1
|
Sangeeta, Mishra SK, Bhattacherjee A. Role of Shape Deformation of DNA-Binding Sites in Regulating the Efficiency and Specificity in Their Recognition by DNA-Binding Proteins. JACS AU 2024; 4:2640-2655. [PMID: 39055163 PMCID: PMC11267559 DOI: 10.1021/jacsau.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Accurate transcription of genetic information is crucial, involving precise recognition of the binding motifs by DNA-binding proteins. While some proteins rely on short-range hydrophobic and hydrogen bonding interactions at binding sites, others employ a DNA shape readout mechanism for specific recognition. In this mechanism, variations in DNA shape at the binding motif resulted from either inherent flexibility or binding of proteins at adjacent sites are sensed and capitalized by the searching proteins to locate them specifically. Through extensive computer simulations, we investigate both scenarios to uncover the underlying mechanism and origin of specificity in the DNA shape readout mechanism. Our findings reveal that deformation in shape at the binding motif creates an entropy funnel, allowing information about altered shapes to manifest as fluctuations in minor groove widths. This signal enhances the efficiency of nonspecific search of nearby proteins by directing their movement toward the binding site, primarily driven by a gain in entropy. We propose this as a generic mechanism for DNA shape readout, where specificity arises from the alignment between the molecular frustration of the searching protein and the ruggedness of the entropic funnel governed by molecular features of the protein and arrangement of the DNA bases at the binding site, respectively.
Collapse
Affiliation(s)
- Sangeeta
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujeet Kumar Mishra
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Van Duyne GD, Landy A. Bacteriophage lambda site-specific recombination. Mol Microbiol 2024; 121:895-911. [PMID: 38372210 PMCID: PMC11096046 DOI: 10.1111/mmi.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The site-specific recombination pathway of bacteriophage λ encompasses isoenergetic but highly directional and tightly regulated integrative and excisive reactions that integrate and excise the vial chromosome into and out of the bacterial chromosome. The reactions require 240 bp of phage DNA and 21 bp of bacterial DNA comprising 16 protein binding sites that are differentially used in each pathway by the phage-encoded Int and Xis proteins and the host-encoded integration host factor and factor for inversion stimulation proteins. Structures of higher-order protein-DNA complexes of the four-way Holliday junction recombination intermediates provided clarifying insights into the mechanisms, directionality, and regulation of these two pathways, which are tightly linked to the physiology of the bacterial host cell. Here we review our current understanding of the mechanisms responsible for regulating and executing λ site-specific recombination, with an emphasis on key studies completed over the last decade.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arthur Landy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Santoriello FJ, Michel L, Unterweger D, Pukatzki S. Pandemic Vibrio cholerae shuts down site-specific recombination to retain an interbacterial defence mechanism. Nat Commun 2020; 11:6246. [PMID: 33288753 PMCID: PMC7721734 DOI: 10.1038/s41467-020-20012-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vibrio cholerae is an aquatic microbe that can be divided into three subtypes: harmless environmental strains, localised pathogenic strains, and pandemic strains causing global cholera outbreaks. Each type has a contact-dependent type VI secretion system (T6SS) that kills neighbouring competitors by translocating unique toxic effector proteins. Pandemic isolates possess identical effectors, indicating that T6SS effectors may affect pandemicity. Here, we show that one of the T6SS gene clusters (Aux3) exists in two states: a mobile, prophage-like element in a small subset of environmental strains, and a truncated Aux3 unique to and conserved in pandemic isolates. Environmental Aux3 can be readily excised from and integrated into the genome via site-specific recombination, whereas pandemic Aux3 recombination is reduced. Our data suggest that environmental Aux3 acquisition conferred increased competitive fitness to pre-pandemic V. cholerae, leading to grounding of the element in the chromosome and propagation throughout the pandemic clade. Vibrio cholerae uses a type VI secretion system (T6SS) to kill neighbouring competitors. Here, Santoriello et al. show that a T6SS gene cluster (Aux3) exists as a mobile, prophage-like element in some environmental strains, and as a stable truncated form in pandemic isolates. They propose that Aux3 acquisition increased competitive fitness of pre-pandemic V. cholerae.
Collapse
Affiliation(s)
- Francis J Santoriello
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA.,Department of Biology, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Lina Michel
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA.,Heidelberg University, Grabengasse 1, 69117, Heidelberg, Germany
| | - Daniel Unterweger
- Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Stefan Pukatzki
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO, 80045, USA. .,Department of Biology, The City College of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
4
|
Cutts EE, Barry Egan J, Dodd IB, Shearwin KE. A quantitative binding model for the Apl protein, the dual purpose recombination-directionality factor and lysis-lysogeny regulator of bacteriophage 186. Nucleic Acids Res 2020; 48:8914-8926. [PMID: 32789491 PMCID: PMC7498355 DOI: 10.1093/nar/gkaa655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022] Open
Abstract
The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.
Collapse
Affiliation(s)
- Erin E Cutts
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - J Barry Egan
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - Ian B Dodd
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| | - Keith E Shearwin
- Department of Molecular and Biomedical Science, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
5
|
Hancock SP, Cascio D, Johnson RC. Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res 2019; 47:8874-8887. [PMID: 31616952 PMCID: PMC7145599 DOI: 10.1093/nar/gkz642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/13/2023] Open
Abstract
Localized arrays of proteins cooperatively assemble onto chromosomes to control DNA activity in many contexts. Binding cooperativity is often mediated by specific protein-protein interactions, but cooperativity through DNA structure is becoming increasingly recognized as an additional mechanism. During the site-specific DNA recombination reaction that excises phage λ from the chromosome, the bacterial DNA architectural protein Fis recruits multiple λ-encoded Xis proteins to the attR recombination site. Here, we report X-ray crystal structures of DNA complexes containing Fis + Xis, which show little, if any, contacts between the two proteins. Comparisons with structures of DNA complexes containing only Fis or Xis, together with mutant protein and DNA binding studies, support a mechanism for cooperative protein binding solely by DNA allostery. Fis binding both molds the minor groove to potentiate insertion of the Xis β-hairpin wing motif and bends the DNA to facilitate Xis-DNA contacts within the major groove. The Fis-structured minor groove shape that is optimized for Xis binding requires a precisely positioned pyrimidine-purine base-pair step, whose location has been shown to modulate minor groove widths in Fis-bound complexes to different DNA targets.
Collapse
MESH Headings
- Allosteric Site
- Bacteriophage lambda/genetics
- Bacteriophage lambda/metabolism
- Base Sequence
- Binding Sites
- Chromosomes, Bacterial/chemistry
- Chromosomes, Bacterial/metabolism
- Cloning, Molecular
- Crystallography, X-Ray
- DNA Nucleotidyltransferases/chemistry
- DNA Nucleotidyltransferases/genetics
- DNA Nucleotidyltransferases/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Factor For Inversion Stimulation Protein/chemistry
- Factor For Inversion Stimulation Protein/genetics
- Factor For Inversion Stimulation Protein/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Kinetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Recombinational DNA Repair
- Sequence Alignment
- Thermodynamics
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Stephen P Hancock
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Department of Chemistry, Towson University, 8000 York Rd., Towson, MD 21252, USA
| | - Duilio Cascio
- University of California at Los Angeles-Department of Energy Institute of Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA 90095-1570, USA
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095-1737, USA
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Retraction: Site‐specific recombination of nitrogen‐fixation genes in cyanobacteria by XisF–XisH–XisI complex: Structures and models, William C. Hwang, James W. Golden, Jaime Pascual, Dong Xu, Anton Cheltsov, Adam Godzik. Proteins 2018; 86:268. [PMID: 30338965 PMCID: PMC5094899 DOI: 10.1002/prot.24679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The above article from the Proteins: Structure, Function, and Bioinformatics, published online on 1 September 2014 in Wiley Online Library as Accepted Article (http://onlinelibrary.wiley.com/doi/10.1002/prot.24679/full), has been retracted by agreement between William C. Hwang, James W. Golden, Jaime Pascual, Dong Xu, Anton Cheltsov, Adam Godzik, the Editor‐in‐Chief, Bertrand E. Garcia‐Moreno, and Wiley Periodicals, Inc. The retraction has been agreed because submission was made without agreement from co‐author Adam Godzik.
