1
|
Vadla GP, Singh K, Lorson CL, Lorson MA. The contribution and therapeutic implications of IGHMBP2 mutations on IGHMBP2 biochemical activity and ABT1 association. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167091. [PMID: 38403020 PMCID: PMC10999323 DOI: 10.1016/j.bbadis.2024.167091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Mutations within immunoglobulin mu DNA binding protein (IGHMBP2), an RNA-DNA helicase, result in SMA with respiratory distress type I (SMARD1) and Charcot Marie Tooth type 2S (CMT2S). The underlying biochemical mechanism of IGHMBP2 is unknown as well as the functional significance of IGHMBP2 mutations in disease severity. Here we report the biochemical mechanisms of IGHMBP2 disease-causing mutations D565N and H924Y, and their potential impact on therapeutic strategies. The IGHMBP2-D565N mutation has been identified in SMARD1 patients, while the IGHMBP2-H924Y mutation has been identified in CMT2S patients. For the first time, we demonstrate a correlation between the altered IGHMBP2 biochemical activity associated with the D565N and H924Y mutations and disease severity and pathology in patients and our Ighmbp2 mouse models. We show that IGHMBP2 mutations that alter the association with activator of basal transcription (ABT1) impact the ATPase and helicase activities of IGHMBP2 and the association with the 47S pre-rRNA 5' external transcribed spacer. We demonstrate that the D565N mutation impairs IGHMBP2 ATPase and helicase activities consistent with disease pathology. The H924Y mutation alters IGHMBP2 activity to a lesser extent while maintaining association with ABT1. In the context of the compound heterozygous patient, we demonstrate that the total biochemical activity associated with IGHMBP2-D565N and IGHMBP2-H924Y proteins is improved over IGHMBP2-D565N alone. Importantly, we demonstrate that the efficacy of therapeutic applications may vary based on the underlying IGHMBP2 mutations and the relative biochemical activity of the mutant IGHMBP2 protein.
Collapse
Affiliation(s)
- Gangadhar P Vadla
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Monique A Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
Chen L, Chen P, Li S, Jiang M, Zhang H, Chen L, Huang X, Chen Y, Sun L, Dong P, Lin P, Wu Y. Crystal Structure of the Disease-Specific Protein of Rice Stripe Virus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8469-8480. [PMID: 35771952 DOI: 10.1021/acs.jafc.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rice stripe virus (RSV) is responsible for devastating effects in East Asian rice-producing areas. The disease-specific protein (SP) level in rice plants determines the severity of RSV symptoms. Isothermal titration calorimetry (ITC) and bimolecular fluorescence complementation (BiFC) assays confirmed the interaction between an R3H domain-containing host factor, OsR3H3, and RSV SP in vitro and in vivo. This study determined the crystal structure of SP at 1.71 Å. It is a monomer with a clear shallow groove to accommodate host factors. Docking OsR3H3 into the groove generates an SP/OsR3H3 complex, which provides insights into the protein-binding mechanism of SP. Furthermore, SP's protein-binding properties and model-defined recognition residues were assessed using mutagenesis, ITC, and BiFC assays. This study revealed the structure and preliminary protein interaction mechanisms of RSV SP, shedding light on the molecular mechanism underlying the development of RSV infection symptoms.
Collapse
Affiliation(s)
- Lifei Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Pu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Shengping Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding, and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiqin Jiang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Hong Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Leiqing Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Xiaojing Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Yayu Chen
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Lifang Sun
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Panpan Dong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Pingdong Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| | - Yunkun Wu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation & Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, People's Republic of China
| |
Collapse
|
3
|
Guegueniat J, Halabelian L, Zeng H, Dong A, Li Y, Wu H, Arrowsmith CH, Kothe U. The human pseudouridine synthase PUS7 recognizes RNA with an extended multi-domain binding surface. Nucleic Acids Res 2021; 49:11810-11822. [PMID: 34718722 PMCID: PMC8599909 DOI: 10.1093/nar/gkab934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/14/2022] Open
Abstract
The human pseudouridine synthase PUS7 is a versatile RNA modification enzyme targeting many RNAs thereby playing a critical role in development and brain function. Whereas all target RNAs of PUS7 share a consensus sequence, additional recognition elements are likely required, and the structural basis for RNA binding by PUS7 is unknown. Here, we characterize the structure–function relationship of human PUS7 reporting its X-ray crystal structure at 2.26 Å resolution. Compared to its bacterial homolog, human PUS7 possesses two additional subdomains, and structural modeling studies suggest that these subdomains contribute to tRNA recognition through increased interactions along the tRNA substrate. Consistent with our modeling, we find that all structural elements of tRNA are required for productive interaction with PUS7 as the consensus sequence of target RNA alone is not sufficient for pseudouridylation by human PUS7. Moreover, PUS7 binds several, non-modifiable RNAs with medium affinity which likely enables PUS7 to screen for productive RNA substrates. Following tRNA modification, the product tRNA has a significantly lower affinity for PUS7 facilitating its dissociation. Taken together our studies suggest a combination of structure-specific and sequence-specific RNA recognition by PUS7 and provide mechanistic insight into its function.
