1
|
Nikolopoulos N, Matos RC, Ravaud S, Courtin P, Akherraz H, Palussiere S, Gueguen-Chaignon V, Salomon-Mallet M, Guillot A, Guerardel Y, Chapot-Chartier MP, Grangeasse C, Leulier F. Structure-function analysis of Lactiplantibacillus plantarum DltE reveals D-alanylated lipoteichoic acids as direct cues supporting Drosophila juvenile growth. eLife 2023; 12:e84669. [PMID: 37042660 PMCID: PMC10241514 DOI: 10.7554/elife.84669] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/11/2023] [Indexed: 04/13/2023] Open
Abstract
Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.
Collapse
Affiliation(s)
- Nikos Nikolopoulos
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - Renata C Matos
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| | - Stephanie Ravaud
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - Pascal Courtin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| | - Simon Palussiere
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, CNRS UAR3444, INSERM US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de LyonLyonFrance
| | - Marie Salomon-Mallet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Alain Guillot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yann Guerardel
- Institute for Glyco-core Research (iGCORE), Gifu UniversityGifuJapan
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et FonctionnelleLilleFrance
| | | | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, CNRS UMR 5086, Université Claude Bernard Lyon 1LyonFrance
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1LyonFrance
| |
Collapse
|
2
|
Santos JC, Handa S, Fernandes LGV, Bleicher L, Gandin CA, de Oliveira-Neto M, Ghosh P, Nascimento ALTO. Structural and biochemical characterization of Leptospira interrogans Lsa45 reveals a penicillin-binding protein with esterase activity. Process Biochem 2023; 125:141-153. [PMID: 36643388 PMCID: PMC9836055 DOI: 10.1016/j.procbio.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leptospirosis is a bacterial disease that affects humans and animals and is caused by Leptospira. The recommended treatment for leptospirosis is antibiotic therapy, which should be given early in the course of the disease. Despite the use of these antibiotics, their role during the course of the disease is still not completely clear because of the lack of effective clinical trials, particularly for severe cases of the disease. Here, we present the characterization of L. interrogans Lsa45 protein by gel filtration, protein crystallography, SAXS, fluorescence and enzymatic assays. The oligomeric studies revealed that Lsa45 is monomeric in solution. The crystal structure of Lsa45 revealed the presence of two subdomains: a large α/β subdomain and a small α-helical subdomain. The large subdomain contains the amino acids Ser122, Lys125, and Tyr217, which correspond to the catalytic triad that is essential for β-lactamase or serine hydrolase activity in similar enzymes. Additionally, we also confirmed the bifunctional promiscuity of Lsa45, in hydrolyzing both the 4-nitrophenyl acetate (p-NPA) and nitrocefin β-lactam antibiotic. Therefore, this study provides novel insights into the structure and function of enzymes from L. interrogans, which furthers our understanding of this bacterium and the development of new therapies for the prevention and treatment of leptospirosis.
Collapse
Affiliation(s)
- Jademilson C. Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
- Instituto Federal da Bahia – IFBA - Rodovia BR-367, R. José Fontana, 1, 45810-000, Porto Seguro - BA, Brazil
| | - Sumit Handa
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - César A. Gandin
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Dep. de Física e Biofísica, Botucatu, SP, Brazil
| | - Mario de Oliveira-Neto
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Dep. de Física e Biofísica, Botucatu, SP, Brazil
| | - Partho Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, CA 92093, USA
| | - Ana Lucia T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, 05503-900, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Abstract
Most bacteria are protected from environmental offenses by a cell wall consisting of strong yet elastic peptidoglycan. The cell wall is essential for preserving bacterial morphology and viability, and thus the enzymes involved in the production and turnover of peptidoglycan have become preferred targets for many of our most successful antibiotics. In the past decades, Vibrio cholerae, the gram-negative pathogen causing the diarrheal disease cholera, has become a major model for understanding cell wall genetics, biochemistry, and physiology. More than 100 articles have shed light on novel cell wall genetic determinants, regulatory links, and adaptive mechanisms. Here we provide the first comprehensive review of V. cholerae's cell wall biology and genetics. Special emphasis is placed on the similarities and differences with Escherichia coli, the paradigm for understanding cell wall metabolism and chemical structure in gram-negative bacteria.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Sara B Hernandez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå SE-90187, Sweden;
| |
Collapse
|
4
|
Saidjalolov S, Edoo Z, Fonvielle M, Mayer L, Iannazzo L, Arthur M, Etheve-Quelquejeu M, Braud E. Synthesis of Carbapenems Containing Peptidoglycan Mimetics and Inhibition of the Cross-Linking Activity of a Transpeptidase of l,d Specificity. Chemistry 2021; 27:3542-3551. [PMID: 33336443 DOI: 10.1002/chem.202004831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 11/07/2022]
Abstract
The carbapenem class of β-lactams has been optimized against Gram-negative bacteria producing extended-spectrum β-lactamases by introducing substituents at position C2. Carbapenems are currently investigated for the treatment of tuberculosis as these drugs are potent covalent inhibitors of l,d-transpeptidases involved in mycobacterial cell wall assembly. The optimization of carbapenems for inactivation of these unusual targets is sought herein by exploiting the nucleophilicity of the C8 hydroxyl group to introduce chemical diversity. As β-lactams are structure analogs of peptidoglycan precursors, the substituents were chosen to increase similarity between the drug and the substrate. Fourteen peptido-carbapenems were efficiently synthesized. They were more effective than the reference drug, meropenem, owing to the positive impact of a phenethylthio substituent introduced at position C2 but the peptidomimetics added at position C8 did not further improve the activity. Thus, position C8 can be modified to modulate the pharmacokinetic properties of highly efficient carbapenems.
Collapse
Affiliation(s)
- Saidbakhrom Saidjalolov
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Zainab Edoo
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Matthieu Fonvielle
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Louis Mayer
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Laura Iannazzo
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Michel Arthur
- INSERM UMRS 1138, Sorbonne Universités, UPMC Univ Paris 06, Sorbonne Paris Cité, Université de Paris, Centre de recherche des Cordeliers, Paris, 75006, France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| | - Emmanuelle Braud
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université de Paris, 45, rue des saints-pères, Paris, 75006, France
| |
Collapse
|
5
|
Shalaby MAW, Dokla EME, Serya RAT, Abouzid KAM. Penicillin binding protein 2a: An overview and a medicinal chemistry perspective. Eur J Med Chem 2020; 199:112312. [PMID: 32442851 DOI: 10.1016/j.ejmech.2020.112312] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
Antimicrobial resistance is an imminent threat worldwide. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the "superbug" family, manifesting resistance through the production of a penicillin binding protein, PBP2a, an enzyme that provides its transpeptidase activity to allow cell wall biosynthesis. PBP2a's low affinity to most β-lactams, confers resistance to MRSA against numerous members of this class of antibiotics. An Achilles' heel of MRSA, PBP2a represents a substantial target to design novel antibiotics to tackle MRSA threat via inhibition of the bacterial cell wall biosynthesis. In this review we bring into focus the PBP2a enzyme and examine the various aspects related to its role in conferring resistance to MRSA strains. Moreover, we discuss several antibiotics and antimicrobial agents designed to target PBP2a and their therapeutic potential to meet such a grave threat. In conclusion, we consider future perspectives for targeting MRSA infections.