Collapse
|
7
|
Abstract
The site-specific recombinase encoded by bacteriophage λ (Int) is responsible for integrating and excising the viral chromosome into and out of the chromosome of its Escherichia coli host. Int carries out a reaction that is highly directional, tightly regulated, and depends upon an ensemble of accessory DNA bending proteins acting on 240 bp of DNA encoding 16 protein binding sites. This additional complexity enables two pathways, integrative and excisive recombination, whose opposite, and effectively irreversible, directions are dictated by different physiological and environmental signals. Int recombinase is a heterobivalent DNA binding protein and each of the four Int protomers, within a multiprotein 400 kDa recombinogenic complex, is thought to bind and, with the aid of DNA bending proteins, bridge one arm- and one core-type DNA site. In the 12 years since the publication of the last review focused solely on the λ site-specific recombination pathway in Mobile DNA II, there has been a great deal of progress in elucidating the molecular details of this pathway. The most dramatic advances in our understanding of the reaction have been in the area of X-ray crystallography where protein-DNA structures have now been determined for of all of the DNA-protein interfaces driving the Int pathway. Building on this foundation of structures, it has been possible to derive models for the assembly of components that determine the regulatory apparatus in the P-arm, and for the overall architectures that define excisive and integrative recombinogenic complexes. The most fundamental additional mechanistic insights derive from the application of hexapeptide inhibitors and single molecule kinetics.
Collapse
|
8
|
Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome. J Bacteriol 2015; 198:766-76. [PMID: 26668266 DOI: 10.1128/jb.00704-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/07/2015] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. IMPORTANCE Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and demonstrated the dual functionality of RDF proteins: (i) inducing PAI excision and (ii) acting as transcriptional regulators. Findings from this study may be implicated in determining the mobilome contribution of other bacteria with multiple MIGEs.
Collapse
|
9
|
|
10
|
Uversky VN. Unreported intrinsic disorder in proteins: Building connections to the literature on IDPs. INTRINSICALLY DISORDERED PROTEINS 2014; 2:e970499. [PMID: 28232880 PMCID: PMC5314882 DOI: 10.4161/21690693.2014.970499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 09/08/2014] [Indexed: 02/07/2023]
Abstract
This review opens a new series entitled “Unreported intrinsic disorder in proteins.” The goal of this series is to bring attention of researchers to an interesting phenomenon of missed (or overlooked, or ignored, or unreported) disorder. This series serves as a companion to “Digested Disorder” which provides a quarterly review of papers on intrinsically disordered proteins (IDPs) found by standard literature searches. The need for this alternative series results from the observation that there are numerous publications that describe IDPs (or hybrid proteins with ordered and disordered regions) yet fail to recognize many of the key discoveries and publications in the IDP field. By ignoring the body of work on IDPs, such publications often fail to relate their findings to prior discoveries or fail to explore the obvious implications of their work. Thus, the goal of this series is not only to review these very interesting and important papers, but also to point out how each paper relates to the IDP field and show how common tools in the IDP field can readily take the findings in new directions or provide a broader context for the reported findings.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute; Morsani College of Medicine; University of South Florida; Tampa, FL USA; Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Russia; Biology Department; Faculty of Science; King Abdulaziz University; Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Goessweiner-Mohr N, Eder M, Hofer G, Fercher C, Arends K, Birner-Gruenberger R, Grohmann E, Keller W. Structure of the double-stranded DNA-binding type IV secretion protein TraN from Enterococcus. ACTA ACUST UNITED AC 2014; 70:2376-89. [PMID: 25195751 DOI: 10.1107/s1399004714014187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022]
Abstract
Conjugative transfer through type IV secretion multiprotein complexes is the most important means of spreading antimicrobial resistance. Plasmid pIP501, frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates, is the first Gram-positive (G+) conjugative plasmid for which self-transfer to Gram-negative (G-) bacteria has been demonstrated. The pIP501-encoded type IV secretion system (T4SS) protein TraN localizes to the cytoplasm and shows specific DNA binding. The specific DNA-binding site upstream of the pIP501 origin of transfer (oriT) was identified by a novel footprinting technique based on exonuclease digestion and sequencing, suggesting TraN to be an accessory protein of the pIP501 relaxase TraA. The structure of TraN was determined to 1.35 Å resolution. It revealed an internal dimer fold with antiparallel β-sheets in the centre and a helix-turn-helix (HTH) motif at both ends. Surprisingly, structurally related proteins (excisionases from T4SSs of G+ conjugative transposons and transcriptional regulators of the MerR family) resembling only one half of TraN were found. Thus, TraN may be involved in the early steps of pIP501 transfer, possibly triggering pIP501 TraA relaxase activity by recruiting the relaxosome to the assembled mating pore.
Collapse
Affiliation(s)
| | - Markus Eder
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Gerhard Hofer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Christian Fercher
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Karsten Arends
- Robert Koch Institute Berlin, Nordufer 20, 13353 Berlin, Germany
| | - Ruth Birner-Gruenberger
- Institute for Pathology and Omics Center Graz, Medical University Graz, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| |
Collapse
|
12
|
Nucleoprotein architectures regulating the directionality of viral integration and excision. Proc Natl Acad Sci U S A 2014; 111:12372-7. [PMID: 25114241 DOI: 10.1073/pnas.1413019111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The virally encoded site-specific recombinase Int collaborates with its accessory DNA bending proteins IHF, Xis, and Fis to assemble two distinct, very large, nucleoprotein complexes that carry out either integrative or excisive recombination along regulated and essentially unidirectional pathways. The core of each complex consists of a tetramer of Integrase protein (Int), which is a heterobivalent DNA binding protein that binds and bridges a core-type DNA site (where strand cleavage and ligation are executed), and a distal arm-type site, that is brought within range by one or more DNA bending proteins. The recent determination of the patterns of these Int bridges has made it possible to think realistically about the global architecture of the recombinogenic complexes. Here, we combined the previously determined Int bridging patterns with in-gel FRET experiments and in silico modeling to characterize and differentiate the two 400-kDa multiprotein Holiday junction recombination intermediates formed during λ integration and excision. The results lead to architectural models that explain how integration and excision are regulated in λ site-specific recombination. Our confidence in the basic features of these architectures is based on the redundancy and self-consistency of the underlying data from two very different experimental approaches to establish bridging interactions, a set of strategic intracomplex distances from FRET experiments, and the model's ability to explain key aspects of the integrative and excisive recombination pathways, such as topological changes, the mechanism of capturing attB, and the features of asymmetry and flexibility within the complexes.