Collapse
Affiliation(s)
- Julia Guegueniat
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, AB, T1K 3M4, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Hong Wu
- Protein Technologies Center, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, AB, T1K 3M4, Canada.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
4
|
Rzepnikowska W, Kochański A. Models for IGHMBP2-associated diseases: an overview and a roadmap for the future. Neuromuscul Disord 2021; 31:1266-1278. [PMID: 34785121 DOI: 10.1016/j.nmd.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022]
Abstract
Models are practical tools with which to establish the basic aspects of a diseases. They allow systematic research into the significance of mutations, of cellular and molecular pathomechanisms, of therapeutic options and of functions of diseases associated proteins. Thus, disease models are an integral part of the study of enigmatic proteins such as immunoglobulin mu-binding protein 2 (IGHMBP2). IGHMBP2 has been well defined as a helicase, however there is little known about its role in cellular processes. Notably, it is unclear why changes in such an abundant protein lead to specific neuronal disorders including spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S). SMARD1 is caused by a loss of motor neurons in the spinal cord that results in muscle atrophy and is accompanied by rapid respiratory failure. In contrast, CMT2S manifests as a severe neuropathy, but typically without critical breathing problems. Here, we present the clinical manifestation of IGHMBP2 mutations, function of protein and models that may be used for the study of IGHMBP2-associated disorders. We highlight the strengths and weaknesses of specific models and discuss the orthologs of IGHMBP2 that are found in different systems with regard to their similarity to human IGHMBP2.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
5
|
Liu Y, Yao X, Zhang L, Lu L, Liu R. Overexpression of DBF-Interactor Protein 6 Containing an R3H Domain Enhances Drought Tolerance in Populus L. ( Populus tomentosa). FRONTIERS IN PLANT SCIENCE 2021; 12:601585. [PMID: 33613597 PMCID: PMC7890038 DOI: 10.3389/fpls.2021.601585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Drought is the primary disaster that endangers agricultural production, including animal husbandry, and affects the distribution, growth, yield, and quality of crops. Previous study had revealed that DIP, as a potential regulator of DBF activity, played an important role in response to drought stress in maize. In this study, a total of 67 DIPs were identified from seventeen land plants, including six tobacco DIPs (NtDIPs). NtDIP6 gene was further selected as a candidate gene for subsequent experiments based on the phylogenetic analysis and structural analysis. The transgenic tobacco and poplar plants over-expressing NtDIP6 gene were generated using the Agrobacterium- mediated method. Although there was not phenotypic difference between transgenic plants and wild-type plants under normal conditions, overexpression of the NtDIP6 gene in transgenic tobacco and poplar plants enhanced the drought tolerance under drought treatments in comparison with the wild type. The content of antioxidant defense enzymes peroxidase (POD), catalase (CAT), and the photosynthetic rate increased in NtDIP6-Ox transgenic tobacco and poplar plants, while the content of malondialdehyde decreased, suggesting that the overexpression of NtDIP6 enhances the antioxidant capacity of transgenic poplar. Furthermore, the results of qRT-PCR showed that the level of expression of drought-related response genes significantly increased in the NtDIP6-Ox transgenic plants. These results indicated that NtDIP6, as a positive response regulator, improves drought stress tolerance by scavenging superoxide via the accumulation of antioxidant defense enzymes.