Collapse
Affiliation(s)
- Menna-Allah W Shalaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Rabah A T Serya
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Khaled A M Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt; Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt.
| |
Collapse
|
6
|
Cochrane SA, Lohans CT. Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. Eur J Med Chem 2020; 194:112262. [PMID: 32248005 DOI: 10.1016/j.ejmech.2020.112262] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
The enzymes involved in bacterial cell wall synthesis are established antibiotic targets, and continue to be a central focus for antibiotic development. Bacterial penicillin-binding proteins (and, in some bacteria, l,d-transpeptidases) form essential peptide cross-links in the cell wall. Although the β-lactam class of antibiotics target these enzymes, bacterial resistance threatens their clinical use, and there is an urgent unmet need for new antibiotics. However, the search for new antibiotics targeting the bacterial cell wall is hindered by a number of obstacles associated with screening the enzymes involved in peptidoglycan synthesis. This review describes recent approaches for measuring the activity and inhibition of penicillin-binding proteins and l,d-transpeptidases, highlighting strategies that are poised to serve as valuable tools for high-throughput screening of transpeptidase inhibitors, supporting the development of new antibiotics.
Collapse
Affiliation(s)
- Stephen A Cochrane
- School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Queen's University Belfast, Belfast, BT9 5AG, UK.
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada.
| |
Collapse
|
7
|
Catherwood AC, Lloyd AJ, Tod JA, Chauhan S, Slade SE, Walkowiak GP, Galley NF, Punekar AS, Smart K, Rea D, Evans ND, Chappell MJ, Roper DI, Dowson CG. Substrate and Stereochemical Control of Peptidoglycan Cross-Linking by Transpeptidation by Escherichia coli PBP1B. J Am Chem Soc 2020; 142:5034-5048. [DOI: 10.1021/jacs.9b08822] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Dynamical Behavior of β-Lactamases and Penicillin- Binding Proteins in Different Functional States and Its Potential Role in Evolution. ENTROPY 2019. [PMCID: PMC7514474 DOI: 10.3390/e21111130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
β-Lactamases are enzymes produced by bacteria to hydrolyze β-lactam-based antibiotics, and pose serious threat to public health through related antibiotic resistance. Class A β-lactamases are structurally and functionally related to penicillin-binding proteins (PBPs). Despite the extensive studies of the structures, catalytic mechanisms and dynamics of both β-lactamases and PBPs, the potentially different dynamical behaviors of these proteins in different functional states still remain elusive in general. In this study, four evolutionarily related proteins, including TEM-1 and TOHO-1 as class A β-lactamases, PBP-A and DD-transpeptidase as two PBPs, are subjected to molecular dynamics simulations and various analyses to characterize their dynamical behaviors in different functional states. Penicillin G and its ring opening product serve as common ligands for these four proteins of interest. The dynamic analyses of overall structures, the active sites with penicillin G, and three catalytically important residues commonly shared by all four proteins reveal unexpected cross similarities between Class A β-lactamases and PBPs. These findings shed light on both the hidden relations among dynamical behaviors of these proteins and the functional and evolutionary relations among class A β-lactamases and PBPs.
Collapse
|
9
|
Abstract
AbstractFormaldehyde is a biological electrophile produced via processes including enzymatic demethylation. Despite its apparent simplicity, the reactions of formaldehyde with even basic biological components are incompletely defined. Here we report NMR-based studies on the reactions of formaldehyde with common proteinogenic and other nucleophilic amino acids. The results reveal formaldehyde reacts at different rates, forming hydroxymethylated, cyclised, cross-linked, or disproportionated products of varying stabilities. Of the tested common amino acids, cysteine reacts most efficiently, forming a stable thiazolidine. The reaction with lysine is less efficient; low levels of an Nε-methylated product are observed, raising the possibility of non-enzymatic lysine methylation by formaldehyde. Reactions with formaldehyde are faster than reactions with other tested biological carbonyl compounds, and the adducts are also more stable. The results reveal reactions of formaldehyde with amino acids, and by extension peptides and proteins, have potential roles in healthy and diseased biology, as well as in evolution.
Collapse
|
10
|
Triboulet S, Edoo Z, Compain F, Ourghanlian C, Dupuis A, Dubée V, Sutterlin L, Atze H, Etheve-Quelquejeu M, Hugonnet JE, Arthur M. Tryptophan Fluorescence Quenching in β-Lactam-Interacting Proteins Is Modulated by the Structure of Intermediates and Final Products of the Acylation Reaction. ACS Infect Dis 2019; 5:1169-1176. [PMID: 31056908 DOI: 10.1021/acsinfecdis.9b00023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In most bacteria, β-lactam antibiotics inhibit the last cross-linking step of peptidoglycan synthesis by acylation of the active-site Ser of d,d-transpeptidases belonging to the penicillin-binding protein (PBP) family. In mycobacteria, cross-linking is mainly ensured by l,d-transpeptidases (LDTs), which are promising targets for the development of β-lactam-based therapies for multidrug-resistant tuberculosis. For this purpose, fluorescence spectroscopy is used to investigate the efficacy of LDT inactivation by β-lactams but the basis for fluorescence quenching during enzyme acylation remains unknown. In contrast to what has been reported for PBPs, we show here using a model l,d-transpeptidase (Ldtfm) that fluorescence quenching of Trp residues does not depend upon direct hydrophobic interaction between Trp residues and β-lactams. Rather, Trp fluorescence was quenched by the drug covalently bound to the active-site Cys residue of Ldtfm. Fluorescence quenching was not quantitatively determined by the size of the drug and was not specific of the thioester link connecting the β-lactam carbonyl to the catalytic Cys as quenching was also observed for acylation of the active-site Ser of β-lactamase BlaC from M. tuberculosis. Fluorescence quenching was extensive for reaction intermediates containing an amine anion and for acylenzymes containing an imine stabilized by mesomeric effect, but not for acylenzymes containing a protonated β-lactam nitrogen. Together, these results indicate that the extent of fluorescence quenching is determined by the status of the β-lactam nitrogen. Thus, fluorescence kinetics can provide information not only on the efficacy of enzyme inactivation but also on the structure of the covalent adducts responsible for enzyme inactivation.
Collapse
Affiliation(s)
- Sebastien Triboulet
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Zainab Edoo
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Fabrice Compain
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue Leblanc, F-75015 Paris, France
| | - Clément Ourghanlian
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Adrian Dupuis
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Vincent Dubée
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Laetitia Sutterlin
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Heiner Atze
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Mélanie Etheve-Quelquejeu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, UMR 8601, Paris, F-75005 France
- CNRS UMR 8601, 45 rue des Saints-Pères, Paris, F-75006 France
| | - Jean-Emmanuel Hugonnet
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| | - Michel Arthur
- Sorbonne Université, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, INSERM, Centre de Recherche des Cordeliers, CRC, 15 rue de l’Ecole de Médecine, F-75006 Paris, France
| |
Collapse
|
11
|
Zhao H, Patel V, Helmann JD, Dörr T. Don't let sleeping dogmas lie: new views of peptidoglycan synthesis and its regulation. Mol Microbiol 2017; 106:847-860. [PMID: 28975672 DOI: 10.1111/mmi.13853] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
Abstract
Bacterial cell wall synthesis is the target for some of our most powerful antibiotics and has thus been the subject of intense research focus for more than 50 years. Surprisingly, we still lack a fundamental understanding of how bacteria build, maintain and expand their cell wall. Due to technical limitations, directly testing hypotheses about the coordination and biochemistry of cell wall synthesis enzymes or architecture has been challenging, and interpretation of data has therefore often relied on circumstantial evidence and implicit assumptions. A number of recent papers have exploited new technologies, like single molecule tracking and real-time, high resolution temporal mapping of cell wall synthesis processes, to address fundamental questions of bacterial cell wall biogenesis. The results have challenged established dogmas and it is therefore timely to integrate new data and old observations into a new model of cell wall biogenesis in rod-shaped bacteria.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Vaidehi Patel
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | - Tobias Dörr
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Biochemical and Structural Analysis of a Novel Esterase from Caulobacter crescentus related to Penicillin-Binding Protein (PBP). Sci Rep 2016; 6:37978. [PMID: 27905486 PMCID: PMC5131357 DOI: 10.1038/srep37978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/03/2016] [Indexed: 01/16/2023] Open
Abstract
Considering that the prevalence of antibiotic-resistant pathogenic bacteria is largely increasing, a thorough understanding of penicillin-binding proteins (PBPs) is of great importance and crucial significance because this enzyme family is a main target of β-lactam-based antibiotics. In this work, combining biochemical and structural analysis, we present new findings that provide novel insights into PBPs. Here, a novel PBP homologue (CcEstA) from Caulobacter crescentus CB15 was characterized using native-PAGE, mass spectrometry, gel filtration, CD spectroscopy, fluorescence, reaction kinetics, and enzyme assays toward various substrates including nitrocefin. Furthermore, the crystal structure of CcEstA was determined at a 1.9 Å resolution. Structural analyses showed that CcEstA has two domains: a large α/β domain and a small α-helix domain. A nucleophilic serine (Ser68) residue is located in a hydrophobic groove between the two domains along with other catalytic residues (Lys71 and Try157). Two large flexible loops (UL and LL) of CcEstA are proposed to be involved in the binding of incoming substrates. In conclusion, CcEstA could be described as a paralog of the group that contains PBPs and β-lactamases. Therefore, this study could provide new structural and functional insights into the understanding this protein family.
