1
|
Chaminade F, Darlix JL, Fossé P. RNA Structural Requirements for Nucleocapsid Protein-Mediated Extended Dimer Formation. Viruses 2022; 14:606. [PMID: 35337013 PMCID: PMC8953772 DOI: 10.3390/v14030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Retroviruses package two copies of their genomic RNA (gRNA) as non-covalently linked dimers. Many studies suggest that the retroviral nucleocapsid protein (NC) plays an important role in gRNA dimerization. The upper part of the L3 RNA stem-loop in the 5' leader of the avian leukosis virus (ALV) is converted to the extended dimer by ALV NC. The L3 hairpin contains three stems and two internal loops. To investigate the roles of internal loops and stems in the NC-mediated extended dimer formation, we performed site-directed mutagenesis, gel electrophoresis, and analysis of thermostability of dimeric RNAs. We showed that the internal loops are necessary for efficient extended dimer formation. Destabilization of the lower stem of L3 is necessary for RNA dimerization, although it is not involved in the linkage structure of the extended dimer. We found that NCs from ALV, human immunodeficiency virus type 1 (HIV-1), and Moloney murine leukemia virus (M-MuLV) cannot promote the formation of the extended dimer when the apical stem contains ten consecutive base pairs. Five base pairs correspond to the maximum length for efficient L3 dimerization induced by the three NCs. L3 dimerization was less efficient with M-MuLV NC than with ALV NC and HIV-1 NC.
Collapse
Affiliation(s)
- Françoise Chaminade
- LBPA, UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| | - Jean-Luc Darlix
- Laboratoire de Bioimagerie et Pathologies, UMR7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67400 Illkirch, France;
| | - Philippe Fossé
- LBPA, UMR8113 CNRS, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
2
|
Karnib H, Nadeem MF, Humbert N, Sharma KK, Grytsyk N, Tisné C, Boutant E, Lequeu T, Réal E, Boudier C, de Rocquigny H, Mély Y. The nucleic acid chaperone activity of the HIV-1 Gag polyprotein is boosted by its cellular partner RPL7: a kinetic study. Nucleic Acids Res 2020; 48:9218-9234. [PMID: 32797159 PMCID: PMC7498347 DOI: 10.1093/nar/gkaa659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
The HIV-1 Gag protein playing a key role in HIV-1 viral assembly has recently been shown to interact through its nucleocapsid domain with the ribosomal protein L7 (RPL7) that acts as a cellular co-factor promoting Gag's nucleic acid (NA) chaperone activity. To further understand how the two proteins act together, we examined their mechanism individually and in concert to promote the annealing between dTAR, the DNA version of the viral transactivation element and its complementary cTAR sequence, taken as model HIV-1 sequences. Gag alone or complexed with RPL7 was found to act as a NA chaperone that destabilizes cTAR stem-loop and promotes its annealing with dTAR through the stem ends via a two-step pathway. In contrast, RPL7 alone acts as a NA annealer that through its NA aggregating properties promotes cTAR/dTAR annealing via two parallel pathways. Remarkably, in contrast to the isolated proteins, their complex promoted efficiently the annealing of cTAR with highly stable dTAR mutants. This was confirmed by the RPL7-promoted boost of the physiologically relevant Gag-chaperoned annealing of (+)PBS RNA to the highly stable tRNALys3 primer, favoring the notion that Gag recruits RPL7 to overcome major roadblocks in viral assembly.
