1
|
Zhang T, Guerra LF, Berlina Y, Wilson JR, Fierz B, Müller MM. Semisynthesis of Isomerized Histone H4 Reveals Robustness and Vulnerability of Chromatin toward Molecular Aging. J Am Chem Soc 2025; 147:4952-4961. [PMID: 39894946 PMCID: PMC11826994 DOI: 10.1021/jacs.4c14136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
Proteins are subject to aging in the form of spontaneous, nonenzymatic post-translational modifications (PTMs). One such PTM is the formation of the β-linked isomer l-isoaspartic acid (isoAsp) from aspartic acid (Asp) or asparagine residues, which tends to occur in long-lived proteins. Histones can exhibit half-lives on the order of 100 days, and unsurprisingly, isoAsp formation has been observed in nearly every histone family. Delineating the molecular consequences of isoAsp formation in histones is challenging due to the multitude of processes that occur on such time scales. To isolate the effects of a specific isoAsp modification thus necessitates precise in vitro characterization with well-defined substrates. Here, we adapt a protein semisynthesis approach to generate full-length variants of histone H4 in which the canonical Asp at position 24 is replaced by its isoAsp isomer (H4isoD24). This variant was incorporated into chromatin templates, and the resulting constructs were used to interrogate key parameters of chromatin integrity and maintenance in vitro: compaction, nucleosome remodeling, and methylation of H4 lysine 20 (H4K20). Remarkably, despite its disruptive changes to the backbone's spacing and direction, isoD24 did not dramatically disrupt Mg2+-mediated chromatin self-association or nucleosome repositioning by the remodeler Chd1. In contrast, H4isoD24 significantly inhibited both Set8- and Suv4-20h1-catalyzed methylation at H4K20. These results suggest that H4isoD24 gives rise to a complex reorganization of the chromatin functional landscape, in which macroscopic processes show robustness and local mechanisms exhibit vulnerability to the presence of this mark.
Collapse
Affiliation(s)
- Tianze Zhang
- Department
of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Luis F. Guerra
- Department
of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| | - Yana Berlina
- École
Polytechnique Fédérale de Lausanne (EPFL), ISIC, Lausanne CH-1015, Switzerland
| | - Jon R. Wilson
- The
Francis Crick Institute, 1 Midland Road, London NW1 1AT, U.K.
| | - Beat Fierz
- École
Polytechnique Fédérale de Lausanne (EPFL), ISIC, Lausanne CH-1015, Switzerland
| | - Manuel M. Müller
- Department
of Chemistry, King’s College London, Britannia House, 7 Trinity Street, London SE1 1DB, U.K.
| |
Collapse
|
2
|
Patel R, Loverde SM. Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633411. [PMID: 39896498 PMCID: PMC11785091 DOI: 10.1101/2025.01.16.633411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Biomolecules predominantly exert their function through altering conformational dynamics. The nucleosome core particle (NCP) is the fundamental unit of chromatin. DNA with ∼146 base pairs wrap around the histone octamer to form a nucleosome. The histone octamer is comprised of two copies of each histone protein (H3, H4, H2A, and H2B) with a globular core and disordered N-terminal tails. Epigenetic modifications of the histone N-terminal tails play a critical role in the regulation of chromatin structure and biological processes such as transcription and DNA repair. Here, we report all-atomistic molecular dynamics (MD) simulations of the nucleosome at microsecond timescales to construct Markov state models (MSMs) to elucidate distinct conformations of the histone tails. We employ the time-lagged independent component analysis (tICA) to capture their essential slow dynamics, with k-means clustering used to discretize the conformational space. MSMs unveil distinct states and transition probabilities to characterize the dynamics and kinetics of the tails. Next, we focus on the H2B tail, one of the least studied tails. We show that acetylation increases secondary structure formation, with an increase in transition rates. These findings will aid in understanding the functional implications of tail conformations in nucleosome stability and gene regulation. Significance Statement The nucleosome is the fundamental repeat unit of chromatin, composed of a histone octamer and DNA. Each histone has a globular core and N-terminal tail regions. N-terminal tails are major sites for post-translational modifications, chromatin structure, and gene regulation. Using all-atom molecular dynamics simulations of the nucleosome to examine the dynamics of histone tails and analyze the effects of one of the histone modifications, such as acetylation on histone tails. We explore tail dynamics and kinetics using Markov State Models (MSMs) to gain insight into histone tail structural changes. Acetylation of the H2B tail shows an increased dynamics of the tail based on transition rates. Our study characterizes transition rates of all histone tails that can influence nucleosome plasticity and gene regulation.
Collapse
|
3
|
Timsit Y. The Expanding Universe of Extensions and Tails: Ribosomal Proteins and Histones in RNA and DNA Complex Signaling and Dynamics. Genes (Basel) 2025; 16:45. [PMID: 39858592 PMCID: PMC11764897 DOI: 10.3390/genes16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
This short review bridges two biological fields: ribosomes and nucleosomes-two nucleoprotein assemblies that, along with many viruses, share proteins featuring long filamentous segments at their N- or C-termini. A central hypothesis is that these extensions and tails perform analogous functions in both systems. The evolution of these structures appears closely tied to the emergence of regulatory networks and signaling pathways, facilitating increasingly complex roles for ribosomes and nucleosome alike. This review begins by summarizing the structures and functions of ribosomes and nucleosomes, followed by a detailed comparison highlighting their similarities and differences, particularly in light of recent findings on the roles of ribosomal proteins in signaling and ribosome dynamics. The analysis seeks to uncover whether these systems operate based on shared principles and mechanisms. The nucleosome-ribosome analogy may offer valuable insights into unresolved questions in both fields. For instance, new structural insights from ribosomes might shed light on potential motifs formed by histone tails. From an evolutionary perspective, this study revisits the origins of signaling and regulation in ancient nucleoprotein assemblies, suggesting that tails and extensions may represent remnants of the earliest network systems governing signaling and dynamic control.
Collapse
Affiliation(s)
- Youri Timsit
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France;
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
4
|
Golembeski A, Lequieu J. A Molecular View into the Structure and Dynamics of Phase-Separated Chromatin. J Phys Chem B 2024; 128:10593-10603. [PMID: 39413416 PMCID: PMC11533178 DOI: 10.1021/acs.jpcb.4c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The organization of chromatin is critical for gene expression, yet the underlying mechanisms responsible for this organization remain unclear. Recent work has suggested that phase separation might play an important role in chromatin organization, yet the molecular forces that drive chromatin phase separation are poorly understood. In this work we interrogate a molecular model of chromatin to quantify the driving forces and thermodynamics of chromatin phase separation. By leveraging a multiscale approach, our molecular model is able to reproduce chromatin's chemical and structural details at the level of a few nanometers, yet remain efficient enough to simulate chromatin phase separation across 100 nm length scales. We first demonstrate that our model can reproduce key experiments of phase separating nucleosomal arrays, and then apply our model to quantify the interactions that drive their formation into chromatin condensates with either liquid- or solid-like material properties. We next use our model to characterize the molecular structure within chromatin condensates and find that this structure is irregularly ordered and is inconsistent with existing 30 nm fiber models. Lastly we examine how post-translational modifications can modulate chromatin phase separation and how the acetylation of chromatin can lead to chromatin decompaction while still preserving phase separation. Taken together, our work provides a molecular view into the structure and dynamics of phase-separated chromatin and provides new insights into how phase separation might manifest in the nucleus of living cells.
Collapse
Affiliation(s)
- Andrew Golembeski
- Department of Chemical and
Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Joshua Lequieu
- Department of Chemical and
Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Dewing S, Phan TM, Kraft EJ, Mittal J, Showalter SA. Acetylation-Dependent Compaction of the Histone H4 Tail Ensemble. J Phys Chem B 2024; 128:10636-10649. [PMID: 39437158 PMCID: PMC11533190 DOI: 10.1021/acs.jpcb.4c05701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Acetylation of the histone H4 tail (H4Kac) has been established as a significant regulator of chromatin architecture and accessibility; however, the molecular mechanisms that underlie these observations remain elusive. Here, we characterize the ensemble features of the histone H4 tail and determine how they change following acetylation on specific sets of lysine residues. Our comprehensive account is enabled by a robust combination of experimental and computational biophysical methods that converge on molecular details including conformer size, intramolecular contacts, and secondary structure propensity. We find that acetylation significantly alters the chemical environment of basic patch residues (16-20) and leads to tail compaction that is partially mediated by transient intramolecular contacts established between the basic patch and N-terminal amino acids. Beyond acetylation, we identify that the protonation state of H18, which is affected by the acetylation state, is a critical regulator of ensemble characteristics, highlighting the potential for interplay between the sequence context and post-translational modifications to define the ensemble features of intrinsically disordered regions. This study elucidates molecular details that could link H4Kac with the regulation of chromatin architecture, illuminating a small piece of the complex network of molecular mechanisms underlying the histone code hypothesis.