Collapse
|
13
|
Nemmara VV, Nicholas RA, Pratt RF. Synthesis and Kinetic Analysis of Two Conformationally Restricted Peptide Substrates of Escherichia coli Penicillin-Binding Protein 5. Biochemistry 2016; 55:4065-76. [PMID: 27420403 DOI: 10.1021/acs.biochem.6b00576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Escherichia coli PBP5 (penicillin-binding protein 5) is a dd-carboxypeptidase involved in bacterial cell wall maturation. Beyond the C-terminal d-alanyl-d-alanine moiety, PBP5, like the essential high-molecular mass PBPs, has little specificity for other elements of peptidoglycan structure, at least as elicited in vitro by small peptidoglycan fragments. On the basis of the crystal structure of a stem pentapeptide derivative noncovalently bound to E. coli PBP6 (Protein Data Bank entry 3ITB ), closely similar in structure to PBP5, we have modeled a pentapeptide structure at the active site of PBP5. Because the two termini of the pentapeptide are directed into solution in the PBP6 crystal structure, we then modeled a 19-membered cyclic peptide analogue by cross-linking the terminal amines by succinylation. An analogous smaller, 17-membered cyclic peptide, in which the l-lysine of the original was replaced by l-diaminobutyric acid, could also be modeled into the active site. We anticipated that, just as the reactivity of stem peptide fragments of peptidoglycan with PBPs in vivo may be entropically enhanced by immobilization in the polymer, so too would that of our cyclic peptides with respect to their acyclic analogues in vitro. This paper describes the synthesis of the peptides described above that were required to examine this hypothesis and presents an analysis of their structures and reaction kinetics with PBP5.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Robert A Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-7365, United States
| | - R F Pratt
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
14
|
Affiliation(s)
- R. F. Pratt
- Department
of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
15
|
Rani N, Vijayakumar S, P T V L, Arunachalam A. Allosteric site-mediated active site inhibition of PBP2a using Quercetin 3-O-rutinoside and its combination. J Biomol Struct Dyn 2016; 34:1778-96. [PMID: 26360629 DOI: 10.1080/07391102.2015.1092096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent crystallographic study revealed the involvement of allosteric site in active site inhibition of penicillin binding protein (PBP2a), where one molecule of Ceftaroline (Cef) binds to the allosteric site of PBP2a and paved way for the other molecule (Cef) to bind at the active site. Though Cef has the potency to inhibit the PBP2a, its adverse side effects are of major concern. Previous studies have reported the antibacterial property of Quercetin derivatives, a group of natural compounds. Hence, the present study aims to evaluate the effect of Quercetin 3-o-rutinoside (Rut) in allosteric site-mediated active site inhibition of PBP2a. The molecular docking studies between allosteric site and ligands (Rut, Que, and Cef) revealed a better binding efficiency (G-score) of Rut (-7.790318) and Cef (-6.194946) with respect to Que (-5.079284). Molecular dynamic (MD) simulation studies showed significant changes at the active site in the presence of ligands (Rut and Cef) at allosteric site. Four different combinations of Rut and Cef were docked and their G-scores ranged between -6.320 and -8.623. MD studies revealed the stability of the key residue (Ser403) with Rut being at both sites, compared to other complexes. Morphological analysis through electron microscopy confirmed that combination of Rut and Cefixime was able to disturb the bacterial cell membrane in a similar fashion to that of Rut and Cefixime alone. The results of this study indicate that the affinity of Rut at both sites were equally good, with further validations Rut could be considered as an alternative for inhibiting MRSA growth.
Collapse
Affiliation(s)
- Nidhi Rani
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , R. V. Nagar Kalapet, Pondicherry 605014 , India
| | - Saravanan Vijayakumar
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , R. V. Nagar Kalapet, Pondicherry 605014 , India.,b Centre for Advanced Study in Crystallography and Biophysics , University of Madras , Tamilnadu , India
| | - Lakshmi P T V
- a Centre for Bioinformatics, School of Life Sciences , Pondicherry University , R. V. Nagar Kalapet, Pondicherry 605014 , India
| | - Annamalai Arunachalam
- c Department of Botany , Sethupathy Government Arts and Science College, Alagappa University , Ramanathpuram , Tamil Nadu , India
| |
Collapse
|
16
|
Amini M, Bayrami A, Marashi MN, Arab A, Ellern A, Woo LK. Synthesis, structure, and catalytic properties of copper, palladium and cobalt complexes containing an N,O-type bidentate thiazoline ligand. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Tilvawala R, Cammarata M, Adediran SA, Brodbelt JS, Pratt RF. A New Covalent Inhibitor of Class C β-Lactamases Reveals Extended Active Site Specificity. Biochemistry 2015; 54:7375-84. [DOI: 10.1021/acs.biochem.5b01149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ronak Tilvawala
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Michael Cammarata
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - S. A. Adediran
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Jennifer S. Brodbelt
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - R. F. Pratt
- Department
of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
18
|
Structural and computational analysis of peptide recognition mechanism of class-C type penicillin binding protein, alkaline D-peptidase from Bacillus cereus DF4-B. Sci Rep 2015; 5:13836. [PMID: 26370172 PMCID: PMC4570186 DOI: 10.1038/srep13836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 01/07/2023] Open
Abstract
Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the crystal structure of ADP (apo) form was determined at 2.1 Å resolution. The fold of ADP is similar to that of the class C penicillin-binding proteins of type-AmpH. Docking simulations and fragment molecular orbital analyses of two peptides, (D-Phe)4 and (D-Phe)2-(L-Phe)2, with the putative substrate binding sites of ADP indicated that the P1 residue of the peptide interacts with hydrophobic residues at the S1 site of ADP. Furthermore, molecular dynamics simulation of ADP for 50 nsec suggested that the ADP forms large cavity at the active site. Formation of the cavity suggested that the ADP has open state in the solution. For the ADP, having the open state is convenient to bind the peptides having bulky side chain, such as (D-Phe)4. Taken together, we predicted peptide recognition mechanism of ADP.