Collapse
|
13
|
Nudelman H, Zarivach R. Structure prediction of magnetosome-associated proteins. Front Microbiol 2014; 5:9. [PMID: 24523717 PMCID: PMC3905215 DOI: 10.3389/fmicb.2014.00009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/08/2014] [Indexed: 01/23/2023] Open
Abstract
Magnetotactic bacteria (MTB) are Gram-negative bacteria that can navigate along geomagnetic fields. This ability is a result of a unique intracellular organelle, the magnetosome. These organelles are composed of membrane-enclosed magnetite (Fe3O4) or greigite (Fe3S4) crystals ordered into chains along the cell. Magnetosome formation, assembly, and magnetic nano-crystal biomineralization are controlled by magnetosome-associated proteins (MAPs). Most MAP-encoding genes are located in a conserved genomic region – the magnetosome island (MAI). The MAI appears to be conserved in all MTB that were analyzed so far, although the MAI size and organization differs between species. It was shown that MAI deletion leads to a non-magnetic phenotype, further highlighting its important role in magnetosome formation. Today, about 28 proteins are known to be involved in magnetosome formation, but the structures and functions of most MAPs are unknown. To reveal the structure–function relationship of MAPs we used bioinformatics tools in order to build homology models as a way to understand their possible role in magnetosome formation. Here we present a predicted 3D structural models’ overview for all known Magnetospirillum gryphiswaldense strain MSR-1 MAPs.
Collapse
Affiliation(s)
- Hila Nudelman
- Department of Life Sciences, Ben-Gurion University of the Negev Beer Sheva, Israel ; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev Beer Sheva, Israel ; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| |
Collapse
|
14
|
Berntsson RPA, Odegrip R, Sehlén W, Skaar K, Svensson LM, Massad T, Högbom M, Haggård-Ljungquist E, Stenmark P. Structural insight into DNA binding and oligomerization of the multifunctional Cox protein of bacteriophage P2. Nucleic Acids Res 2013; 42:2725-35. [PMID: 24259428 PMCID: PMC3936717 DOI: 10.1093/nar/gkt1119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Cox protein from bacteriophage P2 is a small multifunctional DNA-binding protein. It is involved in site-specific recombination leading to P2 prophage excision and functions as a transcriptional repressor of the P2 Pc promoter. Furthermore, it transcriptionally activates the unrelated, defective prophage P4 that depends on phage P2 late gene products for lytic growth. In this article, we have investigated the structural determinants to understand how P2 Cox performs these different functions. We have solved the structure of P2 Cox to 2.4 Å resolution. Interestingly, P2 Cox crystallized in a continuous oligomeric spiral with its DNA-binding helix and wing positioned outwards. The extended C-terminal part of P2 Cox is largely responsible for the oligomerization in the structure. The spacing between the repeating DNA-binding elements along the helical P2 Cox filament is consistent with DNA binding along the filament. Functional analyses of alanine mutants in P2 Cox argue for the importance of key residues for protein function. We here present the first structure from the Cox protein family and, together with previous biochemical observations, propose that P2 Cox achieves its various functions by specific binding of DNA while wrapping the DNA around its helical oligomer.
Collapse
Affiliation(s)
- Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden and Department of Molecular Biosciences, The Wenner-Gren Institute, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Singh S, Plaks JG, Homa NJ, Amrich CG, Héroux A, Hatfull GF, VanDemark AP. The structure of Xis reveals the basis for filament formation and insight into DNA bending within a mycobacteriophage intasome. J Mol Biol 2013; 426:412-22. [PMID: 24112940 DOI: 10.1016/j.jmb.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 11/27/2022]
Abstract
The recombination directionality factor, Xis, is a DNA bending protein that determines the outcome of integrase-mediated site-specific recombination by redesign of higher-order protein-DNA architectures. Although the attachment site DNA of mycobacteriophage Pukovnik is likely to contain four sites for Xis binding, Xis crystals contain five subunits in the asymmetric unit, four of which align into a Xis filament and a fifth that is generated by an unusual domain swap. Extensive intersubunit contacts stabilize a bent filament-like arrangement with Xis monomers aligned head to tail. The structure implies a DNA bend of ~120°, which is in agreement with DNA bending measured in vitro. Formation of attR-containing intasomes requires only Int and Xis, distinguishing Pukovnik from lambda. Therefore, we conclude that, in Pukovnik, Xis-induced DNA bending is sufficient to promote intramolecular Int-mediated bridges during intasome formation.
Collapse
Affiliation(s)
- Shweta Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joseph G Plaks
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas J Homa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; Present address: N. J. Homa, 426 CARL Building, Duke University, Durham, NC 27710, USA.
| | - Christopher G Amrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
16
|
Panis G, Franche N, Méjean V, Ansaldi M. Insights into the functions of a prophage recombination directionality factor. Viruses 2012. [PMID: 23202488 PMCID: PMC3509656 DOI: 10.3390/v4112417] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recombination directionality factors (RDFs), or excisionases, are essential players of prophage excisive recombination. Despite the essentially catalytic role of the integrase in both integrative and excisive recombination, RDFs are required to direct the reaction towards excision and to prevent re-integration of the prophage genome when entering a lytic cycle. KplE1, HK620 and numerous (pro)phages that integrate at the same site in enterobacteria genomes (such as the argW tRNA gene) all share a highly conserved recombination module. This module comprises the attL and attR recombination sites and the RDF and integrase genes. The KplE1 RDF was named TorI after its initial identification as a negative regulator of the tor operon. However, it was characterized as an essential factor of excisive recombination. In this study, we designed an extensive random mutagenesis protocol of the torI gene and identified key residues involved in both functions of the TorI protein. We show that, in addition to TorI-TorR protein-protein interaction, TorI interacts in solution with the IntS integrase. Moreover, in vitro, TorR and IntS appear to compete for TorI binding. Finally, our mutagenesis results suggest that the C-terminal part of the TorI protein is dedicated to protein-protein interactions with both proteins TorR and IntS.
Collapse
Affiliation(s)
- Gaël Panis
- Laboratoire de Chimie Bactérienne CNRS UMR7283, Institut de Microbiologie de la Méditerranée, Aix-Marseille University, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
| | | | | | | |
Collapse
|
17
|
Isolation of Xis Gen Fragment of λ Phage from Agarose Gel Using Magnetic Particles for Subsequent Enzymatic DNA Sequencing. Chromatographia 2012. [DOI: 10.1007/s10337-012-2326-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Stability of a Pseudomonas putida KT2440 bacteriophage-carried genomic island and its impact on rhizosphere fitness. Appl Environ Microbiol 2012; 78:6963-74. [PMID: 22843519 DOI: 10.1128/aem.00901-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stability of seven genomic islands of Pseudomonas putida KT2440 with predicted potential for mobilization was studied in bacterial populations associated with the rhizosphere of corn plants by multiplex PCR. DNA rearrangements were detected for only one of them (GI28), which was lost at high frequency. This genomic island of 39.4 kb, with 53 open reading frames, shows the characteristic organization of genes belonging to tailed phages. We present evidence indicating that it corresponds to the lysogenic state of a functional bacteriophage that we have designated Pspu28. Integrated and rarely excised forms of Pspu28 coexist in KT2440 populations. Pspu28 is self-transmissible, and an excisionase is essential for its removal from the bacterial chromosome. The excised Pspu28 forms a circular element that can integrate into the chromosome at a specific location, att sites containing a 17-bp direct repeat sequence. Excision/insertion of Pspu28 alters the promoter sequence and changes the expression level of PP_1531, which encodes a predicted arsenate reductase. Finally, we show that the presence of Pspu28 in the lysogenic state has a negative effect on bacterial fitness in the rhizosphere under conditions of intraspecific competition, thus explaining why clones having lost this mobile element are recovered from that environment.