Collapse
Affiliation(s)
- Yang Liu
- College of Tobacco Science, Guizhou University, Guiyang, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xinzhuan Yao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Lu Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Renxiang Liu
- College of Tobacco Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Cieśla M, Turowski TW, Nowotny M, Tollervey D, Boguta M. The expression of Rpb10, a small subunit common to RNA polymerases, is modulated by the R3H domain-containing Rbs1 protein and the Upf1 helicase. Nucleic Acids Res 2020; 48:12252-12268. [PMID: 33231687 PMCID: PMC7708074 DOI: 10.1093/nar/gkaa1069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 10/22/2020] [Indexed: 01/07/2023] Open
Abstract
The biogenesis of eukaryotic RNA polymerases is poorly understood. The present study used a combination of genetic and molecular approaches to explore the assembly of RNA polymerase III (Pol III) in yeast. We identified a regulatory link between Rbs1, a Pol III assembly factor, and Rpb10, a small subunit that is common to three RNA polymerases. Overexpression of Rbs1 increased the abundance of both RPB10 mRNA and the Rpb10 protein, which correlated with suppression of Pol III assembly defects. Rbs1 is a poly(A)mRNA-binding protein and mutational analysis identified R3H domain to be required for mRNA interactions and genetic enhancement of Pol III biogenesis. Rbs1 also binds to Upf1 protein, a key component in nonsense-mediated mRNA decay (NMD) and levels of RPB10 mRNA were increased in a upf1Δ strain. Genome-wide RNA binding by Rbs1 was characterized by UV cross-linking based approach. We demonstrated that Rbs1 directly binds to the 3' untranslated regions (3'UTRs) of many mRNAs including transcripts encoding Pol III subunits, Rpb10 and Rpc19. We propose that Rbs1 functions by opposing mRNA degradation, at least in part mediated by NMD pathway. Orthologues of Rbs1 protein are present in other eukaryotes, including humans, suggesting that this is a conserved regulatory mechanism.
Collapse
Affiliation(s)
- Małgorzata Cieśla
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - David Tollervey
- Wellcome Centre for Cell Biology, The University of Edinburgh, Edinburgh EH9 3BF, Scotland
| | - Magdalena Boguta
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Jaudzems K, Jia X, Yagi H, Zhulenkovs D, Graham B, Otting G, Liepinsh E. Structural basis for 5'-end-specific recognition of single-stranded DNA by the R3H domain from human Sμbp-2. J Mol Biol 2012; 424:42-53. [PMID: 22999958 DOI: 10.1016/j.jmb.2012.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/07/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
Abstract
The R3H domain is a conserved sequence motif in nucleic acid binding proteins. Previously, we reported the solution structure of the R3H domain and identified a putative nucleic acid binding site composed of three conserved basic residues [Liepinsh, E., Leonchiks, A., Sharipo, A., Guignard, L. & Otting, G. (2003). Solution structure of the R3H domain from human Sμbp-2. J. Mol. Biol.326, 217-223]. Here, we determine the binding affinities of mononucleotides and dinucleotides for the R3H domain from human Sμbp-2 (Sμbp2-R3H) and map their binding sites on the protein's surface. Although the binding affinities show up to 260-fold selectivity between different nucleotides, their binding sites and conformations seem very similar. Further, we report the NMR structure of the Sμbp2-R3H in complex with deoxyguanosine 5'-monophosphate (dGMP) mimicking the 5'-end of single-stranded DNA. Pseudocontact shifts from a paramagnetic lanthanide tag attached to residue 731 in the mutant A731C confirmed that binding of dGMP brings a loop of the protein into closer proximity. The structure provides the first structural insight into single-stranded nucleic acid recognition by the R3H domain and shows that the R3H domain specifically binds the phosphorylated 5'-end through electrostatic interactions with the two conserved arginines and stacking interactions with the highly conserved histidine.
Collapse
Affiliation(s)
- Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Latvia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Lim SC, Bowler MW, Lai TF, Song H. The Ighmbp2 helicase structure reveals the molecular basis for disease-causing mutations in DMSA1. Nucleic Acids Res 2012; 40:11009-22. [PMID: 22965130 PMCID: PMC3505976 DOI: 10.1093/nar/gks792] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.