Collapse
|
19
|
Stereo-selective synthesis, structural and antibacterial studies of novel glycosylated β2,3-amino acid analogues. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1370-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Fluorescent TEM-1 β-lactamase with wild-type activity as a rapid drug sensor for in vitro drug screening. Biosci Rep 2014; 34:BSR20140057. [PMID: 25074398 PMCID: PMC4155835 DOI: 10.1042/bsr20140057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report the development of a novel fluorescent drug sensor from the bacterial drug target TEM-1 β-lactamase through the combined strategy of Val216→Cys216 mutation and fluorophore labelling for in vitro drug screening. The Val216 residue in TEM-1 is replaced with a cysteine residue, and the environment-sensitive fluorophore fluorescein-5-maleimide is specifically attached to the Cys216 residue in the V216C mutant for sensing drug binding at the active site. The labelled V216C mutant has wild-type catalytic activity and gives stronger fluorescence when β-lactam antibiotics bind to the active site. The labelled V216C mutant can differentiate between potent and impotent β-lactam antibiotics and can distinguish active-site binders from non-binders (including aggregates formed by small molecules in aqueous solution) by giving characteristic time-course fluorescence profiles. Mass spectrometric, molecular modelling and trypsin digestion results indicate that drug binding at the active site is likely to cause the fluorescein label to stay away from the active site and experience weaker fluorescence quenching by the residues around the active site, thus making the labelled V216C mutant to give stronger fluorescence in the drug-bound state. Given the ancestor's role of TEM-1 in the TEM family, the fluorescent TEM-1 drug sensor represents a good model to demonstrate the general combined strategy of Val216→Cys216 mutation and fluorophore labelling for fabricating tailor-made fluorescent drug sensors from other clinically significant TEM-type β-lactamase variants for in vitro drug screening.
Collapse
|
21
|
Kamiya K, Baba T, Boero M, Matsui T, Negoro S, Shigeta Y. Nylon-Oligomer Hydrolase Promoting Cleavage Reactions in Unnatural Amide Compounds. J Phys Chem Lett 2014; 5:1210-1216. [PMID: 26274473 DOI: 10.1021/jz500323y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The active site of 6-aminohexanoate-dimer hydrolase, a nylon-6 byproduct-degrading enzyme with a β-lactamase fold, possesses a Ser112/Lys115/Tyr215 catalytic triad similar to the one of penicillin-recognizing family of serine-reactive hydrolases but includes a unique Tyr170 residue. By using a reactive quantum mechanics/molecular mechanics (QM/MM) approach, we work out its catalytic mechanism and related functional/structural specificities. At variance with other peptidases, we show that the involvement of Tyr170 in the enzyme-substrate interactions is responsible for a structural variation in the substrate-binding state. The acylation via a tetrahedral intermediate is the rate-limiting step, with a free-energy barrier of ∼21 kcal/mol, driven by the catalytic triad Ser112, Lys115, and Tyr215, acting as a nucleophile, general base, and general acid, respectively. The functional interaction of Tyr170 with this triad leads to an efficient disruption of the tetrahedral intermediate, promoting a conformational change of the substrate favorable for proton donation from the general acid.
Collapse
Affiliation(s)
- Katsumasa Kamiya
- †Center for Basic Education and Integrated Learning, Kanagawa Institute of Technology, 1030 Shimo-Ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Takeshi Baba
- ‡Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Mauro Boero
- §Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS and University of Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Toru Matsui
- ∥RIKEN, Advanced Institute for Computational Science, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Seiji Negoro
- ⊥Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280, Japan
| | - Yasuteru Shigeta
- ‡Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- #CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
22
|
Kumar KM, Anbarasu A, Ramaiah S. Molecular docking and molecular dynamics studies on β-lactamases and penicillin binding proteins. MOLECULAR BIOSYSTEMS 2014; 10:891-900. [PMID: 24503740 DOI: 10.1039/c3mb70537d] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial resistance to β-lactam antibiotics poses a serious threat to human health. Penicillin binding proteins (PBPs) and β-lactamases are involved in both antibacterial activity and mediation of β-lactam antibiotic resistance. The two major reasons for resistance to β-lactams include: (i) pathogenic bacteria expressing drug insensitive PBPs rendering β-lactam antibiotics ineffective and (ii) production of β-lactamases along with alteration of their specificities. Thus, there is an urgent need to develop newer β-lactams to overcome the challenge of bacterial resistance. Therefore the present study aims to identify the binding affinity of β-lactam antibiotics with different types of PBPs and β-lactamases. In this study, cephalosporins and carbapenems are docked into PBP2a of Staphylococcus aureus, PBP2b and PBP2x of Streptococcus pneumoniae and SHV-1 β-lactamase of Escherichia coli. The results reveal that Ceftobiprole can efficiently bind to PBP2a, PBP2b and PBP2x and not strongly to SHV-1 β-lactamase. Furthermore, molecular dynamics (MD) simulations are performed to refine the binding mode of the docked complex structure and to observe the differences in the stability of free PBP2x and Ceftobiprole bound PBP2x. MD simulation supports the greater stability of the Ceftobiprole-PBP2x complex compared to free PBP2x. This work demonstrates that potential β-lactam antibiotics can efficiently bind to different types of PBPs for circumventing β-lactam resistance and opens avenues for the development of newer antibiotics that can target bacterial pathogens.
Collapse
Affiliation(s)
- K M Kumar
- School of Biosciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India.
| | | | | |
Collapse
|
23
|
Hargis JC, Vankayala SL, White JK, Woodcock HL. Identification and Characterization of Noncovalent Interactions That Drive Binding and Specificity in DD-Peptidases and β-Lactamases. J Chem Theory Comput 2014; 10:855-864. [PMID: 24803854 PMCID: PMC3985439 DOI: 10.1021/ct400968v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Indexed: 11/29/2022]
Abstract
![]()
Bacterial
resistance to standard (i.e., β-lactam-based) antibiotics
has become a global pandemic. Simultaneously, research into the underlying
causes of resistance has slowed substantially, although its importance
is universally recognized. Key to unraveling critical details is characterization
of the noncovalent interactions that govern binding and specificity
(DD-peptidases, antibiotic targets, versus β-lactamases, the
evolutionarily
derived enzymes that play a major role in resistance) and ultimately
resistance as a whole. Herein, we describe a detailed investigation
that elicits new chemical insights into these underlying intermolecular
interactions. Benzylpenicillin and a novel β-lactam peptidomimetic
complexed to the Stremptomyces R61
peptidase are examined using an arsenal of computational techniques:
MD simulations, QM/MM calculations, charge perturbation analysis,
QM/MM orbital analysis, bioinformatics, flexible receptor/flexible
ligand docking, and computational ADME predictions. Several key molecular
level interactions are identified that not only shed light onto fundamental
resistance mechanisms, but also offer explanations for observed specificity.
Specifically, an extended π–π network is elucidated
that suggests antibacterial resistance has evolved, in part, due to
stabilizing aromatic interactions. Additionally, interactions between
the protein and peptidomimetic substrate are identified and characterized.
Of particular interest is a water-mediated salt bridge between Asp217
and the positively charged N-terminus of the peptidomimetic, revealing
an interaction that may significantly contribute to β-lactam
specificity. Finally, interaction information is used to suggest modifications
to current β-lactam compounds that should both improve binding
and specificity in DD-peptidases and their physiochemical properties.
Collapse
Affiliation(s)
- Jacqueline C Hargis
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Sai Lakshmana Vankayala
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - Justin K White
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| | - H Lee Woodcock
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, CHE205, Tampa, Florida 33620-5250, United States
| |
Collapse
|
24
|
van Berkel SS, Nettleship JE, Leung IKH, Brem J, Choi H, Stuart DI, Claridge TDW, McDonough MA, Owens RJ, Ren J, Schofield CJ. Binding of (5S)-penicilloic acid to penicillin binding protein 3. ACS Chem Biol 2013; 8:2112-6. [PMID: 23899657 DOI: 10.1021/cb400200h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
β-Lactam antibiotics react with penicillin binding proteins (PBPs) to form relatively stable acyl-enzyme complexes. We describe structures derived from the reaction of piperacillin with PBP3 (Pseudomonas aeruginosa) including not only the anticipated acyl-enzyme complex but also an unprecedented complex with (5S)-penicilloic acid, which was formed by C-5 epimerization of the nascent (5R)-penicilloic acid product. Formation of the complex was confirmed by solution studies, including NMR. Together, these results will be useful in the design of new PBP inhibitors and raise the possibility that noncovalent PBP inhibition by penicilloic acids may be of clinical relevance.