Collapse
Affiliation(s)
- Hassan Karnib
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Muhammad F Nadeem
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Nicolas Humbert
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Kamal K Sharma
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Natalia Grytsyk
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Carine Tisné
- Expression génétique microbienne, UMR 8261, CNRS, Université de Paris, Institut de biologie physico-chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Emmanuel Boutant
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Thiebault Lequeu
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Eleonore Réal
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Christian Boudier
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Hugues de Rocquigny
- Inserm – U1259 Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), 10 boulevard Tonnellé, BP 3223, 37032 Tours Cedex 1, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| |
Collapse
|
3
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
4
|
Sholokh M, Sharma R, Grytsyk N, Zaghzi L, Postupalenko VY, Dziuba D, Barthes NPF, Michel BY, Boudier C, Zaporozhets OA, Tor Y, Burger A, Mély Y. Environmentally Sensitive Fluorescent Nucleoside Analogues for Surveying Dynamic Interconversions of Nucleic Acid Structures. Chemistry 2018; 24:13850-13861. [PMID: 29989220 DOI: 10.1002/chem.201802297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 11/12/2022]
Abstract
Nucleic acids are characterized by a variety of dynamically interconverting structures that play a major role in transcriptional and translational regulation as well as recombination and repair. To monitor these interconversions, Förster resonance energy transfer (FRET)-based techniques can be used, but require two fluorophores that are typically large and can alter the DNA/RNA structure and protein binding. Additionally, events that do not alter the donor/acceptor distance and/or angular relationship are frequently left undetected. A more benign approach relies on fluorescent nucleobases that can substitute their native counterparts with minimal perturbation, such as the recently developed 2-thienyl-3-hydroxychromone (3HCnt) and thienoguanosine (th G). To demonstrate the potency of 3HCnt and th G in deciphering interconversion mechanisms, we used the conversion of the (-)DNA copy of the HIV-1 primer binding site (-)PBS stem-loop into (+)/(-)PBS duplex, as a model system. When incorporated into the (-)PBS loop, the two probes were found to be highly sensitive to the individual steps both in the absence and the presence of a nucleic acid chaperone, providing the first complete mechanistic description of this critical process in HIV-1 replication. The combination of the two distinct probes appears to be instrumental for characterizing structural transitions of nucleic acids under various stimuli.
Collapse
Affiliation(s)
- Marianna Sholokh
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France.,Department of Chemistry, Kyiv National Taras Shevchenko University, 60 Volodymyrska street, 01033, Kyiv, Ukraine
| | - Rajhans Sharma
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Natalia Grytsyk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Lyes Zaghzi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Viktoriia Y Postupalenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Dmytro Dziuba
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Nicolas P F Barthes
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Benoît Y Michel
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| | - Olga A Zaporozhets
- Department of Chemistry, Kyiv National Taras Shevchenko University, 60 Volodymyrska street, 01033, Kyiv, Ukraine
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Alain Burger
- Institut de Chimie de Nice, UMR 7272 CNRS, Université Côte d'Azur, Parc Valrose, 06108, Nice, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401, Illkirch, France
| |
Collapse
|
5
|
Mori M, Kovalenko L, Malancona S, Saladini F, De Forni D, Pires M, Humbert N, Real E, Botzanowski T, Cianférani S, Giannini A, Dasso Lang MC, Cugia G, Poddesu B, Lori F, Zazzi M, Harper S, Summa V, Mely Y, Botta M. Structure-Based Identification of HIV-1 Nucleocapsid Protein Inhibitors Active against Wild-Type and Drug-Resistant HIV-1 Strains. ACS Chem Biol 2018; 13:253-266. [PMID: 29235845 DOI: 10.1021/acschembio.7b00907] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIV/AIDS is still one of the leading causes of death worldwide. Current drugs that target the canonical steps of the HIV-1 life cycle are efficient in blocking viral replication but are unable to eradicate HIV-1 from infected patients. Moreover, drug resistance (DR) is often associated with the clinical use of these molecules, thus raising the need for novel drug candidates as well as novel putative drug targets. In this respect, pharmacological inhibition of the highly conserved and multifunctional nucleocapsid protein (NC) of HIV-1 is considered a promising alternative to current drugs, particularly to overcome DR. Here, using a multidisciplinary approach combining in silico screening, fluorescence-based molecular assays, and cellular antiviral assays, we identified nordihydroguaiaretic acid (6), as a novel natural product inhibitor of NC. By using NMR, mass spectrometry, fluorescence spectroscopy, and molecular modeling, 6 was found to act through a dual mechanism of action never highlighted before for NC inhibitors (NCIs). First, the molecule recognizes and binds NC noncovalently, which results in the inhibition of the nucleic acid chaperone properties of NC. In a second step, chemical oxidation of 6 induces a potent chemical inactivation of the protein. Overall, 6 inhibits NC and the replication of wild-type and drug-resistant HIV-1 strains in the low micromolar range with moderate cytotoxicity that makes it a profitable tool compound as well as a good starting point for the development of pharmacologically relevant NCIs.