Collapse
Affiliation(s)
- Siew Choo Lim
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, Structural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble, France, Life Sciences Institute, Zhejiang University, Hangzhou, China and Department of Biochemistry, National University of Singapore, Singapore 117543, Singapore
| | - Matthew W. Bowler
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, Structural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble, France, Life Sciences Institute, Zhejiang University, Hangzhou, China and Department of Biochemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ting Feng Lai
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, Structural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble, France, Life Sciences Institute, Zhejiang University, Hangzhou, China and Department of Biochemistry, National University of Singapore, Singapore 117543, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, Proteos, Singapore 138673, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore, Structural Biology Group, European Synchrotron Radiation Facility, F-38043 Grenoble, France, Life Sciences Institute, Zhejiang University, Hangzhou, China and Department of Biochemistry, National University of Singapore, Singapore 117543, Singapore
- *To whom correspondence should be addressed. Tel: +65 6586 9700; Fax: +65 6779 1117;
| |
Collapse
|
9
|
Fukui K, Kuramitsu S. Structure and Function of the Small MutS-Related Domain. Mol Biol Int 2011; 2011:691735. [PMID: 22091410 PMCID: PMC3200294 DOI: 10.4061/2011/691735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/13/2011] [Indexed: 01/04/2023] Open
Abstract
MutS family proteins are widely distributed in almost all organisms from bacteria to human and play central roles in various DNA transactions such as DNA mismatch repair and recombinational events. The small MutS-related (Smr) domain was originally found in the C-terminal domain of an antirecombination protein, MutS2, a member of the MutS family. MutS2 is thought to suppress homologous recombination by endonucleolytic resolution of early intermediates in the process. The endonuclease activity of MutS2 is derived from the Smr domain. Interestingly, sequences homologous to the Smr domain are abundant in a variety of proteins other than MutS2 and can be classified into 3 subfamilies. Recently, the tertiary structures and endonuclease activities of all 3 Smr subfamilies were reported. In this paper, we review the biochemical characteristics and structures of the Smr domains as well as cellular functions of the Smr-containing proteins.
Collapse
Affiliation(s)
- Kenji Fukui
- RIKEN SPring-8 Center, Harima Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | | |
Collapse
|
10
|
Uchiumi F, Enokida K, Shiraishi T, Masumi A, Tanuma SI. Characterization of the promoter region of the human IGHMBP2 (Smubp-2) gene and its response to TPA in HL-60 cells. Gene 2010; 463:8-17. [PMID: 20441787 DOI: 10.1016/j.gene.2010.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/13/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
Abstract
Immunoglobulin mu-binding protein 2 (IGHMBP2/Smubp-2) is a helicase motif-containing DNA-binding protein that has been suggested to regulate various nuclear functions. Recent studies indicated that mutations in the IGHMBP2 gene are responsible for spinal muscular atrophy with respiratory distress type I (SMARD1). However, the mechanism of regulation of IGHMBP2 gene expression remains unclear. In the present study, a 2.0-kb fragment of the 5'-flanking (promoter) region of the human IGHMBP2 gene was isolated from the HL-60 genome by PCR and ligated into a luciferase (Luc) expression vector, pGL3, to generate the pSmu-Luc plasmid. Deletion analyses revealed that a 108-bp region is essential for basal promoter activity with a response to TPA in HL-60 cells. TF-SEARCH analysis showed that overlapping ets (GGAA) motifs are located upstream of the transcription start sites. Chromatin immunoprecipitation (ChIP) assay, electropheretic mobility shift assay (EMSA) and competition analyses indicated that PU.1 (Spi-1) recognizes and binds to the duplicated ets motifs in this 108-bp region. Moreover, co-transfection of the PU.1 expression plasmid and pSmu-Luc into HL-60 cells revealed that PU.1 modulates TPA-induced IGHMBP2 promoter activity. Taken together, these observations suggest that the duplicated GGAA motifs are essential for the IGHMBP2 promoter activity and its positive response to TPA in HL-60 cells.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 270-8510 Japan.
| | | | | | | | | |
Collapse
|
11
|
Müssig C, Schröder F, Usadel B, Lisso J. Structure and putative function of NFX1-like proteins in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:381-394. [PMID: 20522174 DOI: 10.1111/j.1438-8677.2009.00303.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The human NFX1 transcription factor constitutes a group of NFX1-type zinc finger proteins. It forms a central Cys-rich region with several NFX1-type zinc finger domains that have been shown to mediate DNA binding. Proteins with NFX1-type zinc fingers are found in protists, fungi, animals and plants, and may be ubiquitous in eukaryotes. This review discusses the structure and putative roles of NFX1-like proteins, with a focus on human NFX1 and Arabidopsis NFXL1 proteins. By means of manual sequence analysis and application of hidden Markov models, we demonstrate that NFX1-like proteins form a specific RING finger motif with a C(4)HC(3) Zn ligand signature and additional distinct features, suggesting that these proteins function as E3 ubiquitin ligases. Phylogenetic analysis revealed different clades of NFX1-like proteins. The plant proteins group into two distinct clades. The genomes of plants such as rice, Arabidopsis, poplar and grapevine encode one member of each clade, suggesting that the presence of two NFX1-like factors is sufficient in flowering plants. The Arabidopsis proteins presumably fine-tune opposed biotic and abiotic stress response pathways.