Collapse
Affiliation(s)
- Sophia
M. Dewing
- Center
for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, 77 Pollock Rd, University Park, Pennsylvania 16802, United States
| | - Tien M. Phan
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 200 Jack E. Brown Engineering Building, College Station, Texas 77843-3122, United States
| | - Emma J. Kraft
- Department
of Chemistry, The Pennsylvania State University, 376 Science Drive, University Park, Pennsylvania 16802, United States
| | - Jeetain Mittal
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, 200 Jack E. Brown Engineering Building, College Station, Texas 77843-3122, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College
Station, Texas 77843, United States
| | - Scott A. Showalter
- Center
for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular
Biology, The Pennsylvania State University, 77 Pollock Rd, University Park, Pennsylvania 16802, United States
- Department
of Chemistry, The Pennsylvania State University, 376 Science Drive, University Park, Pennsylvania 16802, United States
| |
Collapse
|
6
|
Lai PM, Gong X, Chan KM. Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis. Int J Mol Sci 2024; 25:9699. [PMID: 39273649 PMCID: PMC11395991 DOI: 10.3390/ijms25179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Histone variants are the paralogs of core histones (H2A, H2B, H3 and H4). They are stably expressed throughout the cell cycle in a replication-independent fashion and are capable of replacing canonical counterparts under different fundamental biological processes. Variants have been shown to take part in multiple processes, including DNA damage repair, transcriptional regulation and X chromosome inactivation, with some of them even specializing in lineage-specific roles like spermatogenesis. Several reports have recently identified some unprecedented variants from different histone families and exploited their prognostic value in distinct types of cancer. Among the four classes of canonical histones, the H2A family has the greatest number of variants known to date, followed by H2B, H3 and H4. In our prior review, we focused on summarizing all 19 mammalian histone H2A variants. Here in this review, we aim to complete the full summary of the roles of mammalian histone variants from the remaining histone H2B, H3, and H4 families, along with an overview of their roles in cancer biology and their prognostic value in a clinical context.
Collapse
Affiliation(s)
| | | | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China; (P.M.L.); (X.G.)
| |
Collapse
|
7
|
Iida S, Ide S, Tamura S, Sasai M, Tani T, Goto T, Shribak M, Maeshima K. Orientation-independent-DIC imaging reveals that a transient rise in depletion attraction contributes to mitotic chromosome condensation. Proc Natl Acad Sci U S A 2024; 121:e2403153121. [PMID: 39190347 PMCID: PMC11388287 DOI: 10.1073/pnas.2403153121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Genomic information must be faithfully transmitted into two daughter cells during mitosis. To ensure the transmission process, interphase chromatin is further condensed into mitotic chromosomes. Although protein factors like condensins and topoisomerase IIα are involved in the assembly of mitotic chromosomes, the physical bases of the condensation process remain unclear. Depletion attraction/macromolecular crowding, an effective attractive force that arises between large structures in crowded environments around chromosomes, may contribute to the condensation process. To approach this issue, we investigated the "chromosome milieu" during mitosis of living human cells using an orientation-independent-differential interference contrast module combined with a confocal laser scanning microscope, which is capable of precisely mapping optical path differences and estimating molecular densities. We found that the molecular density surrounding chromosomes increased with the progression from prophase to anaphase, concurring with chromosome condensation. However, the molecular density went down in telophase, when chromosome decondensation began. Changes in the molecular density around chromosomes by hypotonic or hypertonic treatment consistently altered the condensation levels of chromosomes. In vitro, native chromatin was converted into liquid droplets of chromatin in the presence of cations and a macromolecular crowder. Additional crowder made the chromatin droplets stiffer and more solid-like. These results suggest that a transient rise in depletion attraction, likely triggered by the relocation of macromolecules (proteins, RNAs, and others) via nuclear envelope breakdown and by a subsequent decrease in cell volumes, contributes to mitotic chromosome condensation, shedding light on a different aspect of the condensation mechanism in living human cells.
Collapse
Affiliation(s)
- Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
| | - Masaki Sasai
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto606-8103, Japan
- Department of Complex Systems Science, Nagoya University, Nagoya464-8603, Japan
| | - Tomomi Tani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka563-8577, Japan
| | - Tatsuhiko Goto
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido080-8555, Japan
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido080-8555, Japan
| | | | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies (SOKENDAI), Mishima, Shizuoka411-8540, Japan
| |
Collapse
|
8
|
Kimura T, Hirai S, Kujirai T, Fujita R, Ogasawara M, Ehara H, Sekine SI, Takizawa Y, Kurumizaka H. Cryo-EM structure and biochemical analyses of the nucleosome containing the cancer-associated histone H3 mutation E97K. Genes Cells 2024; 29:769-781. [PMID: 38972377 PMCID: PMC11448003 DOI: 10.1111/gtc.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
The Lys mutation of the canonical histone H3.1 Glu97 residue (H3E97K) is found in cancer cells. Previous biochemical analyses revealed that the nucleosome containing the H3E97K mutation is extremely unstable as compared to the wild-type nucleosome. However, the mechanism by which the H3E97K mutation causes nucleosome instability has not been clarified yet. In the present study, the cryo-electron microscopy structure of the nucleosome containing the H3E97K mutation revealed that the entry/exit DNA regions of the H3E97K nucleosome are disordered, probably by detachment of the nucleosomal DNA from the H3 N-terminal regions. This may change the intra-molecular amino acid interactions with the replaced H3 Lys97 residue, inducing structural distortion around the mutated position in the nucleosome. Consistent with the nucleosomal DNA end flexibility and the nucleosome instability, the H3E97K mutation exhibited reduced binding of linker histone H1 to the nucleosome, defective activation of PRC2 (the essential methyltransferase for facultative heterochromatin formation) with a poly-nucleosome, and enhanced nucleosome transcription by RNA polymerase II.
Collapse
Affiliation(s)
- Tomoaki Kimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Hirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Risa Fujita
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Mitsuo Ogasawara
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Ehara
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
9
|
Lin YY, Müller P, Karagianni E, Hepp N, Mueller-Planitz F, Vanderlinden W, Lipfert J. Epigenetic Histone Modifications H3K36me3 and H4K5/8/12/16ac Induce Open Polynucleosome Conformations via Different Mechanisms. J Mol Biol 2024; 436:168671. [PMID: 38908785 DOI: 10.1016/j.jmb.2024.168671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Nucleosomes are the basic compaction unit of chromatin and nucleosome structure and their higher-order assemblies regulate genome accessibility. Many post-translational modifications alter nucleosome dynamics, nucleosome-nucleosome interactions, and ultimately chromatin structure and gene expression. Here, we investigate the role of two post-translational modifications associated with actively transcribed regions, H3K36me3 and H4K5/8/12/16ac, in the contexts of tri-nucleosome arrays that provide a tractable model system for quantitative single-molecule analysis, while enabling us to probe nucleosome-nucleosome interactions. Direct visualization by AFM imaging reveals that H3K36me3 and H4K5/8/12/16ac nucleosomes adopt significantly more open and loose conformations than unmodified nucleosomes. Similarly, magnetic tweezers force spectroscopy shows a reduction in DNA outer turn wrapping and nucleosome-nucleosome interactions for the modified nucleosomes. The results suggest that for H3K36me3 the increased breathing and outer DNA turn unwrapping seen in mononucleosomes propagates to more open conformations in nucleosome arrays. In contrast, the even more open structures of H4K5/8/12/16ac nucleosome arrays do not appear to derive from the dynamics of the constituent mononucleosomes, but are driven by reduced nucleosome-nucleosome interactions, suggesting that stacking interactions can overrule DNA breathing of individual nucleosomes. We anticipate that our methodology will be broadly applicable to reveal the influence of other post-translational modifications and to observe the activity of nucleosome remodelers.
Collapse
Affiliation(s)
- Yi-Yun Lin
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Peter Müller
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Evdoxia Karagianni
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands
| | - Nicola Hepp
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Current address: Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Felix Mueller-Planitz
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands; School of Physics and Astronomy, University of Edinburg, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom.
| | - Jan Lipfert
- Department of Physics and Center for NanoScience (CeNS), LMU Munich, Amaliensstrasse 54, 80799 Munich, Germany; Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, the Netherlands.
| |
Collapse
|
10
|
Clerkin AB, Pagane N, West DW, Spakowitz AJ, Risca VI. Determining mesoscale chromatin structure parameters from spatially correlated cleavage data using a coarse-grained oligonucleosome model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605011. [PMID: 39131347 PMCID: PMC11312488 DOI: 10.1101/2024.07.28.605011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The three-dimensional structure of chromatin has emerged as an important feature of eukaryotic gene regulation. Recent technological advances in DNA sequencing-based assays have revealed locus- and chromatin state-specific structural patterns at the length scale of a few nucleosomes (~1 kb). However, interpreting these data sets remains challenging. Radiation-induced correlated cleavage of chromatin (RICC-seq) is one such chromatin structure assay that maps DNA-DNA-contacts at base pair resolution by sequencing single-stranded DNA fragments released from irradiated cells. Here, we develop a flexible modeling and simulation framework to enable the interpretation of RICC-seq data in terms of oligonucleosome structure ensembles. Nucleosomes are modeled as rigid bodies with excluded volume and adjustable DNA wrapping, connected by linker DNA modeled as a worm-like chain. We validate the model's parameters against cryo-electron microscopy and sedimentation data. Our results show that RICC-seq is sensitive to nucleosome spacing, nucleosomal DNA wrapping, and the strength of inter-nucleosome interactions. We show that nucleosome repeat lengths consistent with orthogonal assays can be extracted from experimental RICC-seq data using a 1D convolutional neural net trained on RICC-seq signal predicted from simulated ensembles. We thus provide a suite of analysis tools that add quantitative structural interpretability to RICC-seq experiments.