Collapse
Affiliation(s)
- Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Lesia Kovalenko
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | - Savina Malancona
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Francesco Saladini
- Department
of Medical Biotechnologies, University of Siena, Viale Mario Bracci,
16, 50100 Siena, Italy
| | | | - Manuel Pires
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Nicolas Humbert
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Eleonore Real
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Thomas Botzanowski
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire
de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - Alessia Giannini
- Department
of Medical Biotechnologies, University of Siena, Viale Mario Bracci,
16, 50100 Siena, Italy
| | - Maria Chiara Dasso Lang
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Cugia
- ViroStatics S.r.l, Viale Umberto
I 46, 07100 Sassari, Italy
| | | | - Franco Lori
- ViroStatics S.r.l, Viale Umberto
I 46, 07100 Sassari, Italy
| | - Maurizio Zazzi
- Department
of Medical Biotechnologies, University of Siena, Viale Mario Bracci,
16, 50100 Siena, Italy
| | - Steven Harper
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Vincenzo Summa
- IRBM Science Park S.p.A., Via Pontina Km 30.600, 00071 Pomezia (RM), Italy
| | - Yves Mely
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Maurizio Botta
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Sbarro
Institute for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, BioLife Science
Bldg., Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
6
|
de Oliveira Martins E, Weber G. An asymmetric mesoscopic model for single bulges in RNA. J Chem Phys 2017; 147:155102. [PMID: 29055303 DOI: 10.1063/1.5006948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Simple one-dimensional DNA or RNA mesoscopic models are of interest for their computational efficiency while retaining the key elements of the molecular interactions. However, they only deal with perfectly formed DNA or RNA double helices and consider the intra-strand interactions to be the same on both strands. This makes it difficult to describe highly asymmetric structures such as bulges and loops and, for instance, prevents the application of mesoscopic models to determine RNA secondary structures. Here we derived the conditions for the Peyrard-Bishop mesoscopic model to overcome these limitations and applied it to the calculation of single bulges, the smallest and simplest of these asymmetric structures. We found that these theoretical conditions can indeed be applied to any situation where stacking asymmetry needs to be considered. The full set of parameters for group I RNA bulges was determined from experimental melting temperatures using an optimization procedure, and we also calculated average opening profiles for several RNA sequences. We found that guanosine bulges show the strongest perturbation on their neighboring base pairs, considerably reducing the on-site interactions of their neighboring base pairs.
