 Hayward Street, Ann Arbor, MI 48109-2136, USA
| | | |
Collapse
|
22
|
Karymov M, Daniel D, Sankey OF, Lyubchenko YL. Holliday junction dynamics and branch migration: single-molecule analysis. Proc Natl Acad Sci U S A 2005; 102:8186-91. [PMID: 15917329 PMCID: PMC1140338 DOI: 10.1073/pnas.0407210102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Holliday junction (HJ) is a central intermediate in various genetic processes including homologous and site-specific recombination and DNA replication. Branch migration allows the exchange between homologous DNA regions, but the detailed mechanism for this key step of DNA recombination is unidentified. Here, we report direct real-time detection of branch migration in individual molecules. Using appropriately designed HJ constructs we were able to follow junction branch migration at the single-molecule level. Branch migration is detected as a stepwise random process with the overall kinetics dependent on Mg2+ concentration. We developed a theoretical approach to analyze the mechanism of HJ branch migration. The data show steps in which the junction flips between conformations favorable to branch migration and conformations unfavorable to it. In the favorable conformation (the extended HJ geometry), the branch can migrate over several base pairs detected, usually as a single large step. Mg2+ cations stabilize folded conformations and stall branch migration for a period considerably longer than the hopping step. The conformational flip and the variable base pair hopping step provide insights into the regulatory mechanism of genetic processes involving HJs.
Collapse
Affiliation(s)
- Mikhail Karymov
- School of Life Sciences, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
23
|
Folta-Stogniew E, O'Malley S, Gupta R, Anderson KS, Radding CM. Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein. Mol Cell 2004; 15:965-75. [PMID: 15383285 DOI: 10.1016/j.molcel.2004.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/06/2004] [Accepted: 07/01/2004] [Indexed: 11/26/2022]
Abstract
The unresolved mechanism by which a single strand of DNA recognizes homology in duplex DNA is central to understanding genetic recombination and repair of double-strand breaks. Using stopped-flow fluorescence we monitored strand exchange catalyzed by E. coli RecA protein, measuring simultaneously the rate of exchange of A:T base pairs and the rates of formation and dissociation of the three-stranded intermediates called synaptic complexes. The rate of exchange of A:T base pairs was indistinguishable from the rate of formation of synaptic complexes, whereas the rate of displacement of a single strand from complexes was five to ten times slower. This physical evidence shows that a subset of bases exchanges at a rate that is fast enough to account for recognition of homology. Together, several studies suggest that a mechanism governed by the dynamic structure of DNA and catalyzed by diverse enzymes underlies both recognition of homology and initiation of strand exchange.
Collapse
Affiliation(s)
- Ewa Folta-Stogniew
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
24
|
Wu Y, He Y, Moya IA, Qian X, Luo Y. Crystal structure of archaeal recombinase RADA: a snapshot of its extended conformation. Mol Cell 2004; 15:423-35. [PMID: 15304222 DOI: 10.1016/j.molcel.2004.07.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 06/25/2004] [Accepted: 06/29/2004] [Indexed: 12/18/2022]
Abstract
Homologous recombination of DNA plays crucial roles in repairing severe DNA damage and in generating genetic diversity. The process is facilitated by a superfamily of recombinases: bacterial RecA, archaeal RadA and Rad51, and eukaryal Rad51 and DMC1. These recombinases share a common ATP-dependent filamentous quaternary structure for binding DNA and facilitating strand exchange. We have determined the crystal structure of Methanococcus voltae RadA in complex with the ATP analog AMP-PNP at 2.0 A resolution. The RadA filament is a 106.7 A pitch helix with six subunits per turn. The DNA binding loops L1 and L2 are located in close proximity to the filament axis. The ATP analog is buried between two RadA subunits, a feature similar to that of the active filament of Escherichia coli RecA revealed by electron microscopy. The disposition of the N-terminal domain suggests a role of the Helix-hairpin-Helix motif in binding double-stranded DNA.
Collapse
Affiliation(s)
- Yan Wu
- Department of Biochemistry, University of Saskatchewan, A3 Health Sciences Building, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
25
|
Abstract
The bacterial RecA protein plays a central role in the repair of stalled replication forks, double-strand break repair, general recombination, induction of the SOS response, and SOS mutagenesis. The major activity of RecA in DNA metabolism is the promotion of DNA strand exchange reactions. RecA is the prototype for a ubiquitous family of proteins but exhibits a few activities that some of its eukaryotic, archaeal, and viral homologs appear to lack. In particular, the bacterial RecA protein possesses an apparent motor function that is not evident in the reactions promoted by the eukaryotic Rad51 protein. This motor may be needed only in a subset of the DNA metabolism contexts in which RecA protein functions. Models for the coupling of DNA strand exchange to ATP hydrolysis are examined.
Collapse
Affiliation(s)
- Michael M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
26
|
Gamper HB, Nulf CJ, Corey DR, Kmiec EB. The synaptic complex of RecA protein participates in hybridization and inverse strand exchange reactions. Biochemistry 2003; 42:2643-55. [PMID: 12614159 DOI: 10.1021/bi0205202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPgammaS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2'-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPgammaS.
Collapse
Affiliation(s)
- Howard B Gamper
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, BRB II/III Room 713, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
27
|
Lebedev DV, Baitin DM, Islamov AK, Kuklin AI, Shalguev VK, Lanzov VA, Isaev-Ivanov VV. Analytical model for determination of parameters of helical structures in solution by small angle scattering: comparison of RecA structures by SANS. FEBS Lett 2003; 537:182-6. [PMID: 12606054 DOI: 10.1016/s0014-5793(03)00107-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The filament structures of the self-polymers of RecA proteins from Escherichia coli and Pseudomonas aeruginosa, their complexes with ATPgammaS, phage M13 single-stranded DNA (ssDNA) and the tertiary complexes RecA::ATPgammaS::ssDNA were compared by small angle neutron scattering. A model was developed that allowed for an analytical solution for small angle scattering on a long helical filament, making it possible to obtain the helical pitch and the mean diameter of the protein filament from the scattering curves. The results suggest that the structure of the filaments formed by these two RecA proteins, and particularly their complexes with ATPgammaS, is conservative.
Collapse
Affiliation(s)
- D V Lebedev
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Russia
| | | | | | | | | | | | | |
Collapse
|