Collapse
Affiliation(s)
- Ariana Brenner Clerkin
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
- Tri-Institutional PhD Program in Computational Biology and Medicine, Cornell University, New York, NY
| | - Nicole Pagane
- Present affiliation: Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA
| | - Devany W. West
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| | | | - Viviana I. Risca
- Laboratory of Genome Architecture and Dynamics, The Rockefeller University, New York, NY
| |
Collapse
|
11
|
Semeigazin A, Iida S, Minami K, Tamura S, Ide S, Higashi K, Toyoda A, Kurokawa K, Maeshima K. Behaviors of nucleosomes with mutant histone H4s in euchromatic domains of living human cells. Histochem Cell Biol 2024; 162:23-40. [PMID: 38743310 DOI: 10.1007/s00418-024-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
Since Robert Feulgen first stained DNA in the cell, visualizing genome chromatin has been a central issue in cell biology to uncover how chromatin is organized and behaves in the cell. To approach this issue, we have developed single-molecule imaging of nucleosomes, a basic unit of chromatin, to unveil local nucleosome behavior in living cells. In this study, we investigated behaviors of nucleosomes with various histone H4 mutants in living HeLa cells to address the role of H4 tail acetylation, including H4K16Ac and others, which are generally associated with more transcriptionally active chromatin regions. We ectopically expressed wild-type (wt) or mutated H4s (H4K16 point; H4K5,8,12,16 quadruple; and H4 tail deletion) fused with HaloTag in HeLa cells. Cells that expressed wtH4-Halo, H4K16-Halo mutants, and multiple H4-Halo mutants had euchromatin-concentrated distribution. Consistently, the genomic regions of the wtH4-Halo nucleosomes corresponded to Hi-C contact domains (or topologically associating domains, TADs) with active chromatin marks (A-compartment). Utilizing single-nucleosome imaging, we found that none of the H4 deacetylation or acetylation mimicked H4 mutants altered the overall local nucleosome motion. This finding suggests that H4 mutant nucleosomes embedded in the condensed euchromatic domains with excess endogenous H4 nucleosomes cannot cause an observable change in the local motion. Interestingly, H4 with four lysine-to-arginine mutations displayed a substantial freely diffusing fraction in the nucleoplasm, whereas H4 with a truncated N-terminal tail was incorporated in heterochromatic regions as well as euchromatin. Our study indicates the power of single-nucleosome imaging to understand individual histone/nucleosome behavior reflecting chromatin environments in living cells.
Collapse
Affiliation(s)
- Adilgazy Semeigazin
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Koichi Higashi
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Genome Evolution Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Ken Kurokawa
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
- Genome Evolution Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
12
|
Liu S, Athreya A, Lao Z, Zhang B. From Nucleosomes to Compartments: Physicochemical Interactions Underlying Chromatin Organization. Annu Rev Biophys 2024; 53:221-245. [PMID: 38346246 PMCID: PMC11369498 DOI: 10.1146/annurev-biophys-030822-032650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Chromatin organization plays a critical role in cellular function by regulating access to genetic information. However, understanding chromatin folding is challenging due to its complex, multiscale nature. Significant progress has been made in studying in vitro systems, uncovering the structure of individual nucleosomes and their arrays, and elucidating the role of physicochemical forces in stabilizing these structures. Additionally, remarkable advancements have been achieved in characterizing chromatin organization in vivo, particularly at the whole-chromosome level, revealing important features such as chromatin loops, topologically associating domains, and nuclear compartments. However, bridging the gap between in vitro and in vivo studies remains challenging. The resemblance between in vitro and in vivo chromatin conformations and the relevance of internucleosomal interactions for chromatin folding in vivo are subjects of debate. This article reviews experimental and computational studies conducted at various length scales, highlighting the significance of intrinsic interactions between nucleosomes and their roles in chromatin folding in vivo.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Advait Athreya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Zhuohan Lao
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
13
|
Dhahri H, Saintilnord WN, Chandler D, Fondufe-Mittendorf YN. Beyond the Usual Suspects: Examining the Role of Understudied Histone Variants in Breast Cancer. Int J Mol Sci 2024; 25:6788. [PMID: 38928493 PMCID: PMC11203562 DOI: 10.3390/ijms25126788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The incorporation of histone variants has structural ramifications on nucleosome dynamics and stability. Due to their unique sequences, histone variants can alter histone-histone or histone-DNA interactions, impacting the folding of DNA around the histone octamer and the overall higher-order structure of chromatin fibers. These structural modifications alter chromatin compaction and accessibility of DNA by transcription factors and other regulatory proteins to influence gene regulatory processes such as DNA damage and repair, as well as transcriptional activation or repression. Histone variants can also generate a unique interactome composed of histone chaperones and chromatin remodeling complexes. Any of these perturbations can contribute to cellular plasticity and the progression of human diseases. Here, we focus on a frequently overlooked group of histone variants lying within the four human histone gene clusters and their contribution to breast cancer.
Collapse
Affiliation(s)
- Hejer Dhahri
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA or (H.D.); (W.N.S.)
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Edison Family Center of Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA;
| | | |
Collapse
|
14
|
Kiss AE, Venkatasubramani AV, Pathirana D, Krause S, Sparr A, Hasenauer J, Imhof A, Müller M, Becker P. Processivity and specificity of histone acetylation by the male-specific lethal complex. Nucleic Acids Res 2024; 52:4889-4905. [PMID: 38407474 PMCID: PMC11109948 DOI: 10.1093/nar/gkae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Acetylation of lysine 16 of histone H4 (H4K16ac) stands out among the histone modifications, because it decompacts the chromatin fiber. The metazoan acetyltransferase MOF (KAT8) regulates transcription through H4K16 acetylation. Antibody-based studies had yielded inconclusive results about the selectivity of MOF to acetylate the H4 N-terminus. We used targeted mass spectrometry to examine the activity of MOF in the male-specific lethal core (4-MSL) complex on nucleosome array substrates. This complex is part of the Dosage Compensation Complex (DCC) that activates X-chromosomal genes in male Drosophila. During short reaction times, MOF acetylated H4K16 efficiently and with excellent selectivity. Upon longer incubation, the enzyme progressively acetylated lysines 12, 8 and 5, leading to a mixture of oligo-acetylated H4. Mathematical modeling suggests that MOF recognizes and acetylates H4K16 with high selectivity, but remains substrate-bound and continues to acetylate more N-terminal H4 lysines in a processive manner. The 4-MSL complex lacks non-coding roX RNA, a critical component of the DCC. Remarkably, addition of RNA to the reaction non-specifically suppressed H4 oligo-acetylation in favor of specific H4K16 acetylation. Because RNA destabilizes the MSL-nucleosome interaction in vitro we speculate that RNA accelerates enzyme-substrate turn-over in vivo, thus limiting the processivity of MOF, thereby increasing specific H4K16 acetylation.
Collapse
Affiliation(s)
- Anna E Kiss
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Anuroop V Venkatasubramani
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Dilan Pathirana
- Life and Medical Sciences (LIMES) Institute, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Silke Krause
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Aline Campos Sparr
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Jan Hasenauer
- Life and Medical Sciences (LIMES) Institute, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Axel Imhof
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Marisa Müller
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Nordenskiöld L, Shi X, Korolev N, Zhao L, Zhai Z, Lindman B. Liquid-liquid phase separation (LLPS) in DNA and chromatin systems from the perspective of colloid physical chemistry. Adv Colloid Interface Sci 2024; 326:103133. [PMID: 38547652 DOI: 10.1016/j.cis.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
DNA is a highly charged polyelectrolyte and is prone to associative phase separation driven by the presence of multivalent cations, charged surfactants, proteins, polymers and colloids. The process of DNA phase separation induced by positively charged species is often called DNA condensation. Generally, it refers to either intramolecular DNA compaction (coil-globule transition) or intermolecular DNA aggregation with macroscopic phase separation, but the formation of a DNA liquid crystalline system is also displayed. This has traditionally been described by polyelectrolyte theory and qualitative (Flory-Huggins-based) polymer theory approaches. DNA in the cell nucleus is packed into chromatin wound around the histone octamer (a protein complex comprising two copies each of the four histone proteins H2A, H2B, H3 and H4) to form nucleosomes separated by linker DNA. During the last decade, the phenomenon of the formation of biomolecular condensates (dynamic droplets) by liquid-liquid phase separation (LLPS) has emerged as a generally important mechanism for the formation of membraneless organelles from proteins, nucleic acids and their complexes. DNA and chromatin droplet formation through LLPS has recently received much attention by in vitro as well as in vivo studies that established the importance of this for compartmentalisation in the cell nucleus. Here, we review DNA and chromatin LLPS from a general colloid physical chemistry perspective. We start with a general discussion of colloidal phase separation in aqueous solutions and review the original (pre-LLPS era) work on DNA (macroscopic) phase separation for simpler systems with DNA in the presence of multivalent cations and well-defined surfactants and colloids. Following that, we discuss and illustrate the similarities of such macroscopic phase separation with the general behaviour of LLPS droplet formation by associative phase separation for DNA-protein systems, including chromatin; we also note cases of segregative association. The review ends with a discussion of chromatin LLPS in vivo and its physiological significance.
