1
|
Agrawal T, Paul D, Mishra A, Arunkumar G, Rakshit T. Epigenetic Modifier Drug Valproic Acid Enhances Cancer Metaphase Chromosome Elasticity and Electron Transport: An Atomic Force Microscopy Approach. JACS AU 2025; 5:766-778. [PMID: 40017767 PMCID: PMC11862959 DOI: 10.1021/jacsau.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
The structural integrity of the chromosomes is essential to every functional process within eukaryotic nuclei. Chromosomes are DNA-histone complexes that are essential for the inheritance of genetic information to the offspring, and any defect in them is linked to mitotic errors, cancer growth, and cellular aging. Changes in the mechanical properties of a chromosome could lead to its compromised function and stability, leading to chromosome breaks. Here, we studied the changes in chromosome physical properties using metaphase chromosomes isolated from moderately malignant (MCF7) and highly malignant (MDA-MB-231) human breast cancer cells exposed to valproic acid (VPA), a known epigenetic modifier drug involved in histone hyperacetylation and DNA demethylation. Due to chromosomal structural intricacy and preparative and technical limitations of analytical tools, we employed a label-free atomic force microscopy approach for simultaneously visualizing and mapping single chromosome elasticity and stretching modulus. Additionally, we performed electron transport characteristics through metaphase chromosomes to elucidate the effect of VPA. The chromosomal elasticity and electron transport alterations are manifestations of VPA-mediated chromatin's epigenetic changes. Our multiparametric strategy, as shown by receiver operating characteristics analyses with the physical properties of chromosomes, offers a new scope in terms of analytical tools for studying chromosomal structural changes/aberrations linked to cancer.
Collapse
Affiliation(s)
- Tanya Agrawal
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Debashish Paul
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Amita Mishra
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| | - Ganesan Arunkumar
- Department
of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Tatini Rakshit
- Department
of Chemistry, Shiv Nadar Institution of
Eminence, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
2
|
Balduzzi E, Geinguenaud F, Sordyl D, Maiti S, Farsani M, Nikolaev G, Arluison V, Bujnicki J. NAIRDB: a database of Fourier transform infrared (FTIR) data for nucleic acids. Nucleic Acids Res 2025; 53:D157-D162. [PMID: 39413200 PMCID: PMC11734278 DOI: 10.1093/nar/gkae885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The Nucleic Acid InfraRed Data Bank (NAIRDB) serves as a comprehensive public repository dedicated to the archival and free distribution of Fourier transform infrared (FTIR) spectral data specific to nucleic acids. This database encompasses a collection of FTIR spectra covering diverse nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids and their various derivatives. NAIRDB covers details of the experimental conditions for FTIR measurements, literature links, primary sequence data, information about experimentally determined structures for related nucleic acid molecules and/or computationally modeled 3D structures. All entries undergo expert validation and curation to maintain the completeness, consistency and quality of the data. NAIRDB can be searched by similarity of nucleic acid sequences or by direct comparison of spectra. The database is open for the submission of the FTIR data for nucleic acids. NAIRDB is available at https://nairdb.genesilico.pl.
Collapse
Affiliation(s)
- Elsa Balduzzi
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
| | - Frédéric Geinguenaud
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, 74 rue Marcel Cachin, F-93017 Bobigny, France
| | - Dominik Sordyl
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Satyabrata Maiti
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Grigory Nikolaev
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|
3
|
Sağlam B, Akkuş O, Akçaöz-Alasar A, Ceylan Ç, Güler G, Akgül B. An Investigation of RNA Methylations with Biophysical Approaches in a Cervical Cancer Cell Model. Cells 2024; 13:1832. [PMID: 39594581 PMCID: PMC11592517 DOI: 10.3390/cells13221832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
RNA methylation adds a second layer of genetic information that dictates the post-transcriptional fate of RNAs. Although various methods exist that enable the analysis of RNA methylation in a site-specific or transcriptome-wide manner, whether biophysical approaches can be employed to such analyses is unexplored. In this study, Fourier-transform infrared (FT-IR) and circular dichroism (CD) spectroscopy are employed to examine the methylation status of both synthetic and cellular RNAs. The results show that FT-IR spectroscopy is perfectly capable of quantitatively distinguishing synthetic m6A-methylated RNAs from un-methylated ones. Subsequently, FT-IR spectroscopy is successfully employed to assess the changes in the extent of total RNA methylation upon the knockdown of the m6A writer, METTL3, in HeLa cells. In addition, the same approach is shown to accurately detect reduction in total RNA methylation upon the treatment of HeLa cells with tumor necrosis factor alpha (TNF-α). It is also demonstrated that m1A and m6A methylation induce quite a distinct secondary structure on RNAs, as evident from CD spectra. These results strongly suggest that both FT-IR and CD spectroscopy methods can be exploited to uncover biophysical properties impinged on RNAs by methyl moieties, providing a fast, convenient and cheap alternative to the existing methods.
Collapse
Affiliation(s)
- Buket Sağlam
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, İzmir Institute of Technology, 35430 Izmir, Türkiye; (B.S.); (A.A.-A.)
| | - Onur Akkuş
- Biophysics Laboratory, Department of Physics, İzmir Institute of Technology, 35430 Izmir, Türkiye;
| | - Azime Akçaöz-Alasar
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, İzmir Institute of Technology, 35430 Izmir, Türkiye; (B.S.); (A.A.-A.)
| | - Çağatay Ceylan
- Department of Food Engineering, İzmir Institute of Technology, 35430 Izmir, Türkiye;
| | - Günnur Güler
- Biophysics Laboratory, Department of Physics, İzmir Institute of Technology, 35430 Izmir, Türkiye;
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, İzmir Institute of Technology, 35430 Izmir, Türkiye; (B.S.); (A.A.-A.)
| |
Collapse
|
4
|
Mohammadi S, Kharrazi S, Mazlomi M, Amani A, Tavoosidana G. Investigation of Melphalan interaction as an alkylating agent with nucleotides by using surface enhanced Raman spectroscopy (SERS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124359. [PMID: 38704996 DOI: 10.1016/j.saa.2024.124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/07/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
SERS (Surface Enhanced Raman Spectroscopy) is a new Raman spectroscopy which relies on Surface Plasmon Resonance (SPR) of metal nanoparticles. We have applied colloidal silver and gold nanoparticles as amplifier agents to enhance nucleotide Raman signals. It is observed that without these enhancing agents, it is impossible to investigate nucleotide spectrum due to weak Raman signals. Interaction mechanism of Melphalan, an anticancer drug with four nucleotides (Adenine, Cytosine, Guanine, Thymine) was investigated using SERS to detect and identify changes due to alkylating process in Raman spectra. After incubating Melphalan drug with nucleotides for 24 h at 37 °C, some changes occurred in SERS spectrum and interpretation of SERS spectra revealed the influence of the alkyl substitution on peaks and Raman shifts. After incubation of Melphalan with each nucleotide, intensity of relevant SERS signals assigned to Amid III group of Cytosine and Amid I of Thymine decreased significantly, confirming alkylating taking place. In this study, we also investigated the effect of nanoparticles type on nucleotide spectrum. We could not obtain useful information in the cases of guanine nucleotide. The SERS spectrum of Cytosine as an example of nucleotides in aqueous solution compared to solid state and results demonstrated that in solid state better signals were obtained than in liquid state.
Collapse
Affiliation(s)
- Simah Mohammadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharmin Kharrazi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammadali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Natural Products and Medicinal Plants research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Mateus Pereira de Souza N, Kimberli Abeg da Rosa D, de Moraes C, Caeran M, Bordin Hoffmann M, Pozzobon Aita E, Prochnow L, Lya Assmann da Motta A, Antonio Corbellini V, Rieger A. Structural characterization of DNA amplicons by ATR-FTIR spectroscopy as a guide for screening metainflammatory disorders in blood plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123897. [PMID: 38266599 DOI: 10.1016/j.saa.2024.123897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy is a promising rapid, reagent-free, and low-cost technique considered for clinical translation. It allows to characterize biofluids proteome, lipidome, and metabolome at once. Metainflammatory disorders share a constellation of chronic systemic inflammation, oxidative stress, aberrant adipogenesis, and hypoxia, that significantly increased cardiovascular and cancer risk. As a result, these patients have elevated concentration of cfDNA in the bloodstream. Considering this, DNA amplicons were analyzed by ATR-FTIR at 3 concentrations with 1:100 dilution: (IU/mL): 718, 7.18, and 0.0718. The generated IR spectrum was used as a guide for variable selection. The main peaks in the biofingerprint (1800-900 cm-1) give important information about the base, base-sugar, phosphate, and sugar-phosphate transitions of DNA. To validate our method of selecting variables in blood plasma, 38 control subjects and 12 with metabolic syndrome were used. Using the wavenumbers of the peaks in the biofingerprint of the DNA amplicons, was generated a discriminant analysis model with Mahalanobis distance in blood plasma, and 100 % discrimination accuracy was obtained. In addition, the interval 1475-1188 cm-1 showed the greatest sensitivity to variation in the concentration of DNA amplicons, so curve fitting with Gaussian funcion was performed, obtaining adjusted-R2 of 0.993. PCA with Mahalanobis distance in the interval 1475-1188 cm-1 obtained an accuracy of 96 % and PLS-DA modeling in the interval 1475-1088 cm-1 obtained AUC = 0.991 with sensitivity of 95 % and specificity of 100 %. Therefore, ATR-FTIR spectroscopy with variable selection guided by DNA IR peaks is a promising and efficient method to be applied in metainflammatory disorders.