Collapse
Affiliation(s)
- Erik de Oliveira Martins
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Gerald Weber
- Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Belfetmi A, Zargarian L, Tisné C, Sleiman D, Morellet N, Lescop E, Maskri O, René B, Mély Y, Fossé P, Mauffret O. Insights into the mechanisms of RNA secondary structure destabilization by the HIV-1 nucleocapsid protein. RNA (NEW YORK, N.Y.) 2016; 22:506-517. [PMID: 26826129 PMCID: PMC4793207 DOI: 10.1261/rna.054445.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
The mature HIV-1 nucleocapsid protein NCp7 (NC) plays a key role in reverse transcription facilitating the two obligatory strand transfers. Several properties contribute to its efficient chaperon activity: preferential binding to single-stranded regions, nucleic acid aggregation, helix destabilization, and rapid dissociation from nucleic acids. However, little is known about the relationships between these different properties, which are complicated by the ability of the protein to recognize particular HIV-1 stem-loops, such as SL1, SL2, and SL3, with high affinity and without destabilizing them. These latter properties are important in the context of genome packaging, during which NC is part of the Gag precursor. We used NMR to investigate destabilization of the full-length TAR (trans activating response element) RNA by NC, which is involved in the first strand transfer step of reverse transcription. NC was used at a low protein:nucleotide (nt) ratio of 1:59 in these experiments. NMR data for the imino protons of TAR identified most of the base pairs destabilized by NC. These base pairs were adjacent to the loops in the upper part of the TAR hairpin rather than randomly distributed. Gel retardation assays showed that conversion from the initial TAR-cTAR complex to the fully annealed form occurred much more slowly at the 1:59 ratio than at the higher ratios classically used. Nevertheless, NC significantly accelerated the formation of the initial complex at a ratio of 1:59.
Collapse
Affiliation(s)
- Anissa Belfetmi
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Loussiné Zargarian
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, Université Paris Descartes, CNRS UMR 8015, 75006 Paris Cedex, France
| | - Dona Sleiman
- Laboratoire de Cristallographie et RMN biologiques, Université Paris Descartes, CNRS UMR 8015, 75006 Paris Cedex, France
| | - Nelly Morellet
- Centre de Recherches de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 91190 Gif sur Yvette Cedex, France
| | - Ewen Lescop
- Centre de Recherches de Gif, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, 91190 Gif sur Yvette Cedex, France
| | - Ouerdia Maskri
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Brigitte René
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, CNRS UMR 7213, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Philippe Fossé
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| | - Olivier Mauffret
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay, 94235 Cachan Cedex, France
| |
Collapse
|
8
|
Chen Y, Maskri O, Chaminade F, René B, Benkaroun J, Godet J, Mély Y, Mauffret O, Fossé P. Structural Insights into the HIV-1 Minus-strand Strong-stop DNA. J Biol Chem 2016; 291:3468-82. [PMID: 26668324 DOI: 10.1074/jbc.m115.708099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 11/06/2022] Open
Abstract
An essential step of human immunodeficiency virus type 1 (HIV-1) reverse transcription is the first strand transfer that requires base pairing of the R region at the 3'-end of the genomic RNA with the complementary r region at the 3'-end of minus-strand strong-stop DNA (ssDNA). HIV-1 nucleocapsid protein (NC) facilitates this annealing process. Determination of the ssDNA structure is needed to understand the molecular basis of NC-mediated genomic RNA-ssDNA annealing. For this purpose, we investigated ssDNA using structural probes (nucleases and potassium permanganate). This study is the first to determine the secondary structure of the full-length HIV-1 ssDNA in the absence or presence of NC. The probing data and phylogenetic analysis support the folding of ssDNA into three stem-loop structures and the presence of four high-affinity binding sites for NC. Our results support a model for the NC-mediated annealing process in which the preferential binding of NC to four sites triggers unfolding of the three-dimensional structure of ssDNA, thus facilitating interaction of the r sequence of ssDNA with the R sequence of the genomic RNA. In addition, using gel retardation assays and ssDNA mutants, we show that the NC-mediated annealing process does not rely on a single pathway (zipper intermediate or kissing complex).