Collapse
Affiliation(s)
- Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Björn Lindman
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Physical Chemistry, University of Lund, P.O. Box 124, S-221 00 Lund, Sweden; Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
16
|
Lukauskas S, Tvardovskiy A, Nguyen NV, Stadler M, Faull P, Ravnsborg T, Özdemir Aygenli B, Dornauer S, Flynn H, Lindeboom RGH, Barth TK, Brockers K, Hauck SM, Vermeulen M, Snijders AP, Müller CL, DiMaggio PA, Jensen ON, Schneider R, Bartke T. Decoding chromatin states by proteomic profiling of nucleosome readers. Nature 2024; 627:671-679. [PMID: 38448585 PMCID: PMC10954555 DOI: 10.1038/s41586-024-07141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.
Collapse
Affiliation(s)
- Saulius Lukauskas
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nhuong V Nguyen
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Mara Stadler
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Statistics, Ludwig Maximilian University Munich, Munich, Germany
| | - Peter Faull
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Proteomic Sciences Technology Platform, The Francis Crick Institute, London, UK
- Northwestern Proteomics Core Facility, Northwestern University, Chicago, IL, USA
| | - Tina Ravnsborg
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Scarlett Dornauer
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helen Flynn
- Proteomic Sciences Technology Platform, The Francis Crick Institute, London, UK
| | - Rik G H Lindeboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Teresa K Barth
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
- Clinical Protein Analysis Unit (ClinZfP), Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried, Germany
| | - Kevin Brockers
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Christian L Müller
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Statistics, Ludwig Maximilian University Munich, Munich, Germany
- Center for Computational Mathematics, Flatiron Institute, New York, NY, USA
| | - Peter A DiMaggio
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ole N Jensen
- VILLUM Center for Bioanalytical Sciences and Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
- Faculty of Biology, Ludwig Maximilian University Munich, Martinsried, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
- MRC Laboratory of Medical Sciences (LMS), London, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
17
|
Weinzapfel EN, Fedder-Semmes KN, Sun ZW, Keogh MC. Beyond the tail: the consequence of context in histone post-translational modification and chromatin research. Biochem J 2024; 481:219-244. [PMID: 38353483 PMCID: PMC10903488 DOI: 10.1042/bcj20230342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The role of histone post-translational modifications (PTMs) in chromatin structure and genome function has been the subject of intense debate for more than 60 years. Though complex, the discourse can be summarized in two distinct - and deceptively simple - questions: What is the function of histone PTMs? And how should they be studied? Decades of research show these queries are intricately linked and far from straightforward. Here we provide a historical perspective, highlighting how the arrival of new technologies shaped discovery and insight. Despite their limitations, the tools available at each period had a profound impact on chromatin research, and provided essential clues that advanced our understanding of histone PTM function. Finally, we discuss recent advances in the application of defined nucleosome substrates, the study of multivalent chromatin interactions, and new technologies driving the next era of histone PTM research.
Collapse
|
18
|
Iida S, Ide S, Tamura S, Tani T, Goto T, Shribak M, Maeshima K. Orientation-Independent-DIC imaging reveals that a transient rise in depletion force contributes to mitotic chromosome condensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.11.566679. [PMID: 37986866 PMCID: PMC10659371 DOI: 10.1101/2023.11.11.566679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Genomic information must be faithfully transmitted into two daughter cells during mitosis. To ensure the transmission process, interphase chromatin is further condensed into mitotic chromosomes. Although protein factors like condensins and topoisomerase IIα are involved in the assembly of mitotic chromosomes, the physical bases of the condensation process remain unclear. Depletion force/macromolecular crowding, an effective attractive force that arises between large structures in crowded environments around chromosomes, may contribute to the condensation process. To approach this issue, we investigated the "chromosome milieu" during mitosis of living human cells using orientation-independent-differential interference contrast (OI-DIC) module combined with a confocal laser scanning microscope, which is capable of precisely mapping optical path differences and estimating molecular densities. We found that the molecular density surrounding chromosomes increased with the progression from prometaphase to anaphase, concurring with chromosome condensation. However, the molecular density went down in telophase, when chromosome decondensation began. Changes in the molecular density around chromosomes by hypotonic or hypertonic treatment consistently altered the condensation levels of chromosomes. In vitro, native chromatin was converted into liquid droplets of chromatin in the presence of cations and a macromolecular crowder. Additional crowder made the chromatin droplets stiffer and more solid-like, with further condensation. These results suggest that a transient rise in depletion force, likely triggered by the relocation of macromolecules (proteins, RNAs and others) via nuclear envelope breakdown and also by a subsequent decrease in cell-volumes, contributes to mitotic chromosome condensation, shedding light on a new aspect of the condensation mechanism in living human cells.
Collapse
Affiliation(s)
- Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Satoru Ide
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tomomi Tani
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Tatsuhiko Goto
- Research Center for Global Agromedicine and Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Michael Shribak
- Marine Biological Laboratory, 7 MBL St, Woods Hole, MA 02543, USA
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
19
|
Nosella ML, Kim TH, Huang SK, Harkness RW, Goncalves M, Pan A, Tereshchenko M, Vahidi S, Rubinstein JL, Lee HO, Forman-Kay JD, Kay LE. Poly(ADP-ribosyl)ation enhances nucleosome dynamics and organizes DNA damage repair components within biomolecular condensates. Mol Cell 2024; 84:429-446.e17. [PMID: 38215753 DOI: 10.1016/j.molcel.2023.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.
Collapse
Affiliation(s)
- Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Tae Hun Kim
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuya Kate Huang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert W Harkness
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Monica Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alisia Pan
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Maria Tereshchenko
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Lewis E Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
20
|
Wong SY, Soman A, Korolev N, Surya W, Chen Q, Shum W, van Noort J, Nordenskiöld L. The shelterin component TRF2 mediates columnar stacking of human telomeric chromatin. EMBO J 2024; 43:87-111. [PMID: 38177309 PMCID: PMC10883271 DOI: 10.1038/s44318-023-00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 01/06/2024] Open
Abstract
Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.
Collapse
Affiliation(s)
- Sook Yi Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Department of Emerging Infectious Diseases, Duke-NUS, Medical School, Singapore, 169857, Singapore
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- M Diagnostics PTE. LTD, 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Wayne Shum
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - John van Noort
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Huygens-Kamerlingh Ones Laboratory, Leiden University, Leiden, 2333 AL, The Netherlands
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
21
|
Kuwayama N, Kujirai T, Kishi Y, Hirano R, Echigoya K, Fang L, Watanabe S, Nakao M, Suzuki Y, Ishiguro KI, Kurumizaka H, Gotoh Y. HMGA2 directly mediates chromatin condensation in association with neuronal fate regulation. Nat Commun 2023; 14:6420. [PMID: 37828010 PMCID: PMC10570362 DOI: 10.1038/s41467-023-42094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Identification of factors that regulate chromatin condensation is important for understanding of gene regulation. High-mobility group AT-hook (HMGA) proteins 1 and 2 are abundant nonhistone chromatin proteins that play a role in many biological processes including tissue stem-progenitor cell regulation, but the nature of their protein function remains unclear. Here we show that HMGA2 mediates direct condensation of polynucleosomes and forms droplets with nucleosomes. Consistently, most endogenous HMGA2 localized to transposase 5- and DNase I-inaccessible chromatin regions, and its binding was mostly associated with gene repression, in mouse embryonic neocortical cells. The AT-hook 1 domain was necessary for chromatin condensation by HMGA2 in vitro and in cellulo, and an HMGA2 mutant lacking this domain was defective in the ability to maintain neuronal progenitors in vivo. Intrinsically disordered regions of other proteins could substitute for the AT-hook 1 domain in promoting this biological function of HMGA2. Taken together, HMGA2 may regulate neural cell fate by its chromatin condensation activity.
Collapse
Grants
- This research was supported by AMED-CREST and AMED-PRIME of the Japan Agency for Medical Research and Development (JP22gm1310004, JP22gm6110021), SECOM Science and Technology Foundation SECOM Science and Technology Foundation (for Y.K.), Platform Project for Supporting Drug Discovery and Life Science Research from AMED JP21am0101076 and (for H.K.), Research Support Project for Life Science and Drug Discovery from AMED JP22ama121009 (for H.K.), Japan Science and Technology Agency ERATO JPMJER1901 (for H.K.) and by KAKENHI grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science (JP21J14115 for N.K.; JP22K15033 for T.K.;16H06279, 20H03179, 21H00242 and 22H04687 for Y.K.; 20K07589 for S.W.; JP20H00449, JP18H05534 for H.K.; JP22H00431, JP16H06279 and JP22H04925 for Y.G.)