Collapse
Affiliation(s)
| | - Dhuli Kimberli Abeg da Rosa
- Bioprocess Engineering and Biotechnology, State University of Rio Grande do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Caroline de Moraes
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Mariana Caeran
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Mairim Bordin Hoffmann
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Eduardo Pozzobon Aita
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Laura Prochnow
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Anna Lya Assmann da Motta
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Valeriano Antonio Corbellini
- Department of Sciences, Humanities, and Education, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; Postgraduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Alexandre Rieger
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; Postgraduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Sarić A, Rajić J, Tolić A, Dučić T, Vidaković M. Synchrotron-based FTIR microspectroscopy reveals DNA methylation profile in DNA-HALO structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123090. [PMID: 37413921 DOI: 10.1016/j.saa.2023.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a rapid, non-destructive and label-free technique for identifying subtle changes in all bio-macromolecules, and has been used as a method of choice for studying DNA conformation, secondary DNA structure transition and DNA damage. In addition, the specific level of chromatin complexity is introduced via epigenetic modifications forcing the technological upgrade in the analysis of such an intricacy. As the most studied epigenetic mechanism, DNA methylation is a major regulator of transcriptional activity, involved in the suppression of a broad spectrum of genes and its deregulation is involved in all non-communicable diseases. The present study was designed to explore the use of synchrotron-based FTIR analysis to monitor the subtle changes in molecule bases regarding the DNA methylation status of cytosine in the whole genome. In order to reveal the conformation-related best sample for FTIR-based DNA methylation analysis in situ, we used methodology for nuclear HALO preparations and slightly modified it to isolated DNA in HALO formations. Nuclear DNA-HALOs represent samples with preserved higher-order chromatin structure liberated of any protein residues that are closer to native DNA conformation than genomic DNA (gDNA) isolated by the standard batch procedure. Using FTIR spectroscopy we analyzed the DNA methylation profile of isolated gDNA and compared it with the DNA-HALOs. This study demonstrated the potential of FTIR microspectroscopy to detect DNA methylation marks in analyzed DNA-HALO specimens more precisely in comparison with classical DNA extraction procedures that yield unstructured whole genomic DNA. In addition, we used different cell types to assess their global DNA methylation profile, as well as defined specific infrared peaks that can be used for screening DNA methylation.
Collapse
Affiliation(s)
- Ana Sarić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Tanja Dučić
- ALBA CELLS Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Barcelona, Spain.
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| |
Collapse
|
7
|
Pederson K, Meints GA, Drobny GP. Base Dynamics in the HhaI Protein Binding Site. J Phys Chem B 2023; 127:7266-7275. [PMID: 37561575 PMCID: PMC10461302 DOI: 10.1021/acs.jpcb.3c03687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Protein-DNA interactions play an important role in numerous biological functions within the living cell. In many of these interactions, the DNA helix is significantly distorted upon protein-DNA complex formation. The HhaI restriction-modification system is one such system, where the methylation target is flipped out of the helix when bound to the methyltransferase. However, the base flipping mechanism is not well understood. The dynamics of the binding site of the HhaI methyltransferase and endonuclease (underlined) within the DNA oligomer [d(G1A2T3A4G5C6G7C8T9A10T11C12)]2 are studied using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs deuterated on the base of nucleotides within and flanking the [5'-GCGC-3']2 sequence indicate that all of these positions are structurally flexible. Previously, conformational flexibility within the phosphodiester backbone and furanose ring within the target sequence has been observed and hypothesized to play a role in the distortion mechanism. However, whether that distortion was occurring through an active or passive mechanism remained unclear. These NMR data demonstrate that although the [5'-GCGC-3']2 sequence is dynamic, the target cytosine is not passively flipping out of the double-helix on the millisecond-picosecond time scale. Additionally, although previous studies have shown that both the furanose ring and phosphodiester backbone experience a change in dynamics upon methylation, which may play a role in recognition and cleavage by the endonuclease, our observations here indicate that methylation has no effect on the dynamics of the base itself.
Collapse
Affiliation(s)
- Kari Pederson
- Department
of Chemistry & Biochemistry, California
State University at Dominguez Hills, Carson, California 90747, United States
| | - Gary A. Meints
- Department
of Chemistry, Missouri State University, Springfield, Missouri 65897, United States
| | - Gary P. Drobny
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United
States
| |
Collapse
|
8
|
Agrawal T, Paul D, Saroj S, Ali A, Choubey V, Mukherjee D, Pal S, Rakshit T. Label-Free Physical-Analytical Techniques Reveal Epigenetic Modifications of Breast Cancer Chromosomes. J Phys Chem B 2023; 127:3534-3542. [PMID: 37036757 DOI: 10.1021/acs.jpcb.3c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Epigenetic dysregulation including DNA methylation and histone modifications is being increasingly recognized as a promising biomarker for the diagnosis and prognosis of cancer. Herein, we devised a label-free analytical toolbox comprising IR, UV-vis, CD spectroscopy, and cyclic voltammetry, which is capable to differentiate significantly hyper-methylated breast cancer chromosomes from the normal breast epithelial counterparts.
Collapse
Affiliation(s)
- Tanya Agrawal
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| | - Debashish Paul
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| | - Saroj Saroj
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| | - Akbar Ali
- Department of Chemistry, Indian Institute of Technology, Bhilai, Chhattisgarh 492015, India
| | - Vivekanand Choubey
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| | - Dipanjan Mukherjee
- Laboratory of Bioimaging and Pathologies, University of Strasbourg, F-67081 Strasbourg CEDEX, France
| | - Suchetan Pal
- Department of Chemistry, Indian Institute of Technology, Bhilai, Chhattisgarh 492015, India
| | - Tatini Rakshit
- Department of Chemistry, Shiv Nadar IoE, Delhi-NCR, Uttar Pradesh 201314, India
| |
Collapse
|
9
|
Szymoński K, Chmura Ł, Lipiec E, Adamek D. Vibrational spectroscopy – are we close to finding a solution for early pancreatic cancer diagnosis? World J Gastroenterol 2023; 29:96-109. [PMID: 36683712 PMCID: PMC9850953 DOI: 10.3748/wjg.v29.i1.96] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive and lethal neoplasm, ranking seventh in the world for cancer deaths, with an overall 5-year survival rate of below 10%. The knowledge about PC pathogenesis is rapidly expanding. New aspects of tumor biology, including its molecular and morphological heterogeneity, have been reported to explain the complicated “cross-talk” that occurs between the cancer cells and the tumor stroma or the nature of pancreatic ductal adenocarcinoma-associated neural remodeling. Nevertheless, currently, there are no specific and sensitive diagnosis options for PC. Vibrational spectroscopy (VS) shows a promising role in the development of early diagnosis technology. In this review, we summarize recent reports about improvements in spectroscopic methodologies, briefly explain and highlight the drawbacks of each of them, and discuss available solutions. The important aspects of spectroscopic data evaluation with multivariate analysis and a convolutional neural network methodology are depicted. We conclude by presenting a study design for systemic verification of the VS-based methods in the diagnosis of PC.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow 33-332, Poland
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
| | - Łukasz Chmura
- Department of Pathomorphology, Jagiellonian University Medical College, Cracow 33-332, Poland
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
| | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, Cracow 30-348, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, University Hospital in Cracow, Cracow 31-501, Poland
- Department of Neuropathology, Jagiellonian University Medical College, Cracow 33-332, Poland
| |
Collapse
|
10
|
Taghavi A, Riveros I, Wales DJ, Yildirim I. Evaluating Geometric Definitions of Stacking for RNA Dinucleoside Monophosphates Using Molecular Mechanics Calculations. J Chem Theory Comput 2022; 18:3637-3653. [PMID: 35652685 DOI: 10.1021/acs.jctc.2c00178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA modulation via small molecules is a novel approach in pharmacotherapies, where the determination of the structural properties of RNA motifs is considered a promising way to develop drugs capable of targeting RNA structures to control diseases. However, due to the complexity and dynamic nature of RNA molecules, the determination of RNA structures using experimental approaches is not always feasible, and computational models employing force fields can provide important insight. The quality of the force field will determine how well the predictions are compared to experimental observables. Stacking in nucleic acids is one such structural property, originating mainly from London dispersion forces, which are quantum mechanical and are included in molecular mechanics force fields through nonbonded interactions. Geometric descriptions are utilized to decide if two residues are stacked and hence to calculate the stacking free energies for RNA dinucleoside monophosphates (DNMPs) through statistical mechanics for comparison with experimental thermodynamics data. Here, we benchmark four different stacking definitions using molecular dynamics (MD) trajectories for 16 RNA DNMPs produced by two different force fields (RNA-IL and ff99OL3) and show that our stacking definition better correlates with the experimental thermodynamics data. While predictions within an accuracy of 0.2 kcal/mol at 300 K were observed in RNA CC, CU, UC, AG, GA, and GG, stacked states of purine-pyrimidine and pyrimidine-purine DNMPs, respectively, were typically underpredicted and overpredicted. Additionally, population distributions of RNA UU DNMPs were poorly predicted by both force fields, implying a requirement for further force field revisions. We further discuss the differences predicted by each RNA force field. Finally, we show that discrete path sampling (DPS) calculations can provide valuable information and complement the MD simulations. We propose the use of experimental thermodynamics data for RNA DNMPs as benchmarks for testing RNA force fields.