Collapse
Affiliation(s)
- Sander S. van Berkel
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1
3TA, U.K
| | - Joanne E. Nettleship
- Oxford Protein
Production Facility
U.K., Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Science and Innovation Campus, Oxfordshire
OX11 0FA, U.K
- Division of
Structural Biology, University of Oxford, Henry Wellcome Building for Genomic
Medicine, Oxford OX3 7BN, U.K
| | - Ivanhoe K. H. Leung
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1
3TA, U.K
| | - Jürgen Brem
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1
3TA, U.K
| | - Hwanho Choi
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1
3TA, U.K
| | - David I. Stuart
- Division of
Structural Biology, University of Oxford, Henry Wellcome Building for Genomic
Medicine, Oxford OX3 7BN, U.K
| | - Timothy D. W. Claridge
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1
3TA, U.K
| | - Michael A. McDonough
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1
3TA, U.K
| | - Raymond J. Owens
- Oxford Protein
Production Facility
U.K., Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Science and Innovation Campus, Oxfordshire
OX11 0FA, U.K
- Division of
Structural Biology, University of Oxford, Henry Wellcome Building for Genomic
Medicine, Oxford OX3 7BN, U.K
| | - Jingshan Ren
- Division of
Structural Biology, University of Oxford, Henry Wellcome Building for Genomic
Medicine, Oxford OX3 7BN, U.K
| | | |
Collapse
|
25
|
Amini M, Bigdeli M, Delsouz-Hafshejani S, Ellern A, Woo LK. Synthesis, X-ray Studies, and Catalytic Efficacy of a Novel Iron Complex Containing an N,O-Type Bidentate Thiazoline Ligand. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Nemmara VV, Adediran SA, Dave K, Duez C, Pratt RF. Dual substrate specificity of Bacillus subtilis PBP4a. Biochemistry 2013; 52:2627-37. [PMID: 23560856 DOI: 10.1021/bi400211q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial dd-peptidases are the targets of the β-lactam antibiotics. The sharp increase in bacterial resistance toward these antibiotics in recent years has stimulated the search for non-β-lactam alternatives. The substrates of dd-peptidases are elements of peptidoglycan from bacterial cell walls. Attempts to base dd-peptidase inhibitor design on peptidoglycan structure, however, have not been particularly successful to date because the specific substrates for most of these enzymes are unknown. It is known, however, that the preferred substrates of low-molecular mass (LMM) class B and C dd-peptidases contain the free N-terminus of the relevant peptidoglycan. Two very similar LMMC enzymes, for example, the Actinomadura R39 dd-peptidase and Bacillus subtilis PBP4a, recognize a d-α-aminopimelyl terminus. The peptidoglycan of B. subtilis in the vegetative stage, however, has the N-terminal d-α-aminopimelyl carboxylic acid amidated. The question is, therefore, whether the dd-peptidases of B. subtilis are separately specific to carboxylate or carboxamide or have dual specificity. This paper describes an investigation of this issue with B. subtilis PBP4a. This enzyme was indeed found to have a dual specificity for peptide substrates, both in the acyl donor and in the acyl acceptor sites. In contrast, the R39 dd-peptidase, from an organism in which the peptidoglycan is not amidated, has a strong preference for a terminal carboxylate. It was also found that acyl acceptors, reacting with acyl-enzyme intermediates, were preferentially d-amino acid amides for PBP4a and the corresponding amino acids for the R39 dd-peptidase. Examination of the relevant crystal structures, aided by molecular modeling, suggested that the expansion of specificity in PBP4a accompanies a change of Arg351 in the R39 enzyme and most LMMC dd-peptidases to histidine in PBP4a and its orthologs in other Bacillus sp. This histidine, in neutral form at pH 7, appeared to be able to favorably interact with both carboxylate and carboxamide termini of substrates, in agreement with the kinetic data. It may still be possible, in specific cases, to combat bacteria with new antibiotics based on particular elements of their peptidoglycan structure.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, USA
| | | | | | | | | |
Collapse
|
27
|
Dzhekieva L, Adediran SA, Herman R, Kerff F, Duez C, Charlier P, Sauvage E, Pratt RF. Inhibition of DD-peptidases by a specific trifluoroketone: crystal structure of a complex with the Actinomadura R39 DD-peptidase. Biochemistry 2013; 52:2128-38. [PMID: 23484909 DOI: 10.1021/bi400048s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibitors of bacterial DD-peptidases represent potential antibiotics. In the search for alternatives to β-lactams, we have investigated a series of compounds designed to generate transition state analogue structures upon reaction with DD-peptidases. The compounds contain a combination of a peptidoglycan-mimetic specificity handle and a warhead capable of delivering a tetrahedral anion to the enzyme active site. The latter includes a boronic acid, two alcohols, an aldehyde, and a trifluoroketone. The compounds were tested against two low-molecular mass class C DD-peptidases. As expected from previous observations, the boronic acid was a potent inhibitor, but rather unexpectedly from precedent, the trifluoroketone [D-α-aminopimelyl(1,1,1-trifluoro-3-amino)butan-2-one] was also very effective. Taking into account competing hydration, we found the trifluoroketone was the strongest inhibitor of the Actinomadura R39 DD-peptidase, with a subnanomolar (free ketone) inhibition constant. A crystal structure of the complex between the trifluoroketone and the R39 enzyme showed that a tetrahedral adduct had indeed formed with the active site serine nucleophile. The trifluoroketone moiety, therefore, should be considered along with boronic acids and phosphonates as a warhead that can be incorporated into new and effective DD-peptidase inhibitors and therefore, perhaps, antibiotics.
Collapse
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University , Lawn Avenue, Middletown, Connecticut 06459, United States
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lovering AL, Safadi SS, Strynadka NCJ. Structural perspective of peptidoglycan biosynthesis and assembly. Annu Rev Biochem 2012; 81:451-78. [PMID: 22663080 DOI: 10.1146/annurev-biochem-061809-112742] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The peptidoglycan biosynthetic pathway is a critical process in the bacterial cell and is exploited as a target for the design of antibiotics. This pathway culminates in the production of the peptidoglycan layer, which is composed of polymerized glycan chains with cross-linked peptide substituents. This layer forms the major structural component of the protective barrier known as the cell wall. Disruption in the assembly of the peptidoglycan layer causes a weakened cell wall and subsequent bacterial lysis. With bacteria responsible for both properly functioning human health (probiotic strains) and potentially serious illness (pathogenic strains), a delicate balance is necessary during clinical intervention. Recent research has furthered our understanding of the precise molecular structures, mechanisms of action, and functional interactions involved in peptidoglycan biosynthesis. This research is helping guide our understanding of how to capitalize on peptidoglycan-based therapeutics and, at a more fundamental level, of the complex machinery that creates this critical barrier for bacterial survival.