Collapse
|
19
|
Häuser R, Blasche S, Dokland T, Haggård-Ljungquist E, von Brunn A, Salas M, Casjens S, Molineux I, Uetz P. Bacteriophage protein-protein interactions. Adv Virus Res 2012; 83:219-98. [PMID: 22748812 PMCID: PMC3461333 DOI: 10.1016/b978-0-12-394438-2.00006-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology.
Collapse
Affiliation(s)
- Roman Häuser
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Sonja Blasche
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Albrecht von Brunn
- Max-von-Pettenkofer-Institut, Lehrstuhl Virologie, Ludwig-Maximilians-Universität, München, Germany
| | - Margarita Salas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Cantoblanco, Madrid, Spain
| | - Sherwood Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ian Molineux
- Molecular Genetics and Microbiology, Institute for Cell and Molecular Biology, University of Texas–Austin, Austin, Texas, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
20
|
Rajagopala SV, Casjens S, Uetz P. The protein interaction map of bacteriophage lambda. BMC Microbiol 2011; 11:213. [PMID: 21943085 PMCID: PMC3224144 DOI: 10.1186/1471-2180-11-213] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022] Open
Abstract
Background Bacteriophage lambda is a model phage for most other dsDNA phages and has been studied for over 60 years. Although it is probably the best-characterized phage there are still about 20 poorly understood open reading frames in its 48-kb genome. For a complete understanding we need to know all interactions among its proteins. We have manually curated the lambda literature and compiled a total of 33 interactions that have been found among lambda proteins. We set out to find out how many protein-protein interactions remain to be found in this phage. Results In order to map lambda's interactions, we have cloned 68 out of 73 lambda open reading frames (the "ORFeome") into Gateway vectors and systematically tested all proteins for interactions using exhaustive array-based yeast two-hybrid screens. These screens identified 97 interactions. We found 16 out of 30 previously published interactions (53%). We have also found at least 18 new plausible interactions among functionally related proteins. All previously found and new interactions are combined into structural and network models of phage lambda. Conclusions Phage lambda serves as a benchmark for future studies of protein interactions among phage, viruses in general, or large protein assemblies. We conclude that we could not find all the known interactions because they require chaperones, post-translational modifications, or multiple proteins for their interactions. The lambda protein network connects 12 proteins of unknown function with well characterized proteins, which should shed light on the functional associations of these uncharacterized proteins.
Collapse
|
21
|
Champ S, Puvirajesinghe TM, Perrody E, Menouni R, Genevaux P, Ansaldi M. Chaperone-assisted excisive recombination, a solitary role for DnaJ (Hsp40) chaperone in lysogeny escape. J Biol Chem 2011; 286:38876-85. [PMID: 21908845 DOI: 10.1074/jbc.m111.281865] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Temperate bacteriophage lytic development is intrinsically related to the stress response in particular at the DNA replication and virion maturation steps. Alternatively, temperate phages become lysogenic and integrate their genome into the host chromosome. Under stressful conditions, the prophage resumes a lytic development program, and the phage DNA is excised before being replicated. The KplE1 defective prophage of Escherichia coli K12 constitutes a model system because it is fully competent for integrative as well as excisive recombination and presents an atypical recombination module, which is conserved in various phage genomes. In this work, we identified the host-encoded stress-responsive molecular chaperone DnaJ (Hsp40) as an active participant in KplE1 prophage excision. We first show that the recombination directionality factor TorI of KplE1 specifically interacts with DnaJ. In addition, we found that DnaJ dramatically enhances both TorI binding to its DNA target and excisive recombination in vitro. Remarkably, such stimulatory effect by DnaJ was performed independently of its DnaK chaperone partner and did not require a functional DnaJ J-domain. Taken together, our results underline a novel and unsuspected functional interaction between the generic host stress-regulated chaperone and temperate bacteriophage lysogenic development.
Collapse
Affiliation(s)
- Stéphanie Champ
- Laboratoire de Chimie Bactérienne CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
22
|
Sieber T, Scholz R, Spoerner M, Schumann F, Kalbitzer HR, Dobner T. Intrinsic disorder in the common N-terminus of human adenovirus 5 E1B-55K and its related E1BN proteins indicated by studies on E1B-93R. Virology 2011; 418:133-43. [DOI: 10.1016/j.virol.2011.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
|
23
|
Panis G, Duverger Y, Champ S, Ansaldi M. Protein binding sites involved in the assembly of the KplE1 prophage intasome. Virology 2010; 404:41-50. [PMID: 20494389 DOI: 10.1016/j.virol.2010.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/24/2010] [Accepted: 04/27/2010] [Indexed: 11/25/2022]
Abstract
The organization of the recombination regions of the KplE1 prophage in Escherichia coli K12 differs from that observed in the lambda prophage. Indeed, the binding sites characterized for the IntS integrase, the TorI recombination directionality factor (RDF) and the integration host factor (IHF) vary in number, spacing and orientation on the attL and attR regions. In this paper, we performed site-directed mutagenesis of the recombination sites to decipher if all sites are essential for the site-specific recombination reaction and how the KplE1 intasome is assembled. We also show that TorI and IntS form oligomers that are stabilized in the presence of their target DNA. Moreover, we found that IHF is the only nucleoid associated protein (NAP) involved in KplE1 recombination, although it is dispensable. This is consistent with the presence of only one functional IHF site on attR and none on attL.
Collapse
Affiliation(s)
- Gaël Panis
- Laboratoire de Chimie Bactérienne CNRS UPR9043, Institut de Microbiologie de la Méditerranée, Marseille Cedex 20, France
| | | | | | | |
Collapse
|
24
|
The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog 2009; 5:e1000408. [PMID: 19412337 PMCID: PMC2669165 DOI: 10.1371/journal.ppat.1000408] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 03/31/2009] [Indexed: 11/19/2022] Open
Abstract
Bacteriophages are major genetic factors promoting horizontal gene transfer (HGT) between bacteria. Their roles in dynamic bacterial genome evolution have been increasingly highlighted by the fact that many sequenced bacterial genomes contain multiple prophages carrying a wide range of genes. Enterohemorrhagic Escherichia coli O157 is the most striking case. A sequenced strain (O157 Sakai) possesses 18 prophages (Sp1–Sp18) that encode numerous genes related to O157 virulence, including those for two potent cytotoxins, Shiga toxins (Stx) 1 and 2. However, most of these prophages appeared to contain multiple genetic defects. To understand whether these defective prophages have the potential to act as mobile genetic elements to spread virulence determinants, we looked closely at the Sp1–Sp18 sequences, defined the genetic defects of each Sp, and then systematically analyzed all Sps for their biological activities. We show that many of the defective prophages, including the Stx1 phage, are inducible and released from O157 cells as particulate DNA. In fact, some prophages can even be transferred to other E. coli strains. We also show that new Stx1 phages are generated by recombination between the Stx1 and Stx2 phage genomes. The results indicate that these defective prophages are not simply genetic remnants generated in the course of O157 evolution, but rather genetic elements with a high potential for disseminating virulence-related genes and other genetic traits to other bacteria. We speculate that recombination and various other types of inter-prophage interactions in the O157 prophage pool potentiate such activities. Our data provide new insights into the potential activities of the defective prophages embedded in bacterial genomes and lead to the formulation of a novel concept of inter-prophage interactions in defective prophage communities. Bacterial viruses, known as bacteriophages or phages, are major factors promoting horizontal gene transfer (HGT) between bacteria, and this activity has sparked new interest in light of the discovery that many sequenced bacterial genomes harbor multiple prophages carrying a wide range of genes, including those related to virulence. However, prophages identified from genome sequences often contain various genetic defects, and they have therefore been regarded as merely genetic vestiges, with no attention paid to their potential activities as mobile genetic elements. Enterohemorraghic Escherichia coli O157, which harbors as many as 18 prophages, is the most striking such example. The O157 prophages carry numerous genes related to O157 virulence, but most possess multiple genetic defects. In this study, we analyze the functionalities of O157 prophages and report that many of the apparently defective prophages are inducible and released from the O157 cells as particulate DNA and that some can be transferred to other E. coli strains. We should therefore regard these prophages as having high potential to disseminate virulence determinants. Our results further suggest that their activities as mobile genetic elements are potentiated by various types of interactions among the prophages, formulating a novel concept of inter-prophage interactions in defective prophage communities.