Collapse
Affiliation(s)
- Yingying Chen
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France, the School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China, and
| | - Ouerdia Maskri
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Françoise Chaminade
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Brigitte René
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Jessica Benkaroun
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Julien Godet
- the Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Yves Mély
- the Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Olivier Mauffret
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France
| | - Philippe Fossé
- From the LBPA, ENS Cachan, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan cedex, France,
| |
Collapse
|
9
|
Sun Y, Borbat PP, Grigoryants VM, Myers WK, Freed JH, Scholes CP. Pulse dipolar ESR of doubly labeled mini TAR DNA and its annealing to mini TAR RNA. Biophys J 2015; 108:893-902. [PMID: 25692594 DOI: 10.1016/j.bpj.2014.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022] Open
Abstract
Pulse dipolar electron-spin resonance in the form of double electron electron resonance was applied to strategically placed, site-specifically attached pairs of nitroxide spin labels to monitor changes in the mini TAR DNA stem-loop structure brought on by the HIV-1 nucleocapsid protein NCp7. The biophysical structural evidence was at Ångstrom-level resolution under solution conditions not amenable to crystallography or NMR. In the absence of complementary TAR RNA, double labels located in both the upper and the lower stem of mini TAR DNA showed in the presence of NCp7 a broadened distance distribution between the points of attachment, and there was evidence for several conformers. Next, when equimolar amounts of mini TAR DNA and complementary mini TAR RNA were present, NCp7 enhanced the annealing of their stem-loop structures to form duplex DNA-RNA. When duplex TAR DNA-TAR RNA formed, double labels initially located 27.5 Å apart at the 3'- and 5'-termini of the 27-base mini TAR DNA relocated to opposite ends of a 27 bp RNA-DNA duplex with 76.5 Å between labels, a distance which was consistent with the distance between the two labels in a thermally annealed 27-bp TAR DNA-TAR RNA duplex. Different sets of double labels initially located 26-27 Å apart in the mini TAR DNA upper stem, appropriately altered their interlabel distance to ~35 Å when a 27 bp TAR DNA-TAR RNA duplex formed, where the formation was caused either through NCp7-induced annealing or by thermal annealing. In summary, clear structural evidence was obtained for the fraying and destabilization brought on by NCp7 in its biochemical function as an annealing agent and for the detailed structural change from stem-loop to duplex RNA-DNA when complementary RNA was present.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, New York
| | - Vladimir M Grigoryants
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - William K Myers
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, New York
| | - Charles P Scholes
- Department of Chemistry, University at Albany, State University of New York, Albany, New York.
| |
Collapse
|
10
|
Mori M, Kovalenko L, Lyonnais S, Antaki D, Torbett BE, Botta M, Mirambeau G, Mély Y. Nucleocapsid Protein: A Desirable Target for Future Therapies Against HIV-1. Curr Top Microbiol Immunol 2015; 389:53-92. [PMID: 25749978 PMCID: PMC7122173 DOI: 10.1007/82_2015_433] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The currently available anti-HIV-1 therapeutics is highly beneficial to infected patients. However, clinical failures occur as a result of the ability of HIV-1 to rapidly mutate. One approach to overcome drug resistance is to target HIV-1 proteins that are highly conserved among phylogenetically distant viral strains and currently not targeted by available therapies. In this respect, the nucleocapsid (NC) protein, a zinc finger protein, is particularly attractive, as it is highly conserved and plays a central role in virus replication, mainly by interacting with nucleic acids. The compelling rationale for considering NC as a viable drug target is illustrated by the fact that point mutants of this protein lead to noninfectious viruses and by the inability to select viruses resistant to a first generation of anti-NC drugs. In our review, we discuss the most relevant properties and functions of NC, as well as recent developments of small molecules targeting NC. Zinc ejectors show strong antiviral activity, but are endowed with a low therapeutic index due to their lack of specificity, which has resulted in toxicity. Currently, they are mainly being investigated for use as topical microbicides. Greater specificity may be achieved by using non-covalent NC inhibitors (NCIs) targeting the hydrophobic platform at the top of the zinc fingers or key nucleic acid partners of NC. Within the last few years, innovative methodologies have been developed to identify NCIs. Though the antiviral activity of the identified NCIs needs still to be improved, these compounds strongly support the druggability of NC and pave the way for future structure-based design and optimization of efficient NCIs.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento di Biotecnologie Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Qualley DF, Sokolove VL, Ross JL. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone. Biochem Biophys Res Commun 2015; 458:687-692. [PMID: 25686502 DOI: 10.1016/j.bbrc.2015.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 01/15/2023]
Abstract
Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable.