Collapse
Affiliation(s)
- Andrew L Lovering
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
29
|
Dzhekieva L, Kumar I, Pratt RF. Inhibition of Bacterial DD-Peptidases (Penicillin-Binding Proteins) in Membranes and in Vivo by Peptidoglycan-Mimetic Boronic Acids. Biochemistry 2012; 51:2804-11. [DOI: 10.1021/bi300148v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| | - Ish Kumar
- School of Natural
Sciences, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| |
Collapse
|
30
|
Nemmara VV, Dzhekieva L, Sarkar KS, Adediran SA, Duez C, Nicholas RA, Pratt RF. Substrate specificity of low-molecular mass bacterial DD-peptidases. Biochemistry 2011; 50:10091-101. [PMID: 22029692 DOI: 10.1021/bi201326a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD-peptidases achieve substrate specificity, both in vitro and in vivo, remains unknown.
Collapse
Affiliation(s)
- Venkatesh V Nemmara
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bobba S, Gutheil WG. Multivariate geometrical analysis of catalytic residues in the penicillin-binding proteins. Int J Biochem Cell Biol 2011; 43:1490-9. [PMID: 21740978 DOI: 10.1016/j.biocel.2011.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 06/22/2011] [Indexed: 12/11/2022]
Abstract
Penicillin-binding proteins (PBPs) are bacterial enzymes involved in the final stages of cell wall biosynthesis, and are targets of the β-lactam antibiotics. They can be subdivided into essential high-molecular-mass (HMM) and non-essential low-molecular-mass (LMM) PBPs, and further divided into subclasses based on sequence homologies. PBPs can catalyze transpeptidase or hydrolase (carboxypeptidase and endopeptidase) reactions. The PBPs are of interest for their role in bacterial cell wall biosynthesis, and as mechanistically interesting enzymes which can catalyze alternative reaction pathways using the same catalytic machinery. A global catalytic residue comparison seemed likely to provide insight into structure-function correlations within the PBPs. More than 90 PBP structures were aligned, and a number (40) of active site geometrical parameters extracted. This dataset was analyzed using both univariate and multivariate statistical methods. Several interesting relationships were observed. (1) Distribution of the dihedral angle for the SXXK-motif Lys side chain (DA_1) was bimodal, and strongly correlated with HMM/transpeptidase vs LMM/hydrolase classification/activity (P<0.001). This structural feature may therefore be associated with the main functional difference between the HMM and LMM PBPs. (2) The distance between the SXXK-motif Lys-NZ atom and the Lys/His-nitrogen atom of the (K/H)T(S)G-motif was highly conserved, suggesting importance for PBP function, and a possibly conserved role in the catalytic mechanism of the PBPs. (3) Principal components-based cluster analysis revealed several distinct clusters, with the HMM Class A and B, LMM Class C, and LMM Class A K15 PBPs forming one "Main" cluster, and demonstrating a globally similar arrangement of catalytic residues within this group.
Collapse
Affiliation(s)
- Sudheer Bobba
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO 64108, United States
| | | |
Collapse
|
32
|
Effects of a derivative thiazoline/thiazolidine azine ligand and its cadmium complexes on phagocytic activity by human neutrophils. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2010.11.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Adediran SA, Kumar I, Nagarajan R, Sauvage E, Pratt RF. Kinetics of Reactions of the Actinomadura R39 dd-Peptidase with Specific Substrates. Biochemistry 2010; 50:376-87. [DOI: 10.1021/bi101760p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. A. Adediran
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Ish Kumar
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Rajesh Nagarajan
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| | - Eric Sauvage
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459, United States
| |
Collapse
|
34
|
Pelto RB, Pratt RF. Serendipitous discovery of α-hydroxyalkyl esters as β-lactamase substrates. Biochemistry 2010; 49:10496-506. [PMID: 21087009 DOI: 10.1021/bi101071r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
O-(1-Carboxy-1-alkyloxycarbonyl) hydroxamates were found to spontaneously decarboxylate in aqueous neutral buffer to form O-(2-hydroxyalkylcarbonyl) hydroxamates. While the former molecules do not react rapidly with serine β-lactamases, the latter are quite good substrates of representative class A and C, but not D, enzymes, and particularly of a class C enzyme. The enzymes catalyze hydrolysis of these compounds to a mixture of the α-hydroxy acid and hydroxamate. Analogous compounds containing aryloxy leaving groups rather that hydroxamates are also substrates. Structure-activity experiments showed that the α-hydroxyl group was required for any substantial substrate activity. Although both d- and l-α-hydroxy acid derivatives were substrates, the former were preferred. The response of the class C activity to pH and to alternative nucleophiles (methanol and d-phenylalanine) suggested that the same active site functional groups participated in catalysis as for classical substrates. Molecular modeling was employed to explore how the α-hydroxy group might interact with the class C β-lactamase active site. Incorporation of the α-hydroxyalkyl moiety into novel inhibitors will be of considerable interest.
Collapse
Affiliation(s)
- Ryan B Pelto
- Department of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | | |
Collapse
|
35
|
Dzhekieva L, Rocaboy M, Kerff F, Charlier P, Sauvage E, Pratt RF. Crystal Structure of a Complex between the Actinomadura R39 dd-Peptidase and a Peptidoglycan-mimetic Boronate Inhibitor: Interpretation of a Transition State Analogue in Terms of Catalytic Mechanism. Biochemistry 2010; 49:6411-9. [DOI: 10.1021/bi100757c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| | - Mathieu Rocaboy
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Frédéric Kerff
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Paulette Charlier
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Eric Sauvage
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| |
Collapse
|
36
|
Kawashima Y, Yasuhira K, Shibata N, Matsuura Y, Tanaka Y, Taniguchi M, Miyoshi Y, Takeo M, Kato DI, Higuchi Y, Negoro S. Enzymatic synthesis of nylon-6 units in organic solvents containing low concentrations of water. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Delmas J, Leyssene D, Dubois D, Birck C, Vazeille E, Robin F, Bonnet R. Structural insights into substrate recognition and product expulsion in CTX-M enzymes. J Mol Biol 2010; 400:108-20. [PMID: 20452359 DOI: 10.1016/j.jmb.2010.04.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/25/2022]
Abstract
beta-Lactamase-mediated resistance to beta-lactam antibiotics poses a major threat to our antibiotic armamentarium. Among beta-lactamases, a significant threat comes from enzymes that hydrolyze extended-spectrum cephalosporins such as cefotaxime. Among the enzymes that exhibit this phenotype, the CTX-M family is found worldwide. These enzymes have a small active site, which makes it difficult to explain how they hydrolyze the bulky extended-spectrum cephalosporins into the binding site. We investigated noncovalent substrate recognition and product release in CTX-M enzymes using steered molecular dynamics simulation and X-ray diffraction. An arginine residue located far from the binding site favors the capture and tracking of substrates during entrance into the catalytic pocket. We show that the accommodation of extended-spectrum cephalosporins by CTX-M enzymes induced subtle changes in the active site and established a high density of electrostatic interactions. Interestingly, the product of the catalytic reaction initiates its own release because of steric hindrances and electrostatic repulsions. This suggests that there exists a general mechanism for product release for all members of the beta-lactamase family and probably for most carboxypeptidases.