Collapse
Affiliation(s)
- C Müssig
- Universität Potsdam, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
12
|
NFX1-123 increases hTERT expression and telomerase activity posttranscriptionally in human papillomavirus type 16 E6 keratinocytes. J Virol 2009; 83:6446-56. [PMID: 19369336 DOI: 10.1128/jvi.02556-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-risk human papillomavirus (HPV) E6 protein induces telomerase activity through transcriptional activation of hTERT, the catalytic subunit of telomerase. HPV type 16 (HPV16) E6 interacts with two splice variants of NFX1 to increase hTERT expression. NFX1-91 is a transcriptional repressor of hTERT that is polyubiquitinated and targeted for degradation by HPV16 E6 in concert with E6-associated protein. We previously showed that NFX1-123 augments hTERT expression through binding to cytoplasmic poly(A) binding proteins (PABPCs). In this study, we determined that unlike NFX1-91, NFX1-123 is a cytoplasmic protein that colocalized with PABPCs but does not shuttle with PABPCs between the nucleus and cytoplasm. NFX1-123 requires both its PAM2 motif, with which it binds PABPCs, and its R3H domain, which has putative nucleic acid binding capabilities, to increase hTERT mRNA levels and telomerase activity in keratinocytes expressing HPV16 E6. In keratinocytes expressing HPV16 E6 and overexpressing NFX1-123, there was increased protein expression from in vitro-transcribed RNA fused with the 5' untranslated region (5' UTR) of hTERT. This posttranscriptional increase in expression required the PAM2 motif and R3H domain of NFX1-123 as well as the coexpression of HPV16 E6. NFX1-123 bound endogenous hTERT mRNA and increased its stability in HPV16 E6-expressing human foreskin keratinocytes, and NFX1-123 increased the stability of in vitro-transcribed RNA fused with the 5' UTR of hTERT. Together, these studies describe the first evidence of posttranscriptional regulation of hTERT, through the direct interaction of the cytoplasmic protein NFX1-123 with hTERT mRNA, in HPV16 E6-expressing keratinocytes.
Collapse
|
13
|
Diercks T, AB E, Daniels MA, de Jong RN, Besseling R, Kaptein R, Folkers GE. Solution structure and characterization of the DNA-binding activity of the B3BP-Smr domain. J Mol Biol 2008; 383:1156-70. [PMID: 18804481 DOI: 10.1016/j.jmb.2008.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 09/01/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
The MutS1 protein recognizes unpaired bases and initiates mismatch repair, which are essential for high-fidelity DNA replication. The homologous MutS2 protein does not contribute to mismatch repair, but suppresses homologous recombination. MutS2 lacks the damage-recognition domain of MutS1, but contains an additional C-terminal extension: the small MutS-related (Smr) domain. This domain, which is present in both prokaryotes and eukaryotes, has previously been reported to bind to DNA and to possess nicking endonuclease activity. We determine here the solution structure of the functionally active Smr domain of the Bcl3-binding protein (also known as Nedd4-binding protein 2), a protein with unknown function that lacks other domains present in MutS proteins. The Smr domain adopts a two-layer alpha-beta sandwich fold, which has a structural similarity to the C-terminal domain of IF3, the R3H domain, and the N-terminal domain of DNase I. The most conserved residues are located in three loops that form a contiguous, exposed, and positively charged surface with distinct sequence identity for prokaryotic and eukaryotic Smr domains. NMR titration experiments and DNA binding studies using Bcl3-binding protein-Smr domain mutants suggested that these most conserved loop regions participate in DNA binding to single-stranded/double-stranded DNA junctions. Based on the observed DNA-binding-induced multimerization, the structural similarity with both subdomains of DNase I, and the experimentally identified DNA-binding surface, we propose a model for DNA recognition by the Smr domain.