Collapse
|
25
|
Structural prediction and mutational analysis of the Gifsy-I Xis protein. BMC Microbiol 2008; 8:199. [PMID: 19014640 PMCID: PMC2603039 DOI: 10.1186/1471-2180-8-199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 11/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Gifsy-I phage integrates into the Salmonella Typhimurium chromosome via an integrase mediated, site-specific recombination mechanism. Excision of the Gifsy-I phage requires three proteins, the Gifsy-I integrase (Int), the Gifsy-I excisionase (Xis) protein, and host encoded Integration Host Factor (IHF). The Gifsy-I xis gene encodes the 94-residue Gifsy-I excisionase protein that has a molecular weight of 11.2 kDa and a pI of 10.2. Electrophoretic Mobility Shift Assays (EMSA) suggested at least one region of the protein is responsible for protein-DNA interactions with a tripartite DNA binding site composed of three direct imperfect repeats. RESULTS Here we have undertaken experiments to dissect and model the structural motifs of Gifsy-I Xis necessary for its observed DNA binding activity. Diethyl sulfate mutagenesis (DES) and mutagenic PCR techniques were used to generate Gifsy-I xis mutants. Mutant Xis proteins that lacked activity in vivo were purified and tested by EMSA for binding to the Gifsy-I Xis attP attachment site. Results from mutagenesis experiments and EMSA were compared to results of structural predictions and sequence analyses. CONCLUSION Sequence comparisons revealed evidence for three distinct structural motifs in the Gifsy-I Xis protein. Multiple sequence alignments revealed unexpected homologies between the Gifsy-I Xis protein and two distinct subsets of polynucleotide binding proteins. Our data may suggest a role for the Gifsy-I Xis in the regulation of the Gifsy-I phage excision beyond that of DNA binding and possible interactions with the Gifsy-I Int protein.
Collapse
|
26
|
Abstract
The temperate bacteriophages lambda and P22 share similarities in their site-specific recombination reactions. Both require phage-encoded integrase (Int) proteins for integrative recombination and excisionase (Xis) proteins for excision. These proteins bind to core-type, arm-type, and Xis binding sites to facilitate the reaction. lambda and P22 Xis proteins are both small proteins (lambda Xis, 72 amino acids; P22 Xis, 116 amino acids) and have basic isoelectric points (for P22 Xis, 9.42; for lambda Xis, 11.16). However, the P22 Xis and lambda Xis primary sequences lack significant similarity at the amino acid level, and the linear organizations of the P22 phage attachment site DNA-binding sites have differences that could be important in quaternary intasome structure. We purified P22 Xis and studied the protein in vitro by means of electrophoretic mobility shift assays and footprinting, cross-linking, gel filtration stoichiometry, and DNA bending assays. We identified one protected site that is bent approximately 137 degrees when bound by P22 Xis. The protein binds cooperatively and at high protein concentrations protects secondary sites that may be important for function. Finally, we aligned the attP arms containing the major Xis binding sites from bacteriophages lambda, P22, L5, HP1, and P2 and the conjugative transposon Tn916. The similarity in alignments among the sites suggests that Xis-containing bacteriophage arms may form similar structures.
Collapse
|
27
|
Hazelbaker D, Azaro MA, Landy A. A biotin interference assay highlights two different asymmetric interaction profiles for lambda integrase arm-type binding sites in integrative versus excisive recombination. J Biol Chem 2008; 283:12402-14. [PMID: 18319248 DOI: 10.1074/jbc.m800544200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The site-specific recombinase integrase encoded by bacteriophage lambda promotes integration and excision of the viral chromosome into and out of its Escherichia coli host chromosome through a Holliday junction recombination intermediate. This intermediate contains an integrase tetramer bound via its catalytic carboxyl-terminal domains to the four "core-type" sites of the Holliday junction DNA and via its amino-terminal domains to distal "arm-type" sites. The two classes of integrase binding sites are brought into close proximity by an ensemble of accessory proteins that bind and bend the intervening DNA. We have used a biotin interference assay that probes the requirement for major groove protein binding at specified DNA loci in conjunction with DNA protection, gel mobility shift, and genetic experiments to test several predictions of the models derived from the x-ray crystal structures of minimized and symmetrized surrogates of recombination intermediates lacking the accessory proteins and their cognate DNA targets. Our data do not support the predictions of "non-canonical" DNA targets for the N-domain of integrase, and they indicate that the complexes used for x-ray crystallography are more appropriate for modeling excisive rather than integrative recombination intermediates. We suggest that the difference in the asymmetric interaction profiles of the N-domains and arm-type sites in integrative versus excisive recombinogenic complexes reflects the regulation of recombination, whereas the asymmetry of these patterns within each reaction contributes to directionality.
Collapse
Affiliation(s)
- Dane Hazelbaker
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
28
|
Abbani MA, Papagiannis CV, Sam MD, Cascio D, Johnson RC, Clubb RT. Structure of the cooperative Xis-DNA complex reveals a micronucleoprotein filament that regulates phage lambda intasome assembly. Proc Natl Acad Sci U S A 2007; 104:2109-14. [PMID: 17287355 PMCID: PMC1893000 DOI: 10.1073/pnas.0607820104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA architectural protein Xis regulates the construction of higher-order nucleoprotein intasomes that integrate and excise the genome of phage lambda from the Escherichia coli chromosome. Xis modulates the directionality of site-specific recombination by stimulating phage excision 10(6)-fold, while simultaneously inhibiting phage reintegration. Control is exerted by cooperatively assembling onto a approximately 35-bp DNA regulatory element, which it distorts to preferentially stabilize an excisive intasome. Here, we report the 2.6-A crystal structure of the complex between three cooperatively bound Xis proteins and a 33-bp DNA containing the regulatory element. Xis binds DNA in a head-to-tail orientation to generate a micronucleoprotein filament. Although each protomer is anchored to the duplex by a similar set of nonbase specific contacts, malleable protein-DNA interactions enable binding to sites that differ in nucleotide sequence. Proteins at the ends of the duplex sequence specifically recognize similar binding sites and participate in cooperative binding via protein-protein interactions with a bridging Xis protomer that is bound in a less specific manner. Formation of this polymer introduces approximately 72 degrees of curvature into the DNA with slight positive writhe, which functions to connect disparate segments of DNA bridged by integrase within the excisive intasome.