Collapse
Affiliation(s)
- Julien Delmas
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Clermont-Ferrand F-63003, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Clarke TB, Kawai F, Park SY, Tame JRH, Dowson CG, Roper DI. Mutational analysis of the substrate specificity of Escherichia coli penicillin binding protein 4. Biochemistry 2009; 48:2675-83. [PMID: 19209901 DOI: 10.1021/bi801993x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli PBP4 is the archetypal class C, low molecular mass penicillin binding protein (LMM-PBP) and possesses both dd-carboxypeptidase and dd-endopeptidase activity. In contrast to other classes of PBP, class C LMM-PBPs show high dd-carboxypeptidase activity and rapidly hydrolyze synthetic fragments of peptidoglycan. The recently solved X-ray crystal structures of three class C LMM-PBPs (E. coli PBP4, Bacillus subtilis PBP4a, and Actinomadura R39 dd-peptidase) have identified several residues that form a pocket in the active site unique to this class of PBP. The X-ray cocrystal structure of the Actinomadura R39 DD-peptidase with a cephalosporin bearing a peptidoglycan-mimetic side chain showed that residues of this pocket interact with the third position meso-2,6-diaminopimelic acid residue of the peptidoglycan stem peptide. Equivalent residues of E. coli PBP4 (Asp155, Phe160, Arg361, and Gln422) were mutated, and the effect on both DD-carboxypeptidase and DD-endopeptidase activities was determined. Using N-acetylmuramyl-L-alanyl-gamma-D-glutamyl-meso-2,6-diaminopimelyl-D-alanyl-D-alanine as substrate, mutation of Asp155, Phe160, Arg361, and Gln422 to alanine reduced k(cat)/K(m) by 12.7-, 1.9-, 24.5-, and 13.8-fold, respectively. None of the k(cat) values deviated significantly from wild-type PBP4. PBP4 DD-endopeptidase activity was also affected, with substitution of Asp155, Arg361, and Gln422 reducing specific activity by 22%, 56%, and 40%, respectively. This provides the first direct demonstration of the importance of residues forming a subsite to accommodate meso-2,6-diaminopimelic acid in both the DD-carboxypeptidase and DD-endopeptidase activities of a class C LMM-PBP.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | | | | | | | |
Collapse
|
39
|
Chen Y, Zhang W, Shi Q, Hesek D, Lee M, Mobashery S, Shoichet BK. Crystal structures of penicillin-binding protein 6 from Escherichia coli. J Am Chem Soc 2009; 131:14345-54. [PMID: 19807181 PMCID: PMC3697005 DOI: 10.1021/ja903773f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Penicillin-binding protein 6 (PBP6) is one of the two main DD-carboxypeptidases in Escherichia coli, which are implicated in maturation of bacterial cell wall and formation of cell shape. Here, we report the first X-ray crystal structures of PBP6, capturing its apo state (2.1 A), an acyl-enzyme intermediate with the antibiotic ampicillin (1.8 A), and for the first time for a PBP, a preacylation complex (a "Michaelis complex", determined at 1.8 A) with a peptidoglycan substrate fragment containing the full pentapeptide, NAM-(L-Ala-D-isoGlu-L-Lys-D-Ala-D-Ala). These structures illuminate the molecular interactions essential for ligand recognition and catalysis by DD-carboxypeptidases, and suggest a coupling of conformational flexibility of active site loops to the reaction coordinate. The substrate fragment complex structure, in particular, provides templates for models of cell wall recognition by PBPs, as well as substantiating evidence for the molecular mimicry by beta-lactam antibiotics of the peptidoglycan acyl-D-Ala-D-Ala moiety.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California San Francisco, Byers Hall, Room 508D, 1700 Fourth Street, San Francisco, California 94158-2550
| | - Weilie Zhang
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Qicun Shi
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, Byers Hall, Room 508D, 1700 Fourth Street, San Francisco, California 94158-2550
| |
Collapse
|
40
|
Ohki T, Shibata N, Higuchi Y, Kawashima Y, Takeo M, Kato DI, Negoro S. Two alternative modes for optimizing nylon-6 byproduct hydrolytic activity from a carboxylesterase with a beta-lactamase fold: X-ray crystallographic analysis of directly evolved 6-aminohexanoate-dimer hydrolase. Protein Sci 2009; 18:1662-73. [PMID: 19521995 DOI: 10.1002/pro.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Promiscuous 6-aminohexanoate-linear dimer (Ald)-hydrolytic activity originally obtained in a carboxylesterase with a beta-lactamase fold was enhanced about 80-fold by directed evolution using error-prone PCR and DNA shuffling. Kinetic studies of the mutant enzyme (Hyb-S4M94) demonstrated that the enzyme had acquired an increased affinity (K(m) = 15 mM) and turnover (k(cat) = 3.1 s(-1)) for Ald, and that a catalytic center suitable for nylon-6 byproduct hydrolysis had been generated. Construction of various mutant enzymes revealed that the enhanced activity in the newly evolved enzyme is due to the substitutions R187S/F264C/D370Y. Crystal structures of Hyb-S4M94 with bound substrate suggested that catalytic function for Ald was improved by hydrogen-bonding/hydrophobic interactions between the Ald--COOH and Tyr370, a hydrogen-bonding network from Ser187 to Ald--NH(3) (+), and interaction between Ald--NH(3) (+) and Gln27-O(epsilon) derived from another subunit in the homo-dimeric structure. In wild-type Ald-hydrolase (NylB), Ald-hydrolytic activity is thought to be optimized by the substitutions G181D/H266N, which improve an electrostatic interaction with Ald--NH(3) (+) (Kawashima et al., FEBS J 2009; 276:2547-2556). We propose here that there exist at least two alternative modes for optimizing the Ald-hydrolytic activity of a carboxylesterase with a beta-lactamase fold.
Collapse
Affiliation(s)
- Taku Ohki
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo 671-2280, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Shi Q, Meroueh SO, Fisher JF, Mobashery S. Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations. J Am Chem Soc 2008; 130:9293-303. [PMID: 18576637 PMCID: PMC6993461 DOI: 10.1021/ja801727k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2 kcal x mol(-1) greater than the barrier (22 kcal x mol(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal x mol(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.
Collapse
Affiliation(s)
- Qicun Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
42
|
Sauvage E, Powell AJ, Heilemann J, Josephine HR, Charlier P, Davies C, Pratt RF. Crystal structures of complexes of bacterial DD-peptidases with peptidoglycan-mimetic ligands: the substrate specificity puzzle. J Mol Biol 2008; 381:383-93. [PMID: 18602645 DOI: 10.1016/j.jmb.2008.06.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 10/22/2022]
Abstract
The X-ray crystal structures of covalent complexes of the Actinomadura R39 dd-peptidase and Escherichia coli penicillin-binding protein (PBP) 5 with beta-lactams bearing peptidoglycan-mimetic side chains have been determined. The structure of the hydrolysis product of an analogous peptide bound noncovalently to the former enzyme has also been obtained. The R39 DD-peptidase structures reveal the presence of a specific binding site for the D-alpha-aminopimelyl side chain, characteristic of the stem peptide of Actinomadura R39. This binding site features a hydrophobic cleft for the pimelyl methylene groups and strong hydrogen bonding to the polar terminus. Both of these active site elements are provided by amino acid side chains from two separate domains of the protein. In contrast, no clear electron density corresponding to the terminus of the peptidoglycan-mimetic side chains is present when these beta-lactams are covalently bound to PBP5. There is, therefore, no indication of a specific side-chain binding site in this enzyme. These results are in agreement with those from kinetics studies published earlier and support the general prediction made at the time of a direct correlation between kinetics and structural evidence. The essential high-molecular-mass PBPs have demonstrated, to date, no specific reactivity with peptidoglycan-mimetic peptide substrates and beta-lactam inhibitors and, thus, probably do not possess a specific substrate-binding site of the type demonstrated here with the R39 DD-peptidase. This striking deficiency may represent a sophisticated defense mechanism against low-molecular-mass substrate-analogue inhibitors/antibiotics; its discovery should focus new inhibitor design.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d'Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Crystal structures of biapenem and tebipenem complexed with penicillin-binding proteins 2X and 1A from Streptococcus pneumoniae. Antimicrob Agents Chemother 2008; 52:2053-60. [PMID: 18391040 DOI: 10.1128/aac.01456-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biapenem is a parenteral carbapenem antibiotic that exhibits wide-ranging antibacterial activity, remarkable chemical stability, and extensive stability against human renal dehydropeptidase-I. Tebipenem is the active form of tebipenem pivoxil, a novel oral carbapenem antibiotic that has a high level of bioavailability in humans, in addition to the above-mentioned features. beta-lactam antibiotics, including carbapenems, target penicillin-binding proteins (PBPs), which are membrane-associated enzymes that play essential roles in peptidoglycan biosynthesis. To envisage the binding of carbapenems to PBPs, we determined the crystal structures of the trypsin-digested forms of both PBP 2X and PBP 1A from Streptococcus pneumoniae strain R6, each complexed with biapenem or tebipenem. The structures of the complexes revealed that the carbapenem C-2 side chains form hydrophobic interactions with Trp374 and Thr526 of PBP 2X and with Trp411 and Thr543 of PBP 1A. The Trp and Thr residues are conserved in PBP 2B. These results suggest that interactions between the C-2 side chains of carbapenems and the conserved Trp and Thr residues in PBPs play important roles in the binding of carbapenems to PBPs.