Collapse
Affiliation(s)
- Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States.,Department of Chemistry, Scripps Research Institute Florida, Jupiter, Florida 33458, United States
| | - Ivan Riveros
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - David J Wales
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
11
|
Li S, Peng Y, Landsman D, Panchenko AR. DNA methylation cues in nucleosome geometry, stability and unwrapping. Nucleic Acids Res 2022; 50:1864-1874. [PMID: 35166834 DOI: 10.1093/nar/gkac097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 01/04/2023] Open
Abstract
Cytosine methylation at the 5-carbon position is an essential DNA epigenetic mark in many eukaryotic organisms. Although countless structural and functional studies of cytosine methylation have been reported, our understanding of how it influences the nucleosome assembly, structure, and dynamics remains obscure. Here, we investigate the effects of cytosine methylation at CpG sites on nucleosome dynamics and stability. By applying long molecular dynamics simulations on several microsecond time scale, we generate extensive atomistic conformational ensembles of full nucleosomes. Our results reveal that methylation induces pronounced changes in geometry for both linker and nucleosomal DNA, leading to a more curved, under-twisted DNA, narrowing the adjacent minor grooves, and shifting the population equilibrium of sugar-phosphate backbone geometry. These DNA conformational changes are associated with a considerable enhancement of interactions between methylated DNA and the histone octamer, doubling the number of contacts at some key arginines. H2A and H3 tails play important roles in these interactions, especially for DNA methylated nucleosomes. This, in turn, prevents a spontaneous DNA unwrapping of 3-4 helical turns for the methylated nucleosome with truncated histone tails, otherwise observed in the unmethylated system on several microseconds time scale.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| | - Yunhui Peng
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - David Landsman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, ON, Canada
| |
Collapse
|
12
|
Khamis H, Rudnizky S, Melamed P, Kaplan A. Single molecule characterization of the binding kinetics of a transcription factor and its modulation by DNA sequence and methylation. Nucleic Acids Res 2021; 49:10975-10987. [PMID: 34606618 PMCID: PMC8565314 DOI: 10.1093/nar/gkab843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/04/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
The interaction of transcription factors with their response elements in DNA is emerging as a highly complex process, whose characterization requires measuring the full distribution of binding and dissociation times in a well-controlled assay. Here, we present a single-molecule assay that exploits the thermal fluctuations of a DNA hairpin to detect the association and dissociation of individual, unlabeled transcription factors. We demonstrate this new approach by following the binding of Egr1 to its consensus motif and the three binding sites found in the promoter of the Lhb gene, and find that both association and dissociation are modulated by the 9 bp core motif and the sequences around it. In addition, CpG methylation modulates the dissociation kinetics in a sequence and position-dependent manner, which can both stabilize or destabilize the complex. Together, our findings show how variations in sequence and methylation patterns synergistically extend the spectrum of a protein's binding properties, and demonstrate how the proposed approach can provide new insights on the function of transcription factors.
Collapse
Affiliation(s)
- Hadeel Khamis
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Faculty of Physics, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Faculty of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
- Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
13
|
Leung WY, Murray V. The influence of DNA methylation on the sequence specificity of UVB- and UVC-induced DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112225. [PMID: 34090037 DOI: 10.1016/j.jphotobiol.2021.112225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Ultraviolet light (UV) is one of the most common DNA damaging agents in the human environment. This paper examined the influence of DNA methylation on the level of UVB- and UVC-induced DNA damage. A purified DNA sequence containing CpG dinucleotides was methylated with a CpG methylase. We employed the linear amplification technique and the end-labelling approach followed by capillary electrophoresis with laser-induced fluorescence to investigate the sequence specificity of UV-induced DNA damage. The linear amplification technique mainly detects cyclobutane pyrimidine dimer (CPD) adducts, while the end-labelling approach mainly detects 6-4 photoproduct (6-4PP) lesions. The levels of CPD and 6-4PP adducts detected in methylated/unmethylated labelled sequences were analysed. The comparison showed that 5-methyl-cytosine significantly reduced the level of both CPD and 6-4PP adducts after UVB (308 nm) and UVC (254 nm) irradiation compared with the non-methylated counterpart.
Collapse
Affiliation(s)
- Wai Y Leung
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Fang J, Jin L, Meng Q, Wang D, Lin D. Interactions of extracellular DNA with aromatized biochar and protection against degradation by DNase I. J Environ Sci (China) 2021; 101:205-216. [PMID: 33334516 DOI: 10.1016/j.jes.2020.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/12/2023]
Abstract
With increasing environmental application, biochar (BC) will inevitably interact with and impact environmental behaviors of widely distributed extracellular DNA (eDNA), which however still remains to be studied. Herein, the adsorption/desorption and the degradation by nucleases of eDNA on three aromatized BCs pyrolyzed at 700 °C were firstly investigated. The results show that the eDNA was irreversibly adsorbed by aromatized BCs and the pseudo-second-order and Freundlich models accurately described the adsorption process. Increasing solution ionic strength or decreasing pH below 5.0 significantly increased the eDNA adsorption on BCs. However, increasing pH from 5.0 to 10.0 faintly decreased eDNA adsorption. Electrostatic interaction, Ca ion bridge interaction, and π-π interaction between eDNA and BC could dominate the eDNA adsorption, while ligand exchange and hydrophobic interactions were minor contributors. The presence of BCs provided a certain protection to eDNA against degradation by DNase I. BC-bound eDNA could be partly degraded by nuclease, while BC-bound nuclease completely lost its degradability. These findings are of fundamental significance for the potential application of biochar in eDNA dissemination management and evaluating the environmental fate of eDNA.
Collapse
Affiliation(s)
- Jing Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Liang Jin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qingkang Meng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dengjun Wang
- Oak Ridge Institute for Science and Education (ORISE) Resident Research Associate, United States Environmental Protection Agency, Ada, OK 74820, USA
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
D'Amico F, Zucchiatti P, Latella K, Pachetti M, Gessini A, Masciovecchio C, Vaccari L, Pascolo L. Investigation of genomic DNA methylation by ultraviolet resonant Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000150. [PMID: 32729213 DOI: 10.1002/jbio.202000150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Cytosine plays a preeminent role in DNA methylation, an epigenetic mechanism that regulates gene expression, the misregulation of which can lead to severe diseases. Several methods are nowadays employed for assessing the global DNA methylation levels, but none of them combines simplicity, high sensitivity, and low operating costs to be translated into clinical applications. Ultraviolet (UV) resonant Raman measurements at excitation wavelengths of 272 nm, 260 nm, 250 nm, and 228 nm have been carried out on isolated deoxynucleoside triphosphates (dNTPs), on a dNTP mixture as well as on genomic DNA (gDNA) samples, commercial from salmon sperm and non-commercial from B16 murine melanoma cell line. The 228 nm excitation wavelength was identified as the most suitable energy for enhancing cytosine signals over the other DNA bases. The UV Raman measurements performed at this excitation wavelength on hyper-methylated and hypo-methylated DNA from Jurkat leukemic T-cell line have revealed significant spectral differences with respect to gDNA isolated from salmon sperm and mouse melanoma B16 cells. This demonstrates how the proper choice of the excitation wavelength, combined with optimized extraction protocols, makes UV Raman spectroscopy a suitable technique for highlighting the chemical modifications undergone by cytosine nucleotides in gDNA upon hyper- and hypo-methylation events.