Collapse
Affiliation(s)
- Tammo Diercks
- Bijvoet Center for Biomolecular Research, Department of NMR Spectroscopy, Faculty of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
14
|
Nagata T, Suzuki S, Endo R, Shirouzu M, Terada T, Inoue M, Kigawa T, Kobayashi N, Güntert P, Tanaka A, Hayashizaki Y, Muto Y, Yokoyama S. The RRM domain of poly(A)-specific ribonuclease has a noncanonical binding site for mRNA cap analog recognition. Nucleic Acids Res 2008; 36:4754-67. [PMID: 18641416 PMCID: PMC2504292 DOI: 10.1093/nar/gkn458] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The degradation of the poly(A) tail is crucial for posttranscriptional gene regulation and for quality control of mRNA. Poly(A)-specific ribonuclease (PARN) is one of the major mammalian 3′ specific exo-ribonucleases involved in the degradation of the mRNA poly(A) tail, and it is also involved in the regulation of translation in early embryonic development. The interaction between PARN and the m7GpppG cap of mRNA plays a key role in stimulating the rate of deadenylation. Here we report the solution structures of the cap-binding domain of mouse PARN with and without the m7GpppG cap analog. The structure of the cap-binding domain adopts the RNA recognition motif (RRM) with a characteristic α-helical extension at its C-terminus, which covers the β-sheet surface (hereafter referred to as PARN RRM). In the complex structure of PARN RRM with the cap analog, the base of the N7-methyl guanosine (m7G) of the cap analog stacks with the solvent-exposed aromatic side chain of the distinctive tryptophan residue 468, located at the C-terminal end of the second β-strand. These unique structural features in PARN RRM reveal a novel cap-binding mode, which is distinct from the nucleotide recognition mode of the canonical RRM domains.
Collapse
Affiliation(s)
- Takashi Nagata
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu M, Reuter M, Lilie H, Liu Y, Wahle E, Song H. Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J 2005; 24:4082-93. [PMID: 16281054 PMCID: PMC1356309 DOI: 10.1038/sj.emboj.7600869] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 10/19/2005] [Indexed: 11/09/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a processive, poly(A)-specific 3' exoribonuclease. The crystal structure of C-terminal truncated human PARN determined in two states (free and RNA-bound forms) reveals that PARNn is folded into two domains, an R3H domain and a nuclease domain similar to those of Pop2p and epsilon186. The high similarity of the active site structures of PARNn and epsilon186 suggests that they may have a similar catalytic mechanism. PARNn forms a tight homodimer, with the R3H domain of one subunit partially enclosing the active site of the other subunit and poly(A) bound in a deep cavity of its nuclease domain in a sequence-nonspecific manner. The R3H domain and, possibly, the cap-binding domain are involved in poly(A) binding but these domains alone do not appear to contribute to poly(A) specificity. Mutations disrupting dimerization abolish both the enzymatic and RNA-binding activities, suggesting that the PARN dimer is a structural and functional unit. The cap-binding domain may act in concert with the R3H domain to amplify the processivity of PARN.
Collapse
Affiliation(s)
- Mousheng Wu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Michael Reuter
- Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hauke Lilie
- Institute of Biotechnology, Martin-Luther-University Halle, Halle, Germany
| | - Yuying Liu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Elmar Wahle
- Institute of Biochemistry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Haiwei Song
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, Proteos, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore. Tel.: +65 6586 9700; Fax: +65 6779 1117; E-mail:
| |
Collapse
|
16
|
Ohtsubo S, Iida A, Nitta K, Tanaka T, Yamada R, Ohnishi Y, Maeda S, Tsunoda T, Takei T, Obara W, Akiyama F, Ito K, Honda K, Uchida K, Tsuchiya K, Yumura W, Ujiie T, Nagane Y, Miyano S, Suzuki Y, Narita I, Gejyo F, Fujioka T, Nihei H, Nakamura Y. Association of a single-nucleotide polymorphism in the immunoglobulin μ-binding protein 2 gene with immunoglobulin A nephropathy. J Hum Genet 2004; 50:30-35. [PMID: 15599641 DOI: 10.1007/s10038-004-0214-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/21/2004] [Indexed: 10/26/2022]
Abstract
Immunoglobulin A (IgA) nephropathy is the most common form of primary glomerulonephritis worldwide. The pathogenesis of IgA nephropathy is unknown, but it is certain that some genetic factors are involved in susceptibility to the disease. Employing a large-scale, case-control association study using gene-based single-nucleotide polymorphism (SNP) markers, we previously reported four candidate genes. We report here an additional significant association between IgA nephropathy and an SNP located in the gene encoding immunoglobulin micro-binding protein 2 (IGHMBP2) at chromosome 11q13.2-q13.4. The association (chi2 =17.1, p = 0.00003; odds ratio of 1.85 with 95% confidence interval of 1.39-2.50 in a dominant association model) was found using DNA from 465 affected individuals and 634 controls. The SNP (G34448A) caused an amino acid substitution from glutamine to lysine (E928K). As the gene product is involved in immunoglobulin-class switching and patients with the A allele revealed higher serum levels of IgA (p = 0.048), the amino acid change might influence a class switch to increase serum IgA levels, resulting in a higher risk of IgA nephropathy.