Collapse
Affiliation(s)
- Mohamad A. Abbani
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Christie V. Papagiannis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1737
| | - My D. Sam
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Duilio Cascio
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
| | - Reid C. Johnson
- Molecular Biology Institute, University of California, 611 Charles Young Drive East, Los Angeles, CA 90095-1570; and
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095-1737
- To whom correspondence may be addressed. E-mail:
or
| | - Robert T. Clubb
- *Department of Chemistry and Biochemistry and University of California–Department of Energy Institute of Genomics and Proteomics, and
- Molecular Biology Institute, University of California, 611 Charles Young Drive East, Los Angeles, CA 90095-1570; and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
29
|
Sun X, Mierke DF, Biswas T, Lee SY, Landy A, Radman-Livaja M. Architecture of the 99 bp DNA-six-protein regulatory complex of the lambda att site. Mol Cell 2007; 24:569-80. [PMID: 17114059 PMCID: PMC1866956 DOI: 10.1016/j.molcel.2006.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/13/2006] [Accepted: 10/04/2006] [Indexed: 11/28/2022]
Abstract
The highly directional and tightly regulated recombination reaction used to site-specifically excise the bacteriophage lambda chromosome out of its E. coli host chromosome requires the binding of six sequence-specific proteins to a 99 bp segment of the phage att site. To gain structural insights into this recombination pathway, we measured 27 FRET distances between eight points on the 99 bp regulatory DNA bound with all six proteins. Triangulation of these distances using a metric matrix distance-geometry algorithm provided coordinates for these eight points. The resulting path for the protein-bound regulatory DNA, which fits well with the genetics, biochemistry, and X-ray crystal structures describing the individual proteins and their interactions with DNA, provides a new structural perspective into the molecular mechanism and regulation of the recombination reaction and illustrates a design by which different families of higher-order complexes can be assembled from different numbers and combinations of the same few proteins.
Collapse
Affiliation(s)
- Xingmin Sun
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Dale F. Mierke
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Tapan Biswas
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School Boston, Massachusetts 02115
| | - Sang Yeol Lee
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
| | - Arthur Landy
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
- *Correspondence: (A.L.), (M.R.-L.)
| | - Marta Radman-Livaja
- Division of Biology and Medicine Brown University Providence, Rhode Island 02912
- *Correspondence: (A.L.), (M.R.-L.)
| |
Collapse
|
30
|
Papagiannis CV, Sam MD, Abbani MA, Yoo D, Cascio D, Clubb RT, Johnson RC. Fis targets assembly of the Xis nucleoprotein filament to promote excisive recombination by phage lambda. J Mol Biol 2007; 367:328-43. [PMID: 17275024 PMCID: PMC1852488 DOI: 10.1016/j.jmb.2006.12.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 12/05/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
The phage-encoded Xis protein is the major determinant controlling the direction of recombination in phage lambda. Xis is a winged-helix DNA binding protein that cooperatively binds to the attR recombination site to generate a curved microfilament, which promotes assembly of the excisive intasome but inhibits formation of an integrative intasome. We find that lambda synthesizes surprisingly high levels of Xis immediately upon prophage induction when excision rates are maximal. However, because of its low sequence-specific binding activity, exemplified by a 1.9 A co-crystal structure of a non-specifically bound DNA complex, Xis is relatively ineffective at promoting excision in vivo in the absence of the host Fis protein. Fis binds to a segment in attR that almost entirely overlaps one of the Xis binding sites. Instead of sterically excluding Xis binding from this site, as has been previously believed, we show that Fis enhances binding of all three Xis protomers to generate the microfilament. A specific Fis-Xis interface is supported by the effects of mutations within each protein, and relaxed, but not completely sequence-neutral, binding by the central Xis protomer is supported by the effects of DNA mutations. We present a structural model for the 50 bp curved Fis-Xis cooperative complex that is assembled between the arm and core Int binding sites whose trajectory places constraints on models for the excisive intasome structure.
Collapse
Affiliation(s)
- Christie V. Papagiannis
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
| | - My D. Sam
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Mohamad A. Abbani
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Daniel Yoo
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
| | - Duilio Cascio
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry and UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA, 90095-1570
- Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095
| | - Reid C. Johnson
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737
- Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095
- Corresponding author: Department of Biological Chemistry, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095-1737. Tel# 310-825-7800; Fax# 310-206-5272; email
| |
Collapse
|
31
|
Elantak L, Ansaldi M, Guerlesquin F, Méjean V, Morelli X. Structural and Genetic Analyses Reveal a Key Role in Prophage Excision for the TorI Response Regulator Inhibitor. J Biol Chem 2005; 280:36802-8. [PMID: 16079126 DOI: 10.1074/jbc.m507409200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TorI (Tor inhibition protein) has been identified in Escherichia coli as a protein inhibitor acting through protein-protein interaction with the TorR response regulator. This interaction, which does not interfere with TorR DNA binding activity, probably prevents the recruitment of RNA polymerase to the torC promoter. In this study we have solved the solution structure of TorI, which adopts a prokaryotic winged-helix arrangement. Despite no primary sequence similarity, the three-dimensional structure of TorI is highly homologous to the (lambda)Xis, Mu bacteriophage repressor (MuR-DBD), and transposase (MuA-DBD) structures. We propose that the TorI protein is the structural missing link between the (lambda)Xis and MuR proteins. Moreover, in vivo assays demonstrated that TorI plays an essential role in prophage excision. Heteronuclear NMR experiments and site-directed mutagenesis studies have pinpointed out key residues involved in the DNA binding activity of TorI. Our findings suggest that TorI-related proteins identified in various pathogenic bacterial genomes define a new family of atypical excisionases.
Collapse
Affiliation(s)
- Latifa Elantak
- Unité de Bioénergétique et Ingénierie des Protéines, IBSM-CNRS, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
32
|
Abbani M, Iwahara M, Clubb RT. The Structure of the Excisionase (Xis) Protein from Conjugative Transposon Tn916 Provides Insights into the Regulation of Heterobivalent Tyrosine Recombinases. J Mol Biol 2005; 347:11-25. [PMID: 15733914 DOI: 10.1016/j.jmb.2005.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 12/21/2004] [Accepted: 01/04/2005] [Indexed: 11/16/2022]
Abstract
Heterobivalent tyrosine recombinases play a prominent role in numerous bacteriophage and transposon recombination systems. Their enzymatic activities are frequently regulated at a structural level by excisionase factors, which alter the ability of the recombinase to assemble into higher-order recombinogenic nucleoprotein structures. The Tn916 conjugative transposon spreads antibiotic resistance in pathogenic bacteria and is mobilized by a heterobivalent recombinase (Tn916Int), whose activity is regulated by an excisionase factor (Tn916Xis). Unlike the well-characterized (lambda)Xis excisionase from bacteriophage lambda, Tn916Xis stimulates excision in vitro and in Escherichia coli only modestly. To gain insights into this functional difference, we have performed in vitro DNA-binding studies of Tn916Xis and Tn916Int, and we have solved the solution structure of Tn916Xis. We show that the heterobivalent Tn916Int protein is capable of bridging the DR2-type and core-type sites on the left arm of the tranpsoson. Consistent with the notion that Tn916Int is regulated only loosely, we find that Tn916Xis binding does not alter the stability of DR2-Tn916Int-core bridges or the ability of Tn916Int to recognize the arms of the transposon in vitro. Despite a high degree of divergence at the primary sequence level, we show that Tn916Xis and (lambda)Xis adopt related prokaryotic winged-helix structures. However, they differ at their C termini, with Tn916Xis replacing the flexible integrase contacting tail found in (lambda)Xis with a positively charged alpha-helix. This difference provides a structural explanation for why Tn916Xis does not interact cooperatively with its cognate integrase in vitro, and reveals how subtle changes in the winged-helix fold can modulate the functional properties of excisionase factors.