Collapse
Affiliation(s)
| | - Paolo Zucchiatti
- Elettra-Sincrotrone Trieste, Trieste, Italy
- Department of Physics, University of Trieste, Trieste, Italy
- Plasmon Nanotechnologies line, IIT, Genoa, Italy
| | - Katia Latella
- Elettra-Sincrotrone Trieste, Trieste, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Genoa, Italy
| | - Maria Pachetti
- Elettra-Sincrotrone Trieste, Trieste, Italy
- Department of Physics, University of Trieste, Trieste, Italy
| | | | | | | | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
16
|
DNA Modification Readers and Writers and Their Interplay. J Mol Biol 2019:S0022-2836(19)30718-1. [PMID: 31866298 DOI: 10.1016/j.jmb.2019.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Genomic DNA is modified in a postreplicative manner and several modifications, the enzymes responsible for their deposition as well as proteins that read these modifications, have been described. Here, we focus on the impact of DNA modifications on the DNA helix and review the writers and readers of cytosine modifications and how they interplay to shape genome composition, stability, and function.
Collapse
|
17
|
Lipiec E, Ruggeri FS, Benadiba C, Borkowska AM, Kobierski JD, Miszczyk J, Wood BR, Deacon GB, Kulik A, Dietler G, Kwiatek WM. Infrared nanospectroscopic mapping of a single metaphase chromosome. Nucleic Acids Res 2019; 47:e108. [PMID: 31562528 PMCID: PMC6765102 DOI: 10.1093/nar/gkz630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 01/27/2023] Open
Abstract
The integrity of the chromatin structure is essential to every process occurring within eukaryotic nuclei. However, there are no reliable tools to decipher the molecular composition of metaphase chromosomes. Here, we have applied infrared nanospectroscopy (AFM-IR) to demonstrate molecular difference between eu- and heterochromatin and generate infrared maps of single metaphase chromosomes revealing detailed information on their molecular composition, with nanometric lateral spatial resolution. AFM-IR coupled with principal component analysis has confirmed that chromosome areas containing euchromatin and heterochromatin are distinguishable based on differences in the degree of methylation. AFM-IR distribution of eu- and heterochromatin was compared to standard fluorescent staining. We demonstrate the ability of our methodology to locate spatially the presence of anticancer drug sites in metaphase chromosomes and cellular nuclei. We show that the anticancer 'rule breaker' platinum compound [Pt[N(p-HC6F4)CH2]2py2] preferentially binds to heterochromatin, forming localized discrete foci due to condensation of DNA interacting with the drug. Given the importance of DNA methylation in the development of nearly all types of cancer, there is potential for infrared nanospectroscopy to be used to detect gene expression/suppression sites in the whole genome and to become an early screening tool for malignancy.
Collapse
Affiliation(s)
- Ewelina Lipiec
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Francesco S Ruggeri
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry, University of Cambridge, CB21EW, UK
| | - Carine Benadiba
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anna M Borkowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Jan D Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy Jagiellonian University Medical College, PL-31007 Cracow, Poland
| | - Justyna Miszczyk
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Bayden R Wood
- Centre for Biospectroscopy and School of Chemistry, Monash University, 3800 Victoria, Australia
| | - Glen B Deacon
- School of Chemistry, Faculty of Science, Monash University, 3800 Victoria, Australia
| | - Andrzej Kulik
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Institute of Physics, Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
18
|
Gurbanov R, Tunçer S, Mingu S, Severcan F, Gozen AG. Methylation, sugar puckering and Z-form status of DNA from a heavy metal-acclimated freshwater Gordonia sp. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111580. [DOI: 10.1016/j.jphotobiol.2019.111580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/07/2019] [Accepted: 07/29/2019] [Indexed: 01/27/2023]
|
19
|
Meronard K, Josowicz M, Saheb A. Voltammetric Label‐free Detection of DNA Hypermethylation Using Polypyrrole‐modified Microelectrode Array. ELECTROANAL 2019. [DOI: 10.1002/elan.201900278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kenton Meronard
- Department of Chemistry and Forensic ScienceAlbany State University Albany, GA USA
| | - Mira Josowicz
- School of Chemistry and BiochemistryGeorgia Institute of Technology Atlanta, GA USA
| | - Amir Saheb
- Department of Chemistry and Forensic ScienceAlbany State University Albany, GA USA
| |
Collapse
|
20
|
Gurbanov R, S Ozek N, Tunçer S, Severcan F, Gozen AG. Aspects of silver tolerance in bacteria: infrared spectral changes and epigenetic clues. JOURNAL OF BIOPHOTONICS 2018; 11:e201700252. [PMID: 29243883 DOI: 10.1002/jbio.201700252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
In this study, the molecular profile changes leading to the adaptation of bacteria to survive and grow at inhibitory silver concentration were explored. The profile obtained through infrared (IR)-based measurements indicated extensive changes in all biomolecular components, which were supported by chemometric techniques. The changes in biomolecular profile were prominent, including nucleic acids. The changes in nucleic acid region (1350-950 cm-1 ) were encountered as a clue for conformational change in DNA. Further analysis of DNA by IR spectroscopy revealed changes in the backbone and sugar conformations. Moreover, Enzyme-Linked Immunosorbent Assay-based measurements of DNA methylation levels were performed to see if epigenetic mechanisms are in operation during bacterial adaptation to this environmental challenge. The results indicated a notable demethylation in Escherichia coli and methylation in Staphylococcus aureus likely to be associated with their elaborate adaptation process to sustain survival and growth.
Collapse
Affiliation(s)
- Rafig Gurbanov
- Department of Molecular Biology and Genetics, Bilecik Şeyh Edebali University, Bilecik, Turkey
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Nihal S Ozek
- Department of Biology, Ataturk University, Erzurum, Turkey
| | - Sinem Tunçer
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Feride Severcan
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Ayse G Gozen
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
21
|
Szymborska-Małek K, Komorowska M, Gąsior-Głogowska M. Effects of Near Infrared Radiation on DNA. DLS and ATR-FTIR Study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:258-267. [PMID: 28723592 DOI: 10.1016/j.saa.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
We presume that the primary effect of Near Infrared (NIR) radiation on aqueous solutions of biological molecules concerns modification of hydrogen bonded structures mainly the global and the hydration shell water molecules. Since water has a significant influence on the DNA structure, we expect that the thermal stability of DNA could be modified by NIR radiation. The herring sperm DNA was exposed to NIR radiation (700-1100nm) for 5, 10, and 20min periods. The temperature dependent infrared measurements were done for the thin films formed on the diamond ATR crystal from evaporated DNA solutions exposed and unexposed to NIR radiation. For the NIR-treated samples (at room temperature) the B form was better conserved than in the control sample independently of the irradiation period. Above 50°C a considerable increase in the A form was only observed for 10min NIR exposed samples. The hydrodynamic radius, (Rh), studied by the dynamic light scattering, showed drastic decrease with the increasing irradiation time. Principal components analysis (PCA) allowed to detect the spectral features correlated with the NIR effect and thermal stability of the DNA films. Obtained results strongly support the idea that the photoionization of water by NIR radiation in presence of DNA molecules is the main factor influencing on its physicochemical properties.
Collapse
Affiliation(s)
- Katarzyna Szymborska-Małek
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Box 1410, 50-950 Wroclaw 2, Poland
| | - Małgorzata Komorowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland.
| | - Marlena Gąsior-Głogowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland
| |
Collapse
|
22
|
Tenayuca J, Cousins K, Yang S, Zhang L. Computational Modeling Approach in Probing the Effects of Cytosine Methylation on the Transcription Factor Binding to DNA. Curr Top Med Chem 2017; 17:1778-1787. [PMID: 27848899 DOI: 10.2174/1568026617666161116142031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/28/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Cytosine methylation at CpG dinucleotides is a chief mechanism in epigenetic modification of gene expression patterns. Previous studies demonstrated that increased CpG methylation of Sp1 sites at -268 and -346 of protein kinase C ε promoter repressed the gene expression. MATERIALS & METHODS The present study investigated the impact of CpG methylation on the Sp1 binding via molecular modeling and electrophoretic mobility shift assay. Each of the Sp1 sites contain two CpGs. Methylation of either CpG lowered the binding affinity of Sp1, whereas methylation of both CpGs produced a greater decrease in the binding affinity. Computation of van der Waals (VDW) energy of Sp1 in complex with the Sp1 sites demonstrated increased VDW values from one to two sites of CpG methylation. Molecular modeling indicated that single CpG methylation caused underwinding of the DNA fragment, with the phosphate groups at C1, C4 and C5 reoriented from their original positions. Methylation of both CpGs pinched the minor groove and increased the helical twist concomitant with a shallow, hydrophobic major groove. Additionally, double methylation eliminated hydrogen bonds on recognition helix residues located at positions -1 and 1, which were essential for interaction with O6/N7 of G-bases. Bonding from linker residues Arg565, Lys595 and Lys596 were also reduced. Methylation of single or both CpGs significantly affected hydrogen bonding from all three Sp1 DNA binding domains, demonstrating that the consequences of cytosine modification extend beyond the neighboring nucleotides. RESULTS The results indicate that cytosine methylation causes subtle structural alterations in Sp1 binding sites consequently resulting in inhibition of side chain interactions critical for specific base recognition and reduction of the binding affinity of Sp1.