Collapse
Affiliation(s)
- Dominic F Qualley
- Department of Chemistry and Biochemistry, Berry College, Mt. Berry, GA, USA.
| | | | - James L Ross
- Department of Chemistry and Biochemistry, Berry College, Mt. Berry, GA, USA
| |
Collapse
|
12
|
Sholokh M, Zamotaiev OM, Das R, Postupalenko VY, Richert L, Dujardin D, Zaporozhets OA, Pivovarenko VG, Klymchenko AS, Mély Y. Fluorescent Amino Acid Undergoing Excited State Intramolecular Proton Transfer for Site-Specific Probing and Imaging of Peptide Interactions. J Phys Chem B 2014; 119:2585-95. [DOI: 10.1021/jp508748e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Marianna Sholokh
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | | | - Ranjan Das
- Department
of Chemistry, West Bengal State University, Barasat, Kolkata 700126, West Bengal, India
| | - Viktoriia Y. Postupalenko
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Ludovic Richert
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Denis Dujardin
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Olga A. Zaporozhets
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | - Vasyl G. Pivovarenko
- Department
of Chemistry, Kyiv National Taras Shevchenko University, 01033 Kyiv, Ukraine
| | - Andrey S. Klymchenko
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de
Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de
Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 Illkirch Cedex, France
| |
Collapse
|
13
|
Retrospective on the all-in-one retroviral nucleocapsid protein. Virus Res 2014; 193:2-15. [PMID: 24907482 PMCID: PMC7114435 DOI: 10.1016/j.virusres.2014.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 01/08/2023]
Abstract
This retrospective reviews 30 years of research on the retroviral nucleocapsid protein (NC) focusing on HIV-1 NC. Originally considered as a non-specific nucleic-acid binding protein, NC has seminal functions in virus replication. Indeed NC turns out to be a all-in-one viral protein that chaperones viral DNA synthesis and integration, and virus formation. As a chaperone NC provides assistance to genetic recombination thus allowing the virus to escape the immune response and antiretroviral therapies against HIV-1.
This review aims at briefly presenting a retrospect on the retroviral nucleocapsid protein (NC), from an unspecific nucleic acid binding protein (NABP) to an all-in-one viral protein with multiple key functions in the early and late phases of the retrovirus replication cycle, notably reverse transcription of the genomic RNA and viral DNA integration into the host genome, and selection of the genomic RNA together with the initial steps of virus morphogenesis. In this context we will discuss the notion that NC protein has a flexible conformation and is thus a member of the growing family of intrinsically disordered proteins (IDPs) where disorder may account, at least in part, for its function as a nucleic acid (NA) chaperone and possibly as a protein chaperone vis-à-vis the viral DNA polymerase during reverse transcription. Lastly, we will briefly review the development of new anti-retroviral/AIDS compounds targeting HIV-1 NC because it represents an ideal target due to its multiple roles in the early and late phases of virus replication and its high degree of conservation.
Collapse
|
14
|
Boudier C, Humbert N, Chaminade F, Chen Y, de Rocquigny H, Godet J, Mauffret O, Fossé P, Mély Y. Dynamic interactions of the HIV-1 Tat with nucleic acids are critical for Tat activity in reverse transcription. Nucleic Acids Res 2013; 42:1065-78. [PMID: 24153111 PMCID: PMC3902927 DOI: 10.1093/nar/gkt934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The HIV-1 transactivator of transcription (Tat) protein is thought to stimulate reverse transcription (RTion). The Tat protein and, more specifically, its (44–61) domain were recently shown to promote the annealing of complementary DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, that plays a key role in RTion. Moreover, the kinetic mechanism of the basic Tat(44–61) peptide in this annealing further revealed that this peptide constitutes a representative nucleic acid annealer. To further understand