Collapse
Affiliation(s)
- Mohamad Abbani
- Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, and the Molecular Biology Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1570, USA
| | | | | |
Collapse
|
33
|
Frumerie C, Sylwan L, Ahlgren-Berg A, Haggård-Ljungquist E. Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 2005; 332:284-94. [PMID: 15661160 DOI: 10.1016/j.virol.2004.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 10/26/2022]
Abstract
Bacteriophage P2 integrase (Int) mediates site-specific recombination leading to integration or excision of the phage genome in or out of the bacterial chromosome. Int belongs to the large family of tyrosine recombinases that have two different DNA recognition motifs binding to the arm and core sites, respectively, which are located within the phage attachment sites (attP). In addition to the P2 integrase, the accessory proteins Escherichia coli IHF and P2 Cox are needed for recombination. IHF is a structural protein needed for integration and excision by bending the DNA. As opposed to lambda, only one IHF site is found in P2 attP. P2 Cox controls the direction of recombination by inhibiting integration but being required for excision. In this work, the effects of accessory proteins on the capacity of Int to bind to its DNA recognition sequences are analyzed using electromobility shifts. P2 Int binds with low affinity to the arm site, and this binding is greatly enhanced by IHF. The arm binding domain of Int is located at the N-terminus. P2 Int binds with high affinity to the core site, and this binding is also enhanced by IHF. The fact that the cooperative binding of Int and IHF is strongly reduced by lengthening the distance between the IHF and core binding sites indicates that the distance between these sites may be important for cooperative binding. The Int and Cox proteins also bind cooperatively to attP.
Collapse
Affiliation(s)
- Clara Frumerie
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Svante Arrhenius väg 16, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
34
|
Lee L, Sadowski PD. Strand Selection by the Tyrosine Recombinases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:1-42. [PMID: 16164971 DOI: 10.1016/s0079-6603(05)80001-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Linda Lee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
35
|
Kobiler O, Oppenheim AB, Herman C. Recruitment of host ATP-dependent proteases by bacteriophage lambda. J Struct Biol 2004; 146:72-8. [PMID: 15037238 DOI: 10.1016/j.jsb.2003.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 10/21/2003] [Indexed: 11/29/2022]
Abstract
Upon infection of a bacterial cell, the temperate bacteriophage lambda executes a regulated temporal program with two possible outcomes: (1) Cell lysis and virion production or (2) establishment of a dormant state, lysogeny, in which the phage genome (prophage) is integrated into the host chromosome. The prophage is replicated passively as part of the host chromosome until it is induced to resume the lytic cycle. In this review, we summarize the evidence that implicates every known ATP-dependent protease in the regulation of specific steps in the phage life cycle. The proteolysis of specific regulatory proteins appears to fine-tune phage gene expression. The bacteriophage utilizes multiple proteases to irreversibly inactivate specific regulators resulting in a temporally regulated program of gene expression. Evolutionary forces may have favored the utilization of overlapping protease specificities for differential proteolysis of phage regulators according to different phage life styles.
Collapse
Affiliation(s)
- Oren Kobiler
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
36
|
Lesic B, Bach S, Ghigo JM, Dobrindt U, Hacker J, Carniel E. Excision of the high-pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor. Mol Microbiol 2004; 52:1337-48. [PMID: 15165237 DOI: 10.1111/j.1365-2958.2004.04073.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Yersinia high-pathogenicity island (HPI) encodes the siderophore yersiniabactin-mediated iron uptake system. The HPI of Yersinia pseudotuberculosis I has previously been shown to be able to excise precisely from the bacterial chromosome by recombination between the attB-R and attB-L sites flanking the island. However, the nature of the Y. pseudotuberculosis HPI excision machinery remained unknown. We show here that, upon excision, the HPI forms an episomal circular molecule. The island thus has the ability to excise from the chromosome, circularize and reintegrate itself, either in the same location or in another asn tRNA copy. We also demonstrate that the HPI-encoded bacteriophage P4-like integrase (Int) plays a critical role in HPI excision and that, like phage integrases, it acts as a site-specific recombinase that catalyses both excision and integration reactions. However, Int alone cannot efficiently promote recombination between the attB-R and attB-L sites, and we demonstrate that a newly identified HPI-borne factor, designated Hef (for HPI excision factor) is also required for this activity. Hef belongs to a family of recombination directionality factors. Like the other members of this family, Hef probably plays an architectural rather than a catalytic role and promotes HPI excision from the chromosome by driving the function of Int towards an excisionase activity. The fact that the HPI, and probably several other pathogenicity islands, carry a machinery of integration/excision highly similar to those of bacteriophages argues for a phage-mediated acquisition and transfer of these elements.
Collapse
Affiliation(s)
- Biliana Lesic
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
37
|
Sam MD, Cascio D, Johnson RC, Clubb RT. Crystal structure of the excisionase-DNA complex from bacteriophage lambda. J Mol Biol 2004; 338:229-40. [PMID: 15066428 DOI: 10.1016/j.jmb.2004.02.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/23/2004] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
The excisionase (Xis) protein from bacteriophage lambda is the best characterized member of a large family of recombination directionality factors that control integrase-mediated DNA rearrangements. It triggers phage excision by cooperatively binding to sites X1 and X2 within the phage, bending DNA significantly and recruiting the phage-encoded integrase (Int) protein to site P2. We have determined the co-crystal structure of Xis with its X2 DNA-binding site at 1.7A resolution. Xis forms a unique winged-helix motif that interacts with the major and minor grooves of its binding site using an alpha-helix and an ordered beta-hairpin (wing), respectively. Recognition is achieved through an elaborate water-mediated hydrogen-bonding network at the major groove interface, while the preformed hairpin forms largely non-specific interactions with the minor groove. The structure of the complex provides insights into how Xis recruits Int cooperatively, and suggests a plausible mechanism by which it may distort longer DNA fragments significantly. It reveals a surface on the protein that is likely to mediate Xis-Xis interactions required for its cooperative binding to DNA.
Collapse
Affiliation(s)
- My D Sam
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1570, USA
| | | | | | | |
Collapse
|
38
|
Rogov VV, Lücke C, Muresanu L, Wienk H, Kleinhaus I, Werner K, Löhr F, Pristovsek P, Rüterjans H. Solution structure and stability of the full-length excisionase from bacteriophage HK022. ACTA ACUST UNITED AC 2004; 270:4846-58. [PMID: 14653811 DOI: 10.1111/j.1432-1033.2003.03884.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heteronuclear high-resolution NMR spectroscopy was employed to determine the solution structure of the excisionase protein (Xis) from the lambda-like bacteriophage HK022 and to study its sequence-specific DNA interaction. As wild-type Xis was previously characterized as a generally unstable protein, a biologically active HK022 Xis mutant with a single amino acid substitution Cys28-->Ser was used in this work. This substitution has been shown to diminish the irreversibility of Xis denaturation and subsequent degradation, but does not affect the structural or thermodynamic properties of the protein, as evidenced by NMR and differential scanning calorimetry. The solution structure of HK022 Xis forms a compact, highly ordered protein core with two well-defined alpha-helices (residues 5-11 and 18-27) and five beta-strands (residues 2-4, 30-31, 35-36, 41-44 and 48-49). These data correlate well with 1H2O-2H2O exchange experiments and imply a different organization of the HK022 Xis secondary structure elements in comparison with the previously determined structure of the bacteriophage lambda excisionase. Superposition of both Xis structures indicates a better correspondence of the full-length HK022 Xis to the typical 'winged-helix' DNA-binding motif, as found, for example, in the DNA-binding domain of the Mu-phage repressor. Residues 51-72, which were not resolved in the lambda Xis, do not show any regular structure in HK022 Xis and thus appear to be completely disordered in solution. The resonance assignments have shown, however, that an unusual connectivity exists between residues Asn66 and Gly67 owing to asparagine-isoaspartyl isomerization. Such an isomerization has been previously observed and characterized only in eukaryotic proteins.