Collapse
Affiliation(s)
- John Tenayuca
- Department of Chemistry and Biochemistry, California State University, San Bernardino, California 92407, United States
| | - Kimberley Cousins
- Department of Chemistry and Biochemistry, California State University, San Bernardino, California 92407, United States
| | - Shumei Yang
- Department of Chemistry & Biochemistry, California State University, San Bernardino, CA 92407, China
| | - Lubo Zhang
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California 92350, United States
| |
Collapse
|
23
|
Veronezi GMB, Felisbino MB, Gatti MSV, Mello MLS, Vidal BDC. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy. PLoS One 2017; 12:e0170740. [PMID: 28114349 PMCID: PMC5256918 DOI: 10.1371/journal.pone.0170740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Valproic acid (VPA), a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC) immunofluorescence signals and Fourier transform-infrared (FT-IR) microspectroscopy centered on spectral regions related to the vibration of–CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for–CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than–CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.
Collapse
Affiliation(s)
- Giovana M. B. Veronezi
- Department of Structural and Functional Biology and, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Marina Barreto Felisbino
- Department of Structural and Functional Biology and, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Maria Sílvia V. Gatti
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Maria Luiza S. Mello
- Department of Structural and Functional Biology and, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
- * E-mail:
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology and, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Methyl-Cytosine-Driven Structural Changes Enhance Adduction Kinetics of an Exon 7 fragment of the p53 Gene. Sci Rep 2017; 7:40890. [PMID: 28102315 PMCID: PMC5244379 DOI: 10.1038/srep40890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/12/2016] [Indexed: 01/26/2023] Open
Abstract
Methylation of cytosine (C) at C-phosphate-guanine (CpG) sites enhances reactivity of DNA towards electrophiles. Mutations at CpG sites on the p53 tumor suppressor gene that can result from these adductions are in turn correlated with specific cancers. Here we describe the first restriction-enzyme-assisted LC-MS/MS sequencing study of the influence of methyl cytosines (MeC) on kinetics of p53 gene adduction by model metabolite benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), using methodology applicable to correlate gene damage sites for drug and pollutant metabolites with mutation sites. This method allows direct kinetic measurements by LC-MS/MS sequencing for oligonucleotides longer than 20 base pairs (bp). We used MeC and non-MeC (C) versions of a 32 bp exon 7 fragment of the p53 gene. Methylation of 19 cytosines increased the rate constant 3-fold for adduction on G at the major reactive CpG in codon 248 vs. the non-MeC fragment. Rate constants for non-CpG codons 244 and 243 were not influenced significantly by MeC. Conformational and hydrophobicity changes in the MeC-p53 exon 7 fragment revealed by CD spectra and molecular modeling increase the BPDE binding constant to G in codon 248 consistent with a pathway in which preceding reactant binding greatly facilitates the rate of covalent SN2 coupling.
Collapse
|
25
|
Cassina V, Manghi M, Salerno D, Tempestini A, Iadarola V, Nardo L, Brioschi S, Mantegazza F. Effects of cytosine methylation on DNA morphology: An atomic force microscopy study. Biochim Biophys Acta Gen Subj 2016; 1860:1-7. [DOI: 10.1016/j.bbagen.2015.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022]
|
26
|
Carvalho ATP, Gouveia L, Kanna CR, Wärmländer SKTS, Platts JA, Kamerlin SCL. Understanding the structural and dynamic consequences of DNA epigenetic modifications: computational insights into cytosine methylation and hydroxymethylation. Epigenetics 2015; 9:1604-12. [PMID: 25625845 PMCID: PMC4622728 DOI: 10.4161/15592294.2014.988043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule's dynamical landscape, increasing the propensity of DNA toward different values of twist and/or roll/tilt angles (in relation to the unmodified DNA) at the modification sites. Moreover, both the extent and position of different modifications have significant effects on the amount of structural variation observed. We propose that these conformational differences, which are dependent on the sequence environment, can provide specificity for protein binding.
Collapse
Key Words
- AFM, Atomic Force Microscopy
- DDD, Dickerson-Drew Dodecamer
- DFT, Density Functional Theory
- DNA methylation
- DNA, Deoxyribonucleic Acid
- DNMT, DNA Methyltransferase
- LINEs, Long Interspred Transposable Elements
- MD, Molecular Dynamics
- MM, Molecular Mechanics
- MeCP, Methylated CpG-binding proteins
- PBC, Periodic Boundary Conditions
- QM, Quantum Mechanics
- RDF, Radial Distribution Functions
- RESP, Restrained Electrostatic Potentials Model
- SINEs, Short Interspred Transposable Elements
- SPME, Smooth Particle-Mesh Ewald
- TET, Translocation Proteins
- WT, Wild Type
- epigenetics
- indirect readout
- molecular dynamics
- recognition
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- a Science for Life Laboratory; Department of Cell and Molecular Biology ; Uppsala University ; Uppsala , Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Karolak A, van der Vaart A. Enhanced sampling simulations of DNA step parameters. J Comput Chem 2014; 35:2297-304. [PMID: 25303338 DOI: 10.1002/jcc.23751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 12/14/2022]
Abstract
A novel approach for the selection of step parameters as reaction coordinates in enhanced sampling simulations of DNA is presented. The method uses three atoms per base and does not require coordinate overlays or idealized base pairs. This allowed for a highly efficient implementation of the calculation of all step parameters and their Cartesian derivatives in molecular dynamics simulations. Good correlation between the calculated and actual twist, roll, tilt, shift, and slide parameters is obtained, while the correlation with rise is modest. The method is illustrated by its application to the methylated and unmethylated 5'-CATGTGACGTCACATG-3' double stranded DNA sequence. One-dimensional umbrella simulations indicate that the flexibility of the central CG step is only marginally affected by methylation.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE 205, Tampa, Florida, 33620
| | | |
Collapse
|
28
|
van der Vaart A. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2014; 1850:1091-1098. [PMID: 25161164 DOI: 10.1016/j.bbagen.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. SCOPE OF REVIEW This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. MAJOR CONCLUSIONS Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. GENERAL SIGNIFICANCE Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205, Tampa, FL 33620, USA.
| |
Collapse
|
29
|
Distinguishing cytosine methylation using electrochemical, label-free detection of DNA hybridization and ds-targets. Biosens Bioelectron 2014; 64:74-80. [PMID: 25194799 DOI: 10.1016/j.bios.2014.08.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 11/22/2022]
Abstract
In this communication we report on two important effects related to the detection of DNAs. Firstly, we investigate the sensor response to target DNA when the target is in a double stranded (ds) form and compare the response to single stranded (ss) target DNA. The importance in evaluating such an effect lies in the fact that most biological DNA targets are found in ds form. Secondly, we use synthetic ds targets to investigate the effect of DNA methylation on the sensor response. DNA methylation is known to affect functional properties of DNA and is related to a number of diseases, including various cancers. In these studies, we utilize our previously developed sensor platform, which is based on the use of a glassy carbon electrode-confined conducting polymer that is covalently modified with DNA probe sequences. The signal detection methodology we use is measuring a change in the reaction kinetics of ferro-ferricyanide redox couple at the electrode upon hybridization by means of electrical impedance spectroscopy (EIS). Additionally, EIS is utilized to study the kinetics of the hybridization of the conducting polymer-bound probe with methylated vs. non-methylated ds-DNA. Preliminary results are proving valuable as a guide to the future design of sensors for gene methylation.