Collapse
Affiliation(s)
- Naohiro Kuwayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Tomoya Kujirai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yusuke Kishi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Rina Hirano
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kenta Echigoya
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Lingyan Fang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Sugiko Watanabe
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Mitsuyoshi Nakao
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kei-Ichiro Ishiguro
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
22
|
Sahu S, Ekundayo BE, Kumar A, Bleichert F. A dual role for the chromatin reader ORCA/LRWD1 in targeting the origin recognition complex to chromatin. EMBO J 2023; 42:e114654. [PMID: 37551430 PMCID: PMC10505921 DOI: 10.15252/embj.2023114654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Eukaryotic cells use chromatin marks to regulate the initiation of DNA replication. The origin recognition complex (ORC)-associated protein ORCA plays a critical role in heterochromatin replication in mammalian cells by recruiting the initiator ORC, but the underlying mechanisms remain unclear. Here, we report crystal and cryo-electron microscopy structures of ORCA in complex with ORC's Orc2 subunit and nucleosomes, establishing that ORCA orchestrates ternary complex assembly by simultaneously recognizing a highly conserved peptide sequence in Orc2, nucleosomal DNA, and repressive histone trimethylation marks through an aromatic cage. Unexpectedly, binding of ORCA to nucleosomes prevents chromatin array compaction in a manner that relies on H4K20 trimethylation, a histone modification critical for heterochromatin replication. We further show that ORCA is necessary and sufficient to specifically recruit ORC into chromatin condensates marked by H4K20 trimethylation, providing a paradigm for studying replication initiation in specific chromatin contexts. Collectively, our findings support a model in which ORCA not only serves as a platform for ORC recruitment to nucleosomes bearing specific histone marks but also helps establish a local chromatin environment conducive to subsequent MCM2-7 loading.
Collapse
Affiliation(s)
- Sumon Sahu
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Babatunde E Ekundayo
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
- Present address:
Laboratory of Biological Electron MicroscopyEPFLLausanneSwitzerland
| | - Ashish Kumar
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| | - Franziska Bleichert
- Department of Molecular Biophysics and BiochemistryYale UniversityNew HavenCTUSA
| |
Collapse
|
23
|
Li Z, Portillo-Ledesma S, Schlick T. Brownian dynamics simulations of mesoscale chromatin fibers. Biophys J 2023; 122:2884-2897. [PMID: 36116007 PMCID: PMC10397810 DOI: 10.1016/j.bpj.2022.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The relationship between chromatin architecture and function defines a central problem in biology and medicine. Many computational chromatin models with atomic, coarse-grained, mesoscale, and polymer resolution have been used to shed light onto the mechanisms that dictate genome folding and regulation of gene expression. The associated simulation techniques range from Monte Carlo to molecular, Brownian, and Langevin dynamics. Here, we present an efficient Compute Unified Device Architecture (CUDA) implementation of Brownian dynamics (BD) to simulate chromatin fibers at the nucleosome resolution with our chromatin mesoscale model. With the CUDA implementation for computer architectures with graphic processing units (GPUs), we significantly accelerate compute-intensive hydrodynamic tensor calculations in the BD simulations by massive parallelization, boosting the performance a hundred-fold compared with central processing unit calculations. We validate our BD simulation approach by reproducing experimental trends on fiber diffusion and structure as a function of salt, linker histone binding, and histone-tail composition, as well as Monte Carlo equilibrium sampling results. Our approach proves to be physically accurate with performance that makes feasible the study of chromatin fibers in the range of kb or hundreds of nucleosomes (small gene). Such simulations are essential to advance the study of biological processes such as gene regulation and aberrant genome-structure related diseases.
Collapse
Affiliation(s)
- Zilong Li
- Department of Chemistry, New York University, New York, New York
| | | | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, China; Simons Center for Computational Physical Chemistry, New York University, New York, New York.
| |
Collapse
|
24
|
Abstract
Nearly three-fourths of all eukaryotic DNA is occupied by nucleosomes, protein-DNA complexes comprising octameric histone core proteins and ∼150 base pairs of DNA. In addition to acting as a DNA compaction vehicle, the dynamics of nucleosomes regulate the DNA site accessibility for the nonhistone proteins, thereby controlling regulatory processes involved in determining the cell identity and cell fate. Here, we propose an analytical framework to analyze the role of nucleosome dynamics on the target search process of transcription factors through a simple discrete-state stochastic description of the search process. By considering the experimentally determined kinetic rates associated with protein and nucleosome dynamics as the only inputs, we estimate the target search time of a protein via first-passage probability calculations separately during nucleosome breathing and sliding dynamics. Although both the nucleosome dynamics permit transient access to the DNA sites that are otherwise occluded by the histone proteins, our result suggests substantial differences between the protein search mechanism on a nucleosome performing breathing and sliding dynamics. Furthermore, we identify the molecular factors that influence the search efficiency and demonstrate how these factors together portray a highly dynamic landscape of gene regulation. Our analytical results are validated using extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
25
|
Lorch Y, Kornberg RD, Maier-Davis B. Role of the histone tails in histone octamer transfer. Nucleic Acids Res 2023; 51:3671-3678. [PMID: 36772826 PMCID: PMC10164550 DOI: 10.1093/nar/gkad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
The exceptionally high positive charge of the histones, concentrated in the N- and C-terminal tails, is believed to contribute to the stability of the nucleosome by neutralizing the negative charge of the nucleosomal DNA. We find, on the contrary, that the high positive charge contributes to instability, performing an essential function in chromatin remodeling. We show that the tails are required for removal of the histone octamer by the RSC chromatin remodeling complex, and this function is not due to direct RSC-tail interaction. We also show that the tails are required for histone octamer transfer from nucleosomes to DNA, and this activity of the tails is a consequence of their positive charge. Thus, the histone tails, intrinsically disordered protein regions, perform a critical role in chromatin structure and transcription, unrelated to their well-known role in regulation through posttranscriptional modification.
Collapse
Affiliation(s)
- Yahli Lorch
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Barbara Maier-Davis
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
26
|
Török A, Browne MJG, Vilar JC, Patwal I, DuBuc TQ, Febrimarsa, Atcheson E, Frank U, Gornik SG, Flaus A. Hydrozoan sperm-specific SPKK motif-containing histone H2B variants stabilise chromatin with limited compaction. Development 2023; 150:286546. [PMID: 36633190 PMCID: PMC9903204 DOI: 10.1242/dev.201058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
Many animals achieve sperm chromatin compaction and stabilisation by replacing canonical histones with sperm nuclear basic proteins (SNBPs) such as protamines during spermatogenesis. Hydrozoan cnidarians and echinoid sea urchins lack protamines and have evolved a distinctive family of sperm-specific histone H2Bs (spH2Bs) with extended N termini rich in SPK(K/R) motifs. Echinoid sperm packaging is regulated by spH2Bs. Their sperm is negatively buoyant and fertilises on the sea floor. Hydroid cnidarians undertake broadcast spawning but their sperm properties are poorly characterised. We show that Hydractinia echinata and H. symbiolongicarpus sperm chromatin possesses higher stability than somatic chromatin, with reduced accessibility to transposase Tn5 integration and to endonucleases in vitro. In contrast, nuclear dimensions are only moderately reduced in mature Hydractinia sperm. Ectopic expression of spH2B in the background of H2B.1 knockdown results in downregulation of global transcription and cell cycle arrest in embryos, without altering their nuclear density. Taken together, SPKK-containing spH2B variants act to stabilise chromatin and silence transcription in Hydractinia sperm with only limited chromatin compaction. We suggest that spH2Bs could contribute to sperm buoyancy as a reproductive adaptation.
Collapse
Affiliation(s)
- Anna Török
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Martin J. G. Browne
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Jordina C. Vilar
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Indu Patwal
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Timothy Q. DuBuc
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Febrimarsa
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Erwan Atcheson
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Uri Frank
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Sebastian G. Gornik
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland,Authors for correspondence (, )
| | - Andrew Flaus
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland,Authors for correspondence (, )
| |
Collapse
|
27
|
Ibrahim Z, Wang T, Destaing O, Salvi N, Hoghoughi N, Chabert C, Rusu A, Gao J, Feletto L, Reynoird N, Schalch T, Zhao Y, Blackledge M, Khochbin S, Panne D. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13:7759. [PMID: 36522330 PMCID: PMC9755262 DOI: 10.1038/s41467-022-35375-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.
Collapse
Affiliation(s)
- Ziad Ibrahim
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tao Wang
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Destaing
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, CNRS, CEA, UGA, Grenoble, France
| | - Naghmeh Hoghoughi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Clovis Chabert
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Alexandra Rusu
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jinjun Gao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Nicolas Reynoird
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Schalch
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Saadi Khochbin
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
28
|
Sokolova V, Sarkar S, Tan D. Histone variants and chromatin structure, update of advances. Comput Struct Biotechnol J 2022; 21:299-311. [PMID: 36582440 PMCID: PMC9764139 DOI: 10.1016/j.csbj.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Histone proteins are highly conserved among all eukaryotes. They have two important functions in the cell: to package the genomic DNA and to regulate gene accessibility. Fundamental to these functions is the ability of histone proteins to interact with DNA and to form the nucleoprotein complex called chromatin. One of the mechanisms the cells use to regulate chromatin and gene expression is through replacing canonical histones with their variants at specific loci to achieve functional consequence. Recent cryo-electron microscope (cryo-EM) studies of chromatin containing histone variants reveal new details that shed light on how variant-specific features influence the structures and functions of chromatin. In this article, we review the current state of knowledge on histone variants biochemistry and discuss the implication of these new structural information on histone variant biology and their functions in transcription.