Collapse
Affiliation(s)
- Vladimir V Rogov
- Institute of Biophysical Chemistry, J.W. Goethe-University of Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Swalla BM, Cho EH, Gumport RI, Gardner JF. The molecular basis of co-operative DNA binding between lambda integrase and excisionase. Mol Microbiol 2003; 50:89-99. [PMID: 14507366 DOI: 10.1046/j.1365-2958.2003.03687.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Higher-order nucleoprotein complexes often stabilize catalytic proteins in appropriate conformations for optimal activity and contribute to regulation during reactions requiring association of proteins and DNA. Formation of such complexes, known as intasomes, is required for site-specific recombination catalysed by bacteriophage Lambda Integrase protein (Int). Int-catalysed recombination is regulated by a second bacteriophage-encoded protein, Excisionase (Xis), which both stimulates excision and inhibits integration. To exert its effect, Xis binds co-operatively with Int, thereby inducing and stabilizing a DNA bend that alters the intasome structures formed during recombination. A rare int mutant, int 2268 ts, was reported (Enquist, L.W. and Weisberg, R.A. (1984) Mol Gen Genet 195: 62-69) to be more defective for excision than integration. Here, we have determined that this mutant Int protein contains an E47K substitution, and that the resultant excision-specific defect is due, at least in part, to destabilized interactions between Int and Xis. Analysis of several engineered substitutions at Int position 47 showed that a negatively charged residue is required for co-operative DNA binding between Int and Xis, and suggest that the Int-E47 residue may contact Xis directly. Substitutions at Int position 47 also affect co-operative binding among Int proteins at arm-type DNA sites, and thereby reduce the efficiency of both integration and excision. Collectively, these results suggest that a single surface of the Int amino-terminal domain mediates two alternate types of co-operative binding interactions.
Collapse
|
40
|
Warren D, Sam MD, Manley K, Sarkar D, Lee SY, Abbani M, Wojciak JM, Clubb RT, Landy A. Identification of the lambda integrase surface that interacts with Xis reveals a residue that is also critical for Int dimer formation. Proc Natl Acad Sci U S A 2003; 100:8176-81. [PMID: 12832614 PMCID: PMC166202 DOI: 10.1073/pnas.1033041100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lambda integrase (Int) is a heterobivalent DNA-binding protein that together with the accessory DNA-bending proteins IHF, Fis, and Xis, forms the higher-order protein-DNA complexes that execute integrative and excisive recombination at specific loci on the chromosomes of phage lambda and its Escherichia coli host. The large carboxyl-terminal domain of Int is responsible for binding to core-type DNA sites and catalysis of DNA cleavage and ligation reactions. The small amino-terminal domain (residues 1-70), which specifies binding to arm-type DNA sites distant from the regions of strand exchange, consists of a three-stranded beta-sheet, proposed to recognize the cognate DNA site, and an alpha-helix. We report here that a site on this alpha-helix is critical for both homomeric interactions between Int protomers and heteromeric interactions with Xis. The mutant E47A, which was identified by alanine-scanning mutagenesis, abolishes interactions between Int and Xis bound at adjacent binding sites and reduces interactions between Int protomers bound at adjacent arm-type sites. Concomitantly, this residue is essential for excisive recombination and contributes to the efficiency of the integrative reaction. NMR titration data with a peptide corresponding to Xis residues 57-69 strongly suggest that the carboxyl-terminal tail of Xis and the alpha-helix of the aminoterminal domain of Int comprise the primary interaction surface for these two proteins. The use of a common site on lambda Int for both homotypic and heterotypic interactions fits well with the complex regulatory patterns associated with this site-specific recombination reaction.
Collapse
Affiliation(s)
- David Warren
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - My D. Sam
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Kate Manley
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Dibyendu Sarkar
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Sang Yeol Lee
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Mohamad Abbani
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Jonathan M. Wojciak
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
| | - Robert T. Clubb
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
- To whom correspondence may be addressed. E-mail:
or
| | - Arthur Landy
- Division of Biology and Medicine, Brown
University, Providence, RI 02912; Department
of Chemistry and Biochemistry, Molecular Biology Institute, University of
California, and UCLA–DOE Institute for Genomics and Proteomics, 405
Hilgard Avenue, Los Angeles, CA 90095; and
Institute of Microbial Technology, Sector 39A,
Chandigarh 160036, India
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
41
|
Gottfried P, Silberstein N, Yagil E, Kolot M. Activity of coliphage HK022 excisionase (Xis) in the absence of DNA binding. FEBS Lett 2003; 545:133-8. [PMID: 12804763 DOI: 10.1016/s0014-5793(03)00512-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A mutated excisionase (Xis) protein of coliphage HK022 whose single Cys residue was replaced by Ser does not bind to its two tandem binding sites (X1, X2) on the P arm of attR. Despite its DNA-binding inability the protein showed 30% excision activity of the wild type Xis both in vitro and in vivo. This partial activity is attributed to the interaction of Xis with integrase that is retained in the mutant protein. This protein-protein interaction occurs in the absence of DNA binding.
Collapse
Affiliation(s)
- Pnina Gottfried
- Department of Biochemistry, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | |
Collapse
|
42
|
Sarkar D, Azaro MA, Aihara H, Papagiannis CV, Tirumalai R, Nunes-Düby SE, Johnson RC, Ellenberger T, Landy A. Differential affinity and cooperativity functions of the amino-terminal 70 residues of lambda integrase. J Mol Biol 2002; 324:775-89. [PMID: 12460577 DOI: 10.1016/s0022-2836(02)01199-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The site-specific recombinase (Int) of bacteriophage lambda is a heterobivalent DNA-binding protein that binds two different classes of DNA-binding sites within its recombination target sites. The several functions of Int are apportioned between a large carboxy-terminal domain that cleaves and ligates DNA at each of its four "core-type" DNA-binding sites and a small amino-terminal domain, whose primary function is binding to each of its five "arm-type" DNA sites, which are distant from the core region. Int bridges between the two classes of binding sites are facilitated by accessory DNA-bending proteins that along with Int comprise higher-order recombinogenic complexes. We show here that although the 64 amino-terminal residues of Int bind efficiently to a single arm site, this protein cannot form doubly bound complexes on adjacent arm sites. However, 1-70 Int does show the same cooperative binding to adjacent arm sites as the full length protein. We also found that 1-70 Int specifies cooperative interactions with the accessory protein Xis when the two are bound to their adjacent cognate sites P2 and X1, respectively. To complement the finding that these two amino-terminal domain functions (along with arm DNA binding) are all specified by residues 1-70, we determined that Thr75 is the first residue of the minimal carboxy-terminal domain, thereby identifying a specific interdomain linker region. We have measured the affinity constants for Int binding to each of the five arm sites and the cooperativity factors for Int binding to the two pairs of adjacent arm sites, and we have identified several DNA structural features that contribute to the observed patterns of Int binding to arm sites. Taken together, the results highlight several interesting features of arm DNA binding that invite speculation about additional levels of complexity in the regulation of lambda site-specific recombination.
Collapse
Affiliation(s)
- Dibyendu Sarkar
- Division of Biology and Medicine, Brown University, Box G-J 360, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|