Collapse
|
30
|
Vargas-Caraveo A, Castillo-Michel H, Mejia-Carmona GE, Pérez-Ishiwara DG, Cotte M, Martínez-Martínez A. Preliminary studies of the effects of psychological stress on circulating lymphocytes analyzed by synchrotron radiation based-Fourier transform infrared microspectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 128:141-146. [PMID: 24667417 DOI: 10.1016/j.saa.2014.02.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 02/13/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Psychological stress is a condition that not only generates behavioral disorders but also disrupts homeostasis and immune activity that can exacerbate or lead to inflammatory diseases. The aim of this work was to study biochemical changes in circulating immune cells from rats under psychological stress by using vibrational spectroscopy. A stress model was used, where exposure to a stressor was repeated for 5 days. Subsequently, circulating lymphocytes were examined for their biomolecular vibrational fingerprints with synchrotron radiation based-Fourier transform infrared microspectroscopy. The results showed an increased absorption at the ester lipid region (1720-1755 cm(-1)) in lymphocytes from stressed rats, suggesting lipid peroxidation. Statistical significant changes in wavenumber peak position and absorbance in the nucleic acid region were also observed (915-950 cm(-1) Z-DNA, 1090-1150 cm(-1) symmetric stretching of P-O-C, 1200-1260 cm(-1) asymmetric PO2 and 1570-1510 cm(-1) methylated nucleotides) which suggest a reduction of transcriptional activity in lymphocytes from stressed rat. These results unravel part of the mechanisms by which psychological stress may affect the immune system leading to systemic consequences.
Collapse
Affiliation(s)
- Alejandra Vargas-Caraveo
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera, No. 239, Fraccionamiento "La Escalera", Ticomán, C.P. 07320 México DF, Mexico; Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente Pronaf y Estocolmo s/n, 32310 Cd. Juárez, Mexico.
| | - Hiram Castillo-Michel
- ID21, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France.
| | - Gloria Erika Mejia-Carmona
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera, No. 239, Fraccionamiento "La Escalera", Ticomán, C.P. 07320 México DF, Mexico; Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente Pronaf y Estocolmo s/n, 32310 Cd. Juárez, Mexico.
| | - David Guillermo Pérez-Ishiwara
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu Helguera, No. 239, Fraccionamiento "La Escalera", Ticomán, C.P. 07320 México DF, Mexico.
| | - Marine Cotte
- ID21, European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, 38000 Grenoble, France.
| | - Alejandro Martínez-Martínez
- Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente Pronaf y Estocolmo s/n, 32310 Cd. Juárez, Mexico.
| |
Collapse
|
31
|
Vidal BDC, Ghiraldini FG, Mello MLS. Changes in liver cell DNA methylation status in diabetic mice affect its FT-IR characteristics. PLoS One 2014; 9:e102295. [PMID: 25019512 PMCID: PMC4096918 DOI: 10.1371/journal.pone.0102295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022] Open
Abstract
Background Lower levels of cytosine methylation have been found in the liver cell DNA from non-obese diabetic (NOD) mice under hyperglycemic conditions. Because the Fourier transform-infrared (FT-IR) profiles of dry DNA samples are differently affected by DNA base composition, single-stranded form and histone binding, it is expected that the methylation status in the DNA could also affect its FT-IR profile. Methodology/Principal Findings The DNA FT-IR signatures obtained from the liver cell nuclei of hyperglycemic and normoglycemic NOD mice of the same age were compared. Dried DNA samples were examined in an IR microspectroscope equipped with an all-reflecting objective (ARO) and adequate software. Conclusions/Significance Changes in DNA cytosine methylation levels induced by hyperglycemia in mouse liver cells produced changes in the respective DNA FT-IR profiles, revealing modifications to the vibrational intensities and frequencies of several chemical markers, including νas –CH3 stretching vibrations in the 5-methylcytosine methyl group. A smaller band area reflecting lower energy absorbed in the DNA was found in the hyperglycemic mice and assumed to be related to the lower levels of –CH3 groups. Other spectral differences were found at 1700–1500 cm−1 and in the fingerprint region, and a slight change in the DNA conformation at the lower DNA methylation levels was suggested for the hyperglycemic mice. The changes that affect cytosine methylation levels certainly affect the DNA-protein interactions and, consequently, gene expression in liver cells from the hyperglycemic NOD mice.
Collapse
Affiliation(s)
- Benedicto de Campos Vidal
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Flávia Gerelli Ghiraldini
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Maria Luiza S. Mello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
32
|
Ami D, Di Segni M, Forcella M, Meraviglia V, Baccarin M, Doglia SM, Terzoli G. Role of water in chromosome spreading and swelling induced by acetic acid treatment: a FTIR spectroscopy study. Eur J Histochem 2014; 58:2330. [PMID: 24705001 PMCID: PMC3980214 DOI: 10.4081/ejh.2014.2330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/11/2013] [Accepted: 12/30/2013] [Indexed: 11/23/2022] Open
Abstract
The so called chromosome preparation is a procedure consisting of three strictly connected stages that enables to obtain chromosomes of quality suitable for cytogenetic analysis. Interestingly, experimental evidence strongly suggested that chromosome spreading and swelling (key processes that allow their counting and detailed structural analysis) are induced in the last fixative-evaporation stage by the interaction, mediated by acetic acid, between water from the environmental humidity, and the cytoplasmic matrix and the chromatin. However, since a considerable variation in the quality of chromosome preparations is observed, strongly depending on the environmental conditions in which the procedure takes place, a better comprehension of the mechanisms underlying chromosome preparation is required. To this aim, here we analysed intact lymphocytes before and at each stage of the chromosome preparation protocol by Fourier transform infrared (FTIR) spectroscopy, a technique widely used for the study not only of isolated biomolecules, but also of complex biological systems, such as whole cells. Interestingly, we found that the chromosome preparation protocol induces significant structural changes of cell proteins and DNA, in particular due to the interaction with acetic acid. Moreover, noteworthy, through the monitoring of changes in the water combination band between 2300 and 1800 cm–1, we provided evidence at molecular level of the crucial role of the bound water to the cytoplasmic matrix and to the chromatin in determining the chromosome spreading and swelling. Our FTIR results, therefore, underline the need to perform the last fixative-evaporation stage in standardized and optimized temperature and relative humidity conditions, thus providing chromosomes of high quality for the cytogenetic analysis that would lead in this way to more reliable results.
Collapse
Affiliation(s)
- D Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Otano J, Bui MPN, Seo SS. Determination of DNA Hybridization on Gold Nanoparticle Conjugated Polystyrene Particle Thin Film Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. ANAL LETT 2013. [DOI: 10.1080/00032719.2013.831429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Jangir DK, Kundu S, Mehrotra R. Role of minor groove width and hydration pattern on amsacrine interaction with DNA. PLoS One 2013; 8:e69933. [PMID: 23922861 PMCID: PMC3726726 DOI: 10.1371/journal.pone.0069933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
Amsacrine is an anilinoacridine derivative anticancer drug, used to treat a wide variety of malignancies. In cells, amsacrine poisons topoisomerase 2 by stabilizing DNA-drug-enzyme ternary complex. Presence of amsacrine increases the steady-state concentration of these ternary complexes which in turn hampers DNA replication and results in subsequent cell death. Due to reversible binding and rapid slip-out of amsacrine from DNA duplex, structural data is not available on amsacrine-DNA complexes. In the present work, we designed five oligonucleotide duplexes, differing in their minor groove widths and hydration pattern, and examined their binding with amsacrine using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Complexes of amsacrine with calf thymus DNA were also evaluated for a comparison. Our results demonstrate for the first time that amsacrine is not a simple intercalator; rather mixed type of DNA binding (intercalation and minor groove) takes place between amsacrine and DNA. Further, this binding is highly sensitive towards the geometries and hydration patterns of different minor grooves present in the DNA. This study shows that ligand binding to DNA could be very sensitive to DNA base composition and DNA groove structures. Results demonstrated here could have implication for understanding cytotoxic mechanism of aminoacridine based anticancer drugs and provide directions to modify these drugs for better efficacy and few side-effects.