Collapse
|
29
|
Zhang X, Wu X, Peng J, Sun A, Guo Y, Fu P, Gao G. Cis- and trans-regulation by histone H4 basic patch R17/R19 in metazoan development. Open Biol 2022; 12:220066. [PMID: 36382370 PMCID: PMC9667139 DOI: 10.1098/rsob.220066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
The histone H4 basic patch is critical for chromatin structure and regulation of the chromatin machinery. However, the biological roles of these positively charged residues and the mechanisms by which they regulate gene expression remain unclear. In this study, we used histone mutagenesis to investigate the physiological function and downstream regulatory genes of H4 residues R17 and R19 in Drosophila. We found all histone mutations including R17A/E/H and R19A/E/H (R17 and R19 of H4 are substituted by A, E and H respectively) result in a range of growth defects and abnormalities in chromosomal high-order structures, whereas R17E mutation is embryonic lethal. RNA-seq demonstrates that downregulated genes in both R17A and R19A show significant overlap and are enriched in development-related pathways. In addition, Western and cytological analyses showed that the R17A mutation resulted in a significant reduction in H4K16 acetylation and male offspring, implying that the R17 may be involved in male dosage compensation mechanisms. R19 mutation on the other hand strongly affect Gpp (Dot1 homologue in flies)-mediated H3K79 methylation, possibly through histone crosstalk. Together these results provide insights into the differential impacts of positive charges of H4 basic patch R17/R19 on regulation of gene transcription during developmental processes.
Collapse
Affiliation(s)
- Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Xiangyu Wu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Ju Peng
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Angyang Sun
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Yan Guo
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Pengchong Fu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, People's Republic of China
| |
Collapse
|
30
|
Chen Q, Zhao L, Soman A, Arkhipova AY, Li J, Li H, Chen Y, Shi X, Nordenskiöld L. Chromatin Liquid-Liquid Phase Separation (LLPS) Is Regulated by Ionic Conditions and Fiber Length. Cells 2022; 11:cells11193145. [PMID: 36231107 PMCID: PMC9564186 DOI: 10.3390/cells11193145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
The dynamic regulation of the physical states of chromatin in the cell nucleus is crucial for maintaining cellular homeostasis. Chromatin can exist in solid- or liquid-like forms depending on the surrounding ions, binding proteins, post-translational modifications and many other factors. Several recent studies suggested that chromatin undergoes liquid-liquid phase separation (LLPS) in vitro and also in vivo; yet, controversial conclusions about the nature of chromatin LLPS were also observed from the in vitro studies. These inconsistencies are partially due to deviations in the in vitro buffer conditions that induce the condensation/aggregation of chromatin as well as to differences in chromatin (nucleosome array) constructs used in the studies. In this work, we present a detailed characterization of the effects of K+, Mg2+ and nucleosome fiber length on the physical state and property of reconstituted nucleosome arrays. LLPS was generally observed for shorter nucleosome arrays (15-197-601, reconstituted from 15 repeats of the Widom 601 DNA with 197 bp nucleosome repeat length) at physiological ion concentrations. In contrast, gel- or solid-like condensates were detected for the considerably longer 62-202-601 and lambda DNA (~48.5 kbp) nucleosome arrays under the same conditions. In addition, we demonstrated that the presence of reduced BSA and acetate buffer is not essential for the chromatin LLPS process. Overall, this study provides a comprehensive understanding of several factors regarding chromatin physical states and sheds light on the mechanism and biological relevance of chromatin phase separation in vivo.
Collapse
Affiliation(s)
- Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Aghil Soman
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
| | - Anastasia Yu Arkhipova
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jindi Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Hao Li
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China; (L.Z.); (A.Y.A.); (J.L.); (H.L.); (Y.C.)
- Correspondence: (X.S.); (L.N.)
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; (Q.C.); (A.S.)
- Correspondence: (X.S.); (L.N.)
| |
Collapse
|
31
|
Structure of the NuA4 acetyltransferase complex bound to the nucleosome. Nature 2022; 610:569-574. [PMID: 36198799 DOI: 10.1038/s41586-022-05303-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Deoxyribonucleic acid in eukaryotes wraps around the histone octamer to form nucleosomes1, the fundamental unit of chromatin. The N termini of histone H4 interact with nearby nucleosomes and play an important role in the formation of high-order chromatin structure and heterochromatin silencing2-4. NuA4 in yeast and its homologue Tip60 complex in mammalian cells are the key enzymes that catalyse H4 acetylation, which in turn regulates chromatin packaging and function in transcription activation and DNA repair5-10. Here we report the cryo-electron microscopy structure of NuA4 from Saccharomyces cerevisiae bound to the nucleosome. NuA4 comprises two major modules: the catalytic histone acetyltransferase (HAT) module and the transcription activator-binding (TRA) module. The nucleosome is mainly bound by the HAT module and is positioned close to a polybasic surface of the TRA module, which is important for the optimal activity of NuA4. The nucleosomal linker DNA carrying the upstream activation sequence is oriented towards the conserved, transcription activator-binding surface of the Tra1 subunit, which suggests a potential mechanism of NuA4 to act as a transcription co-activator. The HAT module recognizes the disk face of the nucleosome through the H2A-H2B acidic patch and nucleosomal DNA, projecting the catalytic pocket of Esa1 to the N-terminal tail of H4 and supporting its function in selective acetylation of H4. Together, our findings illustrate how NuA4 is assembled and provide mechanistic insights into nucleosome recognition and transcription co-activation by a HAT.
Collapse
|
32
|
Sato S, Dacher M, Kurumizaka H. Nucleosome Structures Built from Highly Divergent Histones: Parasites and Giant DNA Viruses. EPIGENOMES 2022; 6:22. [PMID: 35997368 PMCID: PMC9396995 DOI: 10.3390/epigenomes6030022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
In eukaryotes, genomic DNA is bound with histone proteins and packaged into chromatin. The nucleosome, a fundamental unit of chromatin, regulates the accessibility of DNA to enzymes involved in gene regulation. During the past few years, structural analyses of chromatin architectures have been limited to evolutionarily related organisms. The amino acid sequences of histone proteins are highly conserved from humans to yeasts, but are divergent in the deeply branching protozoan groups, including human parasites that are directly related to human health. Certain large DNA viruses, as well as archaeal organisms, contain distant homologs of eukaryotic histone proteins. The divergent sequences give rise to unique and distinct nucleosome architectures, although the fundamental principles of histone folding and DNA contact are highly conserved. In this article, we review the structures and biophysical properties of nucleosomes containing histones from the human parasites Giardia lamblia and Leishmania major, and histone-like proteins from the Marseilleviridae amoeba virus family. The presented data confirm the sharing of the overall DNA compaction system among evolutionally distant species and clarify the deviations from the species-specific nature of the nucleosome.
Collapse
Affiliation(s)
| | | | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; (S.S.); (M.D.)
| |
Collapse
|
33
|
Ide S, Tamura S, Maeshima K. Chromatin behavior in living cells: Lessons from single‐nucleosome imaging and tracking. Bioessays 2022; 44:e2200043. [DOI: 10.1002/bies.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Satoru Ide
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
- Department of Genetics School of Life Science SOKENDAI Mishima Shizuoka Japan
| | - Sachiko Tamura
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory National Institute of Genetics, ROIS Mishima Shizuoka Japan
- Department of Genetics School of Life Science SOKENDAI Mishima Shizuoka Japan
| |
Collapse
|
34
|
Foroozani M, Holder DH, Deal RB. Histone Variants in the Specialization of Plant Chromatin. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:149-172. [PMID: 35167758 PMCID: PMC9133179 DOI: 10.1146/annurev-arplant-070221-050044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The basic unit of chromatin, the nucleosome, is an octamer of four core histone proteins (H2A, H2B, H3, and H4) and serves as a fundamental regulatory unit in all DNA-templated processes. The majority of nucleosome assembly occurs during DNA replication when these core histones are produced en masse to accommodate the nascent genome. In addition, there are a number of nonallelic sequence variants of H2A and H3 in particular, known as histone variants, that can be incorporated into nucleosomes in a targeted and replication-independent manner. By virtue of their sequence divergence from the replication-coupled histones, these histone variants can impart unique properties onto the nucleosomes they occupy and thereby influence transcription and epigenetic states, DNA repair, chromosome segregation, and other nuclear processes in ways that profoundly affect plant biology. In this review, we discuss the evolutionary origins of these variants in plants, their known roles in chromatin, and their impacts on plant development and stress responses. We focus on the individual and combined roles of histone variants in transcriptional regulation within euchromatic and heterochromatic genome regions. Finally, we highlight gaps in our understanding of plant variants at the molecular, cellular, and organismal levels, and we propose new directions for study in the field of plant histone variants.
Collapse
Affiliation(s)
| | - Dylan H Holder
- Department of Biology, Emory University, Atlanta, Georgia, USA;
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, USA
| | - Roger B Deal
- Department of Biology, Emory University, Atlanta, Georgia, USA;
| |
Collapse
|
35
|
Zhou K, Gebala M, Woods D, Sundararajan K, Edwards G, Krzizike D, Wereszczynski J, Straight AF, Luger K. CENP-N promotes the compaction of centromeric chromatin. Nat Struct Mol Biol 2022; 29:403-413. [PMID: 35422519 PMCID: PMC9010303 DOI: 10.1038/s41594-022-00758-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022]
Abstract
The histone variant CENP-A is the epigenetic determinant for the centromere, where it is interspersed with canonical H3 to form a specialized chromatin structure that nucleates the kinetochore. How nucleosomes at the centromere arrange into higher order structures is unknown. Here we demonstrate that the human CENP-A-interacting protein CENP-N promotes the stacking of CENP-A-containing mononucleosomes and nucleosomal arrays through a previously undefined interaction between the α6 helix of CENP-N with the DNA of a neighboring nucleosome. We describe the cryo-EM structures and biophysical characterization of such CENP-N-mediated nucleosome stacks and nucleosomal arrays and demonstrate that this interaction is responsible for the formation of densely packed chromatin at the centromere in the cell. Our results provide first evidence that CENP-A, together with CENP-N, promotes specific chromatin higher order structure at the centromere.