Collapse
Affiliation(s)
- Shigeru Ohtsubo
- Human Genome Center, The Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Aritoshi Iida
- Laboratory for Genotyping, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihiro Tanaka
- Laboratory for Cardiovascular Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan
| | - Ryo Yamada
- Laboratory for Rheumatic Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan
| | - Yozo Ohnishi
- Laboratory for Cardiovascular Diseases, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan
| | - Shiro Maeda
- Laboratory for Diabetic Nephropathy, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Informatics, SNP Research Center, The Institute of Physical and Chemical Research (RIKEN), Tokyo, Japan
| | - Takashi Takei
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Fumihiro Akiyama
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kyoko Ito
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuho Honda
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Uchida
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken Tsuchiya
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Wako Yumura
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Ujiie
- Department of Urology, Iwate Prefectural Ofunato Hospital, Iwate, Japan
| | | | - Satoru Miyano
- Human Genome Center, The Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yasushi Suzuki
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumitake Gejyo
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoaki Fujioka
- Department of Urology, Iwate Medical University, Iwate, Japan
| | - Hiroshi Nihei
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Yusuke Nakamura
- Human Genome Center, The Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
17
|
Aravind L, Iyer LM, Anantharaman V. The two faces of Alba: the evolutionary connection between proteins participating in chromatin structure and RNA metabolism. Genome Biol 2003; 4:R64. [PMID: 14519199 PMCID: PMC328453 DOI: 10.1186/gb-2003-4-10-r64] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Revised: 07/24/2003] [Accepted: 07/31/2003] [Indexed: 11/10/2022] Open
Abstract
The Alba superfamily of chromosomal proteins appear to have originated as RNA-binding proteins and to have been recruited to chromosomes possibly only within the crenarchaeal lineage. Background There is considerable heterogeneity in the phyletic patterns of major chromosomal DNA-binding proteins in archaea. Alba is a well-characterized chromosomal protein from the crenarchaeal genus Sulfolobus. While Alba has been detected in most archaea and some eukaryotic taxa, its exact functions in these taxa are not clear. Here we use comparative genomics and sequence profile analysis to predict potential alternative functions of the Alba proteins. Results Using sequence-profile searches, we were able to unify the Alba proteins with RNase P/MRP subunit Rpp20/Pop7, human RNase P subunit Rpp25, and the ciliate Mdp2 protein, which is implicated in macronuclear development. The Alba superfamily contains two eukaryote-specific families and one archaeal family. We present different lines of evidence to show that both eukaryotic families perform functions related to RNA metabolism. Several members of one of the eukaryotic families, typified by Mdp2, are combined in the same polypeptide with RNA-binding RGG repeats. We also investigated the relationships of the unified Alba superfamily within the ancient RNA-binding IF3-C fold, and show that it is most closely related to other RNA-binding members of this fold, such as the YhbY and IF3-C superfamilies. Based on phyletic patterns and the principle of phylogenetic bracketing, we predict that at least some of the archaeal members may also possess a role in RNA metabolism. Conclusions The Alba superfamily proteins appear to have originated as RNA-binding proteins which formed various ribonucleoprotein complexes, probably including RNase P. It was recruited as a chromosomal protein possibly only within the crenarchaeal lineage. The evolutionary connections reported here suggest how a diversity of functions based on a common biochemical basis emerged in proteins of the Alba superfamily.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | |
Collapse
|