Collapse
Affiliation(s)
- Deepak K Jangir
- Quantum Optics and Photon Physics, National Physical Laboratory, Council of Scientific and Industrial Research, New Delhi, India
| | | | | |
Collapse
|
35
|
Kang F, Wang H, Gao Y, Long J, Wang Q. Ca2+ promoted the low transformation efficiency of plasmid DNA exposed to PAH contaminants. PLoS One 2013; 8:e58238. [PMID: 23484001 PMCID: PMC3590140 DOI: 10.1371/journal.pone.0058238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
The effects of interactions between genetic materials and polycyclic aromatic hydrocarbons (PAHs) on gene expression in the extracellular environment remain to be elucidated and little information is currently available on the effect of ionic strength on the transformation of plasmid DNA exposed to PAHs. Phenanthrene and pyrene were used as representative PAHs to evaluate the transformation of plasmid DNA after PAH exposure and to determine the role of Ca2+ during the transformation. Plasmid DNA exposed to the test PAHs demonstrated low transformation efficiency. In the absence of PAHs, the transformation efficiency was 4.7 log units; however, the efficiency decreased to 3.72–3.14 log units with phenanthrene/pyrene exposures of 50 µg·L–1. The addition of Ca2+ enhanced the low transformation efficiency of DNA exposed to PAHs. Based on the co-sorption of Ca2+ and phenanthrene/pyrene by DNA, we employed Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and mass spectrometry (MS) to determine the mechanisms involved in PAH-induced DNA transformation. The observed low transformation efficiency of DNA exposed to either phenanthrene or pyrene can be attributed to a broken hydrogen bond in the double helix caused by planar PAHs. Added Ca2+ formed strong electrovalent bonds with “–POO––” groups in the DNA, weakening the interaction between PAHs and DNA based on weak molecular forces. This decreased the damage of PAHs to hydrogen bonds in double-stranded DNA by isolating DNA molecules from PAHs and consequently enhanced the transformation efficiency of DNA exposed to PAH contaminants. The findings provide insight into the effects of anthropogenic trace PAHs on DNA transfer in natural environments.
Collapse
Affiliation(s)
- Fuxing Kang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, People’s Republic of China
| | - Hong Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
- * E-mail:
| | - Jian Long
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, People’s Republic of China
| | - Qian Wang
- School of Earth Science and Engineering, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
36
|
Shimooka Y, Nishikawa JI, Ohyama T. Most methylation-susceptible DNA sequences in human embryonic stem cells undergo a change in conformation or flexibility upon methylation. Biochemistry 2013; 52:1344-53. [PMID: 23356538 DOI: 10.1021/bi301319y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation in eukaryotes occurs on the cytosine bases in CG, CHG, and CHH (where H indicates non-G nucleotides) contexts and provides an important epigenetic mark in various biological processes. However, the structural and physical properties of methylated DNA are poorly understood. Using nondenaturing polyacrylamide gel electrophoresis, we performed a systematic study of the influence of DNA methylation on the conformation and physical properties of DNA for all CG, CHG, and CHH contexts. In the CG context, methylated multimers of the CG/CG-containing unit fragment migrated in gels slightly faster than their unmethylated counterparts. In the CHG context, both homo- and hemimethylation caused retarded migration of multimers of the CAG/CTG-containing fragment. In the CHH context, methylation caused or enhanced retarded migration of the multimers of CAA/TTG-, CAT/ATG-, CAC/GTG-, CTA/TAG-, or CTT/AAG-containing fragments. These results suggest that methylation increases DNA rigidity in the CG context and introduces distortions into several CHG and CHH sequences. More interestingly, we found that nearly all of the methylation repertoires in the CHG context and 98% of those in the CHH context in human embryonic stem cells were species that undergo conformational changes upon methylation. Similarly, most of the methylation repertoires in the Arabidopsis CHG and CHH contexts were sequences with methylation-induced distortion. We hypothesize that the methylation-induced properties or conformational changes in DNA may facilitate nucleosome formation, which provides the essential mechanism for alterations of chromatin density.
Collapse
Affiliation(s)
- Yasutoshi Shimooka
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | |
Collapse
|
37
|
Impact of methylation on the physical properties of DNA. Biophys J 2012; 102:2140-8. [PMID: 22824278 DOI: 10.1016/j.bpj.2012.03.056] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/13/2012] [Accepted: 03/22/2012] [Indexed: 11/19/2022] Open
Abstract
There is increasing evidence for the presence of an alternative code imprinted in the genome that might contribute to gene expression regulation through an indirect reading mechanism. In mammals, components of this coarse-grained regulatory mechanism include chromatin structure and epigenetic signatures, where d(CpG) nucleotide steps are key players. We report a comprehensive experimental and theoretical study of d(CpG) steps that provides a detailed description of their physical characteristics and the impact of cytosine methylation on these properties. We observed that methylation changes the physical properties of d(CpG) steps, having a dramatic effect on enriched CpG segments, such as CpG islands. We demonstrate that methylation reduces the affinity of DNA to assemble into nucleosomes, and can affect nucleosome positioning around transcription start sites. Overall, our results suggest a mechanism by which the basic physical properties of the DNA fiber can explain parts of the cellular epigenetic regulatory mechanisms.
Collapse
|
38
|
Kaur P, Plochberger B, Costa P, Cope SM, Vaiana SM, Lindsay S. Hydrophobicity of methylated DNA as a possible mechanism for gene silencing. Phys Biol 2012. [PMID: 23196865 DOI: 10.1088/1478-3975/9/6/065001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AFM images show that chromatin reconstituted on methylated DNA (meDNA) is compacted when imaged under water. Chromatin reconstituted on unmethylated DNA is less compacted and less sensitive to hydration. These differences must reflect changes in the physical properties of DNA on methylation, but prior studies have not revealed large differences between methylated and unmethylated DNA. Quasi-elastic light scattering studies of solutions of methylated and unmethylated DNA support this view. In contrast, AFM images of molecules at a water/solid interface yield a persistence length that nearly doubles (to 92.5 ± 4 nm) when 9% of the total DNA is methylated. This increase in persistence length is accompanied by a decrease in contour length, suggesting that a significant fraction of the meDNA changes into the stiffer A form as the more hydrophobic meDNA is dehydrated at the interface. This suggests a simple mechanism for gene silencing as the stiffer meDNA is more difficult to remove from nucleosomes.
Collapse
Affiliation(s)
- Parminder Kaur
- Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ami D, Natalello A, Doglia SM. Fourier transform infrared microspectroscopy of complex biological systems: from intact cells to whole organisms. Methods Mol Biol 2012; 895:85-100. [PMID: 22760314 DOI: 10.1007/978-1-61779-927-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) microspectroscopy is a powerful tool for the study of complex biological systems. Indeed, it is employed to characterize intact cells, tissues, and whole model organisms such as nematodes, since it allows to obtain a chemical fingerprint of the sample under investigation, giving information on the molecular composition and structures. The successful application of this technique for the in situ study of biological processes requires specific sample preparations, in order to obtain reliable and reproducible results. In the present work, we illustrate the optimized procedures to prepare biological samples for IR measurements and the method to collect and analyze their FTIR spectra. In particular, we describe here the investigations on bacterial cells, intact eukaryotic cells, and whole intact nematode specimens.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
40
|
Jangir DK, Charak S, Mehrotra R, Kundu S. FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 105:143-8. [DOI: 10.1016/j.jphotobiol.2011.08.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 11/25/2022]
|
41
|
Kelly JG, Najand GM, Martin FL. Characterisation of DNA methylation status using spectroscopy (mid-IR versus Raman) with multivariate analysis. JOURNAL OF BIOPHOTONICS 2011; 4:345-54. [PMID: 21520428 DOI: 10.1002/jbio.201000085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 05/12/2023]
Abstract
Methylation status plays important roles in the regulation of gene expression and significantly influences the dynamics, bending and flexibility of DNA. The aim of this study was to determine whether attenuated total reflection Fourier-transform infrared (ATR-FTIR) or Raman spectroscopy with subsequent multivariate analysis could determine methylation patterning in oligonucleotides variously containing 5-methylcytosine, cytosine and guanine bases. Applied to Low-E reflective glass slides, 10 independent spectral acquisitions were acquired per oligonucleotide sample. Resultant spectra were baseline-corrected and vector normalised over the 1750 cm(-1) -760 cm(-1) (for ATR-FTIR spectroscopy) or the 1750 cm(-1) -600 cm(-1) (for Raman spectroscopy) regions. Data were then analysed using principal component analysis (PCA) coupled with linear discriminant analysis (LDA). Exploiting this approach, biomolecular signatures enabling sensitive and specific discrimination of methylation patterning were derived. For DNA sequence and methylation analysis, this approach has the potential to be an important tool, especially when material is scarce.