Collapse
Affiliation(s)
- Keda Zhou
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Magdalena Gebala
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Dustin Woods
- Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Garrett Edwards
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Dan Krzizike
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Jeff Wereszczynski
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, CA, USA.
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA.
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
36
|
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone? mBio 2022; 13:e0173321. [PMID: 35343785 PMCID: PMC9040877 DOI: 10.1128/mbio.01733-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
37
|
Konrad SF, Vanderlinden W, Lipfert J. Quantifying epigenetic modulation of nucleosome breathing by high-throughput AFM imaging. Biophys J 2022; 121:841-851. [PMID: 35065917 PMCID: PMC8943691 DOI: 10.1016/j.bpj.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Nucleosomes are the basic units of chromatin and critical for storage and expression of eukaryotic genomes. Chromatin accessibility and gene readout are heavily regulated by epigenetic marks, in which post-translational modifications of histones play a key role. However, the mode of action and the structural implications at the single-molecule level of nucleosomes is still poorly understood. Here we apply a high-throughput atomic force microscopy imaging and analysis pipeline to investigate the conformational landscape of the nucleosome variants three additional methyl groups at lysine 36 of histone H3 (H3K36me3), phosphorylation of H3 histones at serine 10 (H3S10phos), and acetylation of H4 histones at lysines 5, 8, 12, and 16 (H4K5/8/12/16ac). Our data set of more than 25,000 nucleosomes reveals nucleosomal unwrapping steps corresponding to 5-bp DNA. We find that H3K36me3 nucleosomes unwrap significantly more than wild-type nucleosomes and additionally unwrap stochastically from both sides, similar to centromere protein A (CENP-A) nucleosomes and in contrast to the highly anticooperative unwrapping of wild-type nucleosomes. Nucleosomes with H3S10phos or H4K5/8/12/16ac modifications show unwrapping populations similar to wild-type nucleosomes and also retain the same level of anticooperativity. Our findings help to put the mode of action of these modifications into context. Although H3K36me3 likely acts partially by directly affecting nucleosome structure on the single-molecule level, H3S10phos and H4K5/8/12/16ac must predominantly act through higher-order processes. Our analysis pipeline is readily applicable to other nucleosome variants and will facilitate future high-resolution studies of the conformational landscape of nucleoprotein complexes.
Collapse
Affiliation(s)
- Sebastian F. Konrad
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Munich, Germany.
| |
Collapse
|
38
|
Oh J, Yeom S, Park J, Lee JS. The regional sequestration of heterochromatin structural proteins is critical to form and maintain silent chromatin. Epigenetics Chromatin 2022; 15:5. [PMID: 35101096 PMCID: PMC8805269 DOI: 10.1186/s13072-022-00435-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe are good models for heterochromatin study. In S. pombe, H3K9 methylation and Swi6, an ortholog of mammalian HP1, lead to heterochromatin formation. However, S. cerevisiae does not have known epigenetic silencing markers and instead has Sir proteins to regulate silent chromatin formation. Although S. cerevisiae and S. pombe form and maintain heterochromatin via mechanisms that appear to be fundamentally different, they share important common features in the heterochromatin structural proteins. Heterochromatin loci are localized at the nuclear periphery by binding to perinuclear membrane proteins, thereby producing distinct heterochromatin foci, which sequester heterochromatin structural proteins. In this review, we discuss the nuclear peripheral anchoring of heterochromatin foci and its functional relevance to heterochromatin formation and maintenance.
Collapse
Affiliation(s)
- Junsoo Oh
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Soojin Yeom
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, 1 Kangwondeahak-gil, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
39
|
Tvardovskiy A, Nguyen N, Bartke T. Identifying Specific Protein Interactors of Nucleosomes Carrying Methylated Histones Using Quantitative Mass Spectrometry. Methods Mol Biol 2022; 2529:327-403. [PMID: 35733023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical modification of histone proteins by methylation plays a central role in chromatin regulation by recruiting epigenetic "readers" via specialized binding domains. Depending on the degree of methylation, the exact modified amino acid, and the associated reader proteins histone methylations are involved in the regulation of all DNA-based processes, such as transcription, DNA replication, and DNA repair. Here we present methods to identify histone methylation readers using a mass spectrometry-linked nucleosome affinity purification approach. We provide detailed protocols for the generation of semisynthetic methylated histones, their assembly into biotinylated nucleosomes, and the identification of methylation-specific nucleosome-interacting proteins from nuclear extracts via nucleosome pull-downs and label-free quantitative proteomics. Due to their versatility, these protocols allow the identification of readers of various histone methylations, and can also be adapted to different cell types and tissues, and other types of modifications.
Collapse
Affiliation(s)
- Andrey Tvardovskiy
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nhuong Nguyen
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Till Bartke
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
40
|
Effect of histone H4 tail on nucleosome stability and internucleosomal interactions. Sci Rep 2021; 11:24086. [PMID: 34916563 PMCID: PMC8677776 DOI: 10.1038/s41598-021-03561-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Chromatin structure is dictated by nucleosome assembly and internucleosomal interactions. The tight wrapping of nucleosomes inhibits gene expression, but modifications to histone tails modulate chromatin structure, allowing for proper genetic function. The histone H4 tail is thought to play a large role in regulating chromatin structure. Here we investigated the structure of nucleosomes assembled with a tail-truncated H4 histone using Atomic Force Microscopy. We assembled tail-truncated H4 nucleosomes on DNA templates allowing for the assembly of mononucleosomes or dinucleosomes. Mononucleosomes assembled on nonspecific DNA led to decreased DNA wrapping efficiency. This effect is less pronounced for nucleosomes assembled on positioning motifs. Dinucleosome studies resulted in the discovery of two effects- truncation of the H4 tail does not diminish the preferential positioning observed in full-length nucleosomes, and internucleosomal interaction eliminates the DNA unwrapping effect. These findings provide insight on the role of histone H4 in chromatin structure and stability.
Collapse
|
41
|
Lewis TS, Sokolova V, Jung H, Ng H, Tan D. Structural basis of chromatin regulation by histone variant H2A.Z. Nucleic Acids Res 2021; 49:11379-11391. [PMID: 34643712 PMCID: PMC8565303 DOI: 10.1093/nar/gkab907] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
The importance of histone variant H2A.Z in transcription regulation has been well established, yet its mechanism-of-action remains enigmatic. Conflicting evidence exists in support of both an activating and a repressive role of H2A.Z in transcription. Here we report cryo-electron microscopy (cryo-EM) structures of nucleosomes and chromatin fibers containing H2A.Z and those containing canonical H2A. The structures show that H2A.Z incorporation results in substantial structural changes in both nucleosome and chromatin fiber. While H2A.Z increases the mobility of DNA terminus in nucleosomes, it simultaneously enables nucleosome arrays to form a more regular and condensed chromatin fiber. We also demonstrated that H2A.Z’s ability to enhance nucleosomal DNA mobility is largely attributed to its characteristic shorter C-terminus. Our study provides the structural basis for H2A.Z-mediated chromatin regulation, showing that the increase flexibility of the DNA termini in H2A.Z nucleosomes is central to its dual-functions in chromatin regulation and in transcription.
Collapse
Affiliation(s)
- Tyler S Lewis
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA
| | - Vladyslava Sokolova
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA
| | - Harry Jung
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA
| | - Honkit Ng
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA.,Cryo Electron Microscopy Resource Center, Rockefeller University; New York, NY 10065, USA
| | - Dongyan Tan
- Department of Pharmacological Sciences, Stony Brook University; Stony Brook, NY 11794, USA
| |
Collapse
|
42
|
Swygert SG, Lin D, Portillo-Ledesma S, Lin PY, Hunt DR, Kao CF, Schlick T, Noble WS, Tsukiyama T. Local chromatin fiber folding represses transcription and loop extrusion in quiescent cells. eLife 2021; 10:e72062. [PMID: 34734806 PMCID: PMC8598167 DOI: 10.7554/elife.72062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
A longstanding hypothesis is that chromatin fiber folding mediated by interactions between nearby nucleosomes represses transcription. However, it has been difficult to determine the relationship between local chromatin fiber compaction and transcription in cells. Further, global changes in fiber diameters have not been observed, even between interphase and mitotic chromosomes. We show that an increase in the range of local inter-nucleosomal contacts in quiescent yeast drives the compaction of chromatin fibers genome-wide. Unlike actively dividing cells, inter-nucleosomal interactions in quiescent cells require a basic patch in the histone H4 tail. This quiescence-specific fiber folding globally represses transcription and inhibits chromatin loop extrusion by condensin. These results reveal that global changes in chromatin fiber compaction can occur during cell state transitions, and establish physiological roles for local chromatin fiber folding in regulating transcription and chromatin domain formation.