Collapse
|
44
|
Yamada M, Watanabe T, Baba N, Miyara T, Saito J, Takeuchi Y. Crystallization and preliminary crystallographic analysis of the transpeptidase domain of penicillin-binding protein 2B from Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:284-8. [PMID: 18391428 DOI: 10.1107/s1744309108006374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 03/07/2008] [Indexed: 11/10/2022]
Abstract
Penicillin-binding protein (PBP) 2B from Streptococcus pneumoniae catalyzes the cross-linking of peptidoglycan precursors that occurs during bacterial cell-wall biosynthesis. A selenomethionyl (SeMet) substituted PBP 2B transpeptidase domain was isolated from a limited proteolysis digest of a soluble form of recombinant PBP 2B and then crystallized. The crystals belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 86.39, c = 143.27 A. Diffraction data were collected to 2.4 A resolution using the BL32B2 beamline at SPring-8. The asymmetric unit contains one protein molecule and 63.7% solvent.
Collapse
Affiliation(s)
- Mototsugu Yamada
- Pharmaceutical Research Center, Meiji Seika Kaisha Ltd, 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:234-58. [PMID: 18266856 DOI: 10.1111/j.1574-6976.2008.00105.x] [Citation(s) in RCA: 882] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Institut de Physique B5a et Institut de Chimie B6a, University of Liège, Sart Tilman, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Trapping of an Acyl–Enzyme Intermediate in a Penicillin-binding Protein (PBP)-catalyzed Reaction. J Mol Biol 2008; 376:405-13. [DOI: 10.1016/j.jmb.2007.10.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/01/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
47
|
Kumar I, Josephine HR, Pratt R. Reactions of peptidoglycan-mimetic beta-lactams with penicillin-binding proteins in vivo and in membranes. ACS Chem Biol 2007; 2:620-4. [PMID: 17894439 PMCID: PMC2536641 DOI: 10.1021/cb7001347] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The membrane-bound bacterial D-alanyl- D-alanine peptidases or penicillin-binding proteins (PBPs) catalyze the final transpeptidation reaction of bacterial cell wall biosynthesis and are the targets of beta-lactam antibiotics. Rather surprisingly, the substrate specificity of these enzymes is not well understood. In this paper, we present measurements of the reactivity of typical examples of these enzymes with peptidoglycan-mimetic beta-lactams under in vivo conditions. The minimum inhibitory concentrations of beta-lactams with Escherichia coli-specific side chains were determined against E. coli cells. Analogous measurements were made with Streptococcus pneumoniae R6. The reactivity of the relevant beta-lactams with E. coli PBPs in membrane preparations was also determined. The results show that under none of the above protocols were beta-lactams with peptidoglycan-mimetic side chains more reactive than generic analogues. This suggests that in vivo, as in vitro, these enzymes do not specifically recognize elements of peptidoglycan structure local to the reaction center. Substrate recognition must thus involve extended structure.
Collapse
Affiliation(s)
| | | | - R.F. Pratt
- To whom correspondence should be addressed.
| |
Collapse
|
48
|
Yamada M, Watanabe T, Miyara T, Baba N, Saito J, Takeuchi Y, Ohsawa F. Crystal structure of cefditoren complexed with Streptococcus pneumoniae penicillin-binding protein 2X: structural basis for its high antimicrobial activity. Antimicrob Agents Chemother 2007; 51:3902-7. [PMID: 17724158 PMCID: PMC2151468 DOI: 10.1128/aac.00743-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cefditoren is the active form of cefditoren pivoxil, an oral cephalosporin antibiotic used for the treatment of respiratory tract infections and otitis media caused by bacteria such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes, Klebsiella pneumoniae, and methicillin-susceptible strains of Staphylococcus aureus. Beta-lactam antibiotics, including cefditoren, target penicillin-binding proteins (PBPs), which are membrane-associated enzymes that play essential roles in the peptidoglycan biosynthetic process. To envision the binding of cefditoren to PBPs, we determined the crystal structure of a trypsin-digested form of PBP 2X from S. pneumoniae strain R6 complexed with cefditoren. There are two PBP 2X molecules (designated molecules 1 and 2) per asymmetric unit. The structure reveals that the orientation of Trp374 in each molecule changes in a different way upon the formation of the complex, but each forms a hydrophobic pocket. The methylthiazole group of the C-3 side chain of cefditoren fits into this binding pocket, which consists of residues His394, Trp374, and Thr526 in molecule 1 and residues His394, Asp375, and Thr526 in molecule 2. The formation of the complex is also accompanied by an induced-fit conformational change of the enzyme in the pocket to which the C-7 side chain of cefditoren binds. These features likely play a role in the high level of activity of cefditoren against S. pneumoniae.
Collapse
Affiliation(s)
- Mototsugu Yamada
- Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Sauvage E, Duez C, Herman R, Kerff F, Petrella S, Anderson JW, Adediran SA, Pratt RF, Frère JM, Charlier P. Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. J Mol Biol 2007; 371:528-39. [PMID: 17582436 DOI: 10.1016/j.jmb.2007.05.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/22/2007] [Accepted: 05/24/2007] [Indexed: 11/18/2022]
Abstract
The genome of Bacillus subtilis encodes 16 penicillin-binding proteins (PBPs) involved in the synthesis and/or remodelling of the peptidoglycan during the complex life cycle of this sporulating Gram-positive rod-shaped bacterium. PBP4a (encoded by the dacC gene) is a low-molecular mass PBP clearly exhibiting in vitro DD-carboxypeptidase activity. We have solved the crystal structure of this protein alone and in complex with a peptide (D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine) that mimics the C-terminal end of the Bacillus peptidoglycan stem peptide. PBP4a is composed of three domains: the penicillin-binding domain with a fold similar to the class A beta-lactamase structure and two domains inserted between the conserved motifs 1 and 2 characteristic of the penicillin-recognizing enzymes. The soaking of PBP4a in a solution of D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine resulted in an adduct between PBP4a and a D-alpha-aminopimelyl-epsilon-D-alanine dipeptide and an unbound D-alanine, i.e. the products of acylation of PBP4a by D-alpha-aminopymelyl-epsilon-D-alanyl-D-alanine with the release of a D-alanine. The adduct also reveals a binding pocket specific to the diaminopimelic acid, the third residue of the peptidoglycan stem pentapeptide of B. subtilis. This pocket is specific for this class of PBPs.
Collapse
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Physique B5 et Institut de Chimie B6a, Sart Tilman, B-4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Negoro S, Ohki T, Shibata N, Sasa K, Hayashi H, Nakano H, Yasuhira K, Kato DI, Takeo M, Higuchi Y. Nylon-oligomer Degrading Enzyme/Substrate Complex: Catalytic Mechanism of 6-Aminohexanoate-dimer Hydrolase. J Mol Biol 2007; 370:142-56. [DOI: 10.1016/j.jmb.2007.04.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 04/05/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
|