Collapse
Affiliation(s)
- Jemma G Kelly
- Centre for Biophotonics, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YQ, UK
| | | | | |
Collapse
|
42
|
Khesbak H, Savchuk O, Tsushima S, Fahmy K. The Role of Water H-Bond Imbalances in B-DNA Substate Transitions and Peptide Recognition Revealed by Time-Resolved FTIR Spectroscopy. J Am Chem Soc 2011; 133:5834-42. [DOI: 10.1021/ja108863v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Ami D, Mereghetti P, Natalello A, Doglia SM, Zanoni M, Redi CA, Monti M. FTIR spectral signatures of mouse antral oocytes: molecular markers of oocyte maturation and developmental competence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1220-9. [PMID: 21435359 DOI: 10.1016/j.bbamcr.2011.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 12/11/2022]
Abstract
Mammalian antral oocytes with a Hoescht-positive DNA ring around the nucleolus (SN) are able to resume meiosis and to fully support the embryonic development, while oocytes with a non-surrounded nucleolus (NSN) cannot. Here, we applied FTIR microspectroscopy to characterize single SN and NSN mouse oocytes in order to try to elucidate some aspects of the mechanisms behind the different chromatin organization that impairs the full development of NSN oocyte-derived embryos. To this aim, oocytes were measured at three different stages of their maturation: just after isolation and classification as SN and NSN oocytes (time 0); after 10h of in vitro maturation, i.e. at the completion of the metaphase I (time 1); and after 20h of in vitro maturation, i.e. at the completion of the metaphase II (time 2). Significant spectral differences in the lipid (3050-2800cm(-1)) and protein (1700-1600cm(-1)) absorption regions were found between the two types of oocytes and among the different stages of maturation within the same oocyte type. Moreover, dramatic changes in nucleic acid content, concerning mainly the extent of transcription and polyadenylation, were detected in particular between 1000 and 800cm(-1). The use of the multivariate principal component-linear discriminant analysis (PCA-LDA) enabled us to identify the maturation stage in which the separation between the two types of oocytes took place, finding as the most discriminating wavenumbers those associated to transcriptional activity and polyadenylation, in agreement with the visual analysis of the spectral data.
Collapse
Affiliation(s)
- Diletta Ami
- Fondazione IRCCS Policlinico San Matteo, V.le C. Golgi 19, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Marathe A, Bansal M. The 5-Methyl Group in Thymine Dynamically Influences the Structure of A-Tracts in DNA at the Local and Global Level. J Phys Chem B 2010; 114:5534-46. [DOI: 10.1021/jp911055x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arvind Marathe
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 12, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 12, India
| |
Collapse
|
45
|
Ioannou A, Alexiadou D, Kouidou S, Girousi S, Voulgaropoulos A. Use of Adsorptive Transfer Stripping Voltammetry for Analyzing Variations of Cytosine Methylation in DNA. ELECTROANAL 2009. [DOI: 10.1002/elan.200900274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Kahn TR, Fong KK, Jordan B, Lek JC, Levitan R, Mitchell PS, Wood C, Hatcher ME. An FTIR investigation of flanking sequence effects on the structure and flexibility of DNA binding sites. Biochemistry 2009; 48:1315-21. [PMID: 19166330 DOI: 10.1021/bi8015235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fourier transform infrared (FTIR) spectroscopy and a library of FTIR marker bands have been used to examine the structure and relative flexibilities conferred by different flanking sequences on the EcoRI binding site. This approach allowed us to examine unique peaks and subtle changes in the spectra of d(AAAGAATTCTTT)(2), d(TTCGAATTCGAA)(2), and d(CGCGAATTCGCG)(2) and thereby identify local changes in base pairing, base stacking, backbone conformation, glycosidic bond rotation, and sugar puckering in the studied sequences. The changes in flanking sequences induce differences in the sugar puckers, glycosidic bond rotation, and backbone conformations. Varying levels of local flexibility are observed within the sequences in agreement with previous biological activity assays. The results also provide supporting evidence for the presence of a splay in the G(4)-C(9) base pair of the EcoRI binding site and a potential pocket of flexibility at the G(4) cleavage site that have been proposed in the literature. In sum, we have demonstrated that FTIR is a powerful methodology for studying the effect of flanking sequences on DNA structure and flexibility, for it can provide information about the local structure of the nucleic acid and the overall relative flexibilities conferred by different flanking sequences.
Collapse
Affiliation(s)
- Talia R Kahn
- Joint Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tian Y, Kayatta M, Shultis K, Gonzalez A, Mueller LJ, Hatcher ME. 31P NMR investigation of backbone dynamics in DNA binding sites. J Phys Chem B 2009; 113:2596-603. [PMID: 18717548 PMCID: PMC2711773 DOI: 10.1021/jp711203m] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The backbone conformation of DNA plays an important role in the indirect readout mechanisms for protein--DNA recognition events. Thus, investigating the backbone dynamics of each step in DNA binding sequences provides useful information necessary for the characterization of these interactions. Here, we use 31P dynamic NMR to characterize the backbone conformation and dynamics in the Dickerson dodecamer, a sequence containing the EcoRI binding site, and confirm solid-state 2H NMR results showing that the C3pG4 and C9pG10 steps experience unique dynamics and that these dynamics are quenched upon cytosine methylation. In addition, we show that cytosine methylation affects the conformation and dynamics of neighboring nucleotide steps, but this effect is localized to only near neighbors and base-pairing partners. Last, we have been able to characterize the percent BII in each backbone step and illustrate that the C3pG4 and C9pG10 favor the noncanonical BII conformation, even at low temperatures. Our results demonstrate that 31P dynamic NMR provides a robust and efficient method for characterizing the backbone dynamics in DNA. This allows simple, rapid determination of sequence-dependent dynamical information, providing a useful method for studying trends in protein-DNA recognition events.
Collapse
Affiliation(s)
- Ye Tian
- Department of Chemistry University of California, Riverside, CA 92521
| | | | | | | | | | - Mary E. Hatcher
- The Joint Science Department of the Claremont Colleges; Claremont McKenna, Pitzer and Scripps Colleges, Claremont CA 91711
| |
Collapse
|
48
|
Alexiadou DK, Ioannou AK, Kouidou-Andreou SA, Voulgaropoulos AN, Girousi ST. Electroanalytical study of proflavine intercalation in 5-methyl or inosine-containing amplicons. Anal Bioanal Chem 2008; 392:533-9. [DOI: 10.1007/s00216-008-2285-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 11/30/2022]
|
49
|
Pederson K, Meints GA, Shajani Z, Miller PA, Drobny GP. Backbone dynamics in the DNA HhaI protein binding site. J Am Chem Soc 2008; 130:9072-9. [PMID: 18570423 DOI: 10.1021/ja801243d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dynamics of the phosphodiester backbone in the [5'-GCGC-3'] 2 moiety of the DNA oligomer [d(G 1A 2T 3A 4 G 5 C 6 G 7 C 8T 9A 10T 11C 12)] 2 are studied using deuterium solid-state NMR (SSNMR). SSNMR spectra obtained from DNAs nonstereospecifically deuterated on the 5' methylene group of nucleotides within the [5'-GCGC-3'] 2 moiety indicated that all of these positions are structurally flexible. Previous work has shown that methylation reduces the amplitude of motion in the phosphodiester backbone and furanose ring of the same DNA, and our observations indicate that methylation perturbs backbone dynamics through not only a loss of mobility but also a change of direction of motion. These NMR data indicate that the [5'-GCGC-3'] 2 moiety is dynamic, with the largest amplitude motions occurring nearest the methylation site. The change of orientation of this moiety in DNA upon methylation may make the molecule less amenable to binding to the HhaI endonuclease.
Collapse
Affiliation(s)
- Kari Pederson
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | | | |
Collapse
|
50
|
Heddi B, Foloppe N, Bouchemal N, Hantz E, Hartmann B. Quantification of DNA BI/BII backbone states in solution. Implications for DNA overall structure and recognition. J Am Chem Soc 2007; 128:9170-7. [PMID: 16834390 DOI: 10.1021/ja061686j] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The backbone states of B-DNA influence its helical parameters, groove dimensions, and overall curvature. Therefore, detection and fine characterization of these conformational states are desirable. Using routine NMR experiments on a nonlabeled B-DNA oligomer and analyzing high-resolution X-ray structures, we investigated the relationship between interproton distances and backbone conformational states. The three H2'i-H6/8i+1, H2' 'i-H6/8i+1, and H6/8i-H6/8i+1 sequential distances were found cross-correlated and linearly coupled to epsilon-zeta values in X-ray structures and 31P chemical shifts (deltaP) in NMR that reflect the interconversion between the backbone BI (epsilon-zeta < 0 degrees ) and BII (epsilon-zeta > 0 degrees) states. These relationships provide a detailed check of the NMR data consistency and the possibility to extend the set of restraints for structural refinement through various extrapolations. Furthermore, they allow translation of deltaP in terms of BI/BII ratios. Also, comparison of many published deltaP in solution to crystal data shows that the impact of sequence on the BI/BII propensities is similar in both environments and is therefore an intrinsic and general property of B-DNA. This quantification of the populations of BI and BII is of general interest because these sequence-dependent backbone states act on DNA overall structure, a key feature for DNA-protein-specific recognition.
Collapse
Affiliation(s)
- Brahim Heddi
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | | | | | | | | |
Collapse
|