Collapse
Affiliation(s)
- Sarah G Swygert
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Dejun Lin
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | | | - Po-Yen Lin
- Institute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
| | - Dakota R Hunt
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia SinicaTaipeiTaiwan
| | - Tamar Schlick
- Department of Chemistry, New York UniversityNew YorkUnited States
- Courant Institute of Mathematical Sciences, New York UniversityNew YorkUnited States
- New York University-East China Normal University Center for Computational Chemistry at New York University ShanghaiShanghaiChina
| | - William S Noble
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Paul G. Allen School of Computer Science and Engineering, University of WashingtonSeattleUnited States
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
43
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
44
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
45
|
Shoaib M, Chen Q, Shi X, Nair N, Prasanna C, Yang R, Walter D, Frederiksen KS, Einarsson H, Svensson JP, Liu CF, Ekwall K, Lerdrup M, Nordenskiöld L, Sørensen CS. Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes. Nat Commun 2021; 12:4800. [PMID: 34417450 PMCID: PMC8379281 DOI: 10.1038/s41467-021-25051-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Histone lysine methylations have primarily been linked to selective recruitment of reader or effector proteins that subsequently modify chromatin regions and mediate genome functions. Here, we describe a divergent role for histone H4 lysine 20 mono-methylation (H4K20me1) and demonstrate that it directly facilitates chromatin openness and accessibility by disrupting chromatin folding. Thus, accumulation of H4K20me1 demarcates highly accessible chromatin at genes, and this is maintained throughout the cell cycle. In vitro, H4K20me1-containing nucleosomal arrays with nucleosome repeat lengths (NRL) of 187 and 197 are less compact than unmethylated (H4K20me0) or trimethylated (H4K20me3) arrays. Concordantly, and in contrast to trimethylated and unmethylated tails, solid-state NMR data shows that H4K20 mono-methylation changes the H4 conformational state and leads to more dynamic histone H4-tails. Notably, the increased chromatin accessibility mediated by H4K20me1 facilitates gene expression, particularly of housekeeping genes. Altogether, we show how the methylation state of a single histone H4 residue operates as a focal point in chromatin structure control. While H4K20me1 directly promotes chromatin openness at highly transcribed genes, it also serves as a stepping-stone for H4K20me3-dependent chromatin compaction. The effect of histone H4 lysine 20 methylation (H4K20me) on chromatin accessibility are not well established. Here the authors show how H4K20 methylation regulates chromatin structure and accessibility to ensure precise transcriptional outputs through the cell cycle using genome-wide approaches, in vitro biophysical assays, and NMR.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Qinming Chen
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiangyan Shi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nidhi Nair
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chinmayi Prasanna
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Renliang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Wilmar International Limited, Jurong Island, Singapore
| | - David Walter
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hjorleifur Einarsson
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Chuan Fa Liu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Mads Lerdrup
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Claus S Sørensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Sato S, Takizawa Y, Hoshikawa F, Dacher M, Tanaka H, Tachiwana H, Kujirai T, Iikura Y, Ho CH, Adachi N, Patwal I, Flaus A, Kurumizaka H. Cryo-EM structure of the nucleosome core particle containing Giardia lamblia histones. Nucleic Acids Res 2021; 49:8934-8946. [PMID: 34352093 PMCID: PMC8421212 DOI: 10.1093/nar/gkab644] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Giardia lamblia is a pathogenic unicellular eukaryotic parasite that causes giardiasis. Its genome encodes the canonical histones H2A, H2B, H3, and H4, which share low amino acid sequence identity with their human orthologues. We determined the structure of the G. lamblia nucleosome core particle (NCP) at 3.6 Å resolution by cryo-electron microscopy. G. lamblia histones form a characteristic NCP, in which the visible 125 base-pair region of the DNA is wrapped in a left-handed supercoil. The acidic patch on the G. lamblia octamer is deeper, due to an insertion extending the H2B α1 helix and L1 loop, and thus cannot bind the LANA acidic patch binding peptide. The DNA and histone regions near the DNA entry-exit sites could not be assigned, suggesting that these regions are asymmetrically flexible in the G. lamblia NCP. Characterization by thermal unfolding in solution revealed that both the H2A–H2B and DNA association with the G. lamblia H3–H4 were weaker than those for human H3–H4. These results demonstrate the uniformity of the histone octamer as the organizing platform for eukaryotic chromatin, but also illustrate the unrecognized capability for large scale sequence variations that enable the adaptability of histone octamer surfaces and confer internal stability.
Collapse
Affiliation(s)
- Shoko Sato
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Fumika Hoshikawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mariko Dacher
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroaki Tachiwana
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yukari Iikura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Cheng-Han Ho
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Indu Patwal
- Center for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland Galway, H91 TK33, Ireland
| | - Andrew Flaus
- Center for Chromosome Biology, Biochemistry, School of Natural Sciences, National University of Ireland Galway, H91 TK33, Ireland
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
47
|
Bjarnason S, Ruidiaz SF, McIvor J, Mercadante D, Heidarsson PO. Protein intrinsic disorder on a dynamic nucleosomal landscape. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:295-354. [PMID: 34656332 DOI: 10.1016/bs.pmbts.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex nucleoprotein landscape of the eukaryotic cell nucleus is rich in dynamic proteins that lack a stable three-dimensional structure. Many of these intrinsically disordered proteins operate directly on the first fundamental level of genome compaction: the nucleosome. Here we give an overview of how disordered interactions with and within nucleosomes shape the dynamics, architecture, and epigenetic regulation of the genetic material, controlling cellular transcription patterns. We highlight experimental and computational challenges in the study of protein disorder and illustrate how integrative approaches are increasingly unveiling the fine details of nuclear interaction networks. We finally dissect sequence properties encoded in disordered regions and assess common features of disordered nucleosome-binding proteins. As drivers of many critical biological processes, disordered proteins are integral to a comprehensive molecular view of the dynamic nuclear milieu.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Sarah F Ruidiaz
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland
| | - Jordan McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
48
|
Liu Y, Bisio H, Toner CM, Jeudy S, Philippe N, Zhou K, Bowerman S, White A, Edwards G, Abergel C, Luger K. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 2021; 184:4237-4250.e19. [PMID: 34297924 PMCID: PMC8357426 DOI: 10.1016/j.cell.2021.06.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022]
Abstract
The organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of “minimalist” histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of “organisms” that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses. Marseilleviridae encode proteins that resemble fused histones H4-H3 and H2B-H2A These histone doublets assemble into unstable nucleosome-like particles in vitro Histone doublets localize to the viral factory and are highly abundant in the virus They are essential for viral fitness and infectivity, a first for any virus
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Hugo Bisio
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B), 13288 Marseille Cedex 9, France
| | - Chelsea Marie Toner
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sandra Jeudy
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B), 13288 Marseille Cedex 9, France
| | - Nadege Philippe
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B), 13288 Marseille Cedex 9, France
| | - Keda Zhou
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Alison White
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Garrett Edwards
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Chantal Abergel
- Aix-Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479, IM2B), 13288 Marseille Cedex 9, France.
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
49
|
Zandian M, Salguero NG, Shannon MD, Purusottam RN, Theint T, Poirier MG, Jaroniec CP. Conformational Dynamics of Histone H3 Tails in Chromatin. J Phys Chem Lett 2021; 12:6174-6181. [PMID: 34184895 PMCID: PMC8788308 DOI: 10.1021/acs.jpclett.1c01187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chromatin is a supramolecular DNA-protein complex that compacts eukaryotic genomes and regulates their accessibility and functions. Dynamically disordered histone H3 N-terminal tails are among key chromatin regulatory components. Here, we used high-resolution-magic-angle-spinning NMR measurements of backbone amide 15N spin relaxation rates to investigate, with residue-specific detail, the dynamics and interactions of H3 tails in recombinant 13C,15N-enriched nucleosome arrays containing 15, 30, or 60 bp linker DNA between the nucleosome repeats. These measurements were compared to analogous data available for mononucleosomes devoid of linker DNA or containing two 20 bp DNA overhangs. The H3 tail dynamics in nucleosome arrays were found to be considerably attenuated compared with nucleosomes with or without linker DNA due to transient electrostatic interactions with the linker DNA segments and the structured chromatin environment. Remarkably, however, the H3 tail dynamics were not modulated by the specific linker DNA length within the 15-60 bp range investigated here.
Collapse
Affiliation(s)
- Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | - Matthew D. Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Rudra N. Purusottam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | | | | |
Collapse
|
50
|
Röder K. Is the H4 histone tail intrinsically disordered or intrinsically multifunctional? Phys Chem Chem Phys 2021; 23:5134-5142. [PMID: 33624669 DOI: 10.1039/d0cp05405d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural versatility of histone tails is one of the key elements in the organisation of chromatin, which allows for the compact storage of genomic information. However, this structural diversity also complicates experimental and computational studies. Here, the potential and free energy landscape for the isolated and bound H4 histone tail are explored. The landscapes exhibit a set of distinct structural ensembles separated by high energy barriers, with little difference between isolated and bound tails. This consistency is a desirable feature that facilitates the formation of transient interactions, which are required for the liquid-like chromatin organisation. The existence of multiple, distinct structures on a multifunnel energy landscape is likely to be associated with multifunctionality, i.e. a set of evolved, distinct functions. Contrasting it with previously reported results for other disordered peptides, this type of landscape may be associated with a conformational selection based binding mechanism. Given the similarity to other systems exhibiting similar multifunnel energy landscapes, the disorder in histone tails might be better described in context of multifunctionality.
Collapse
Affiliation(s)
- Konstantin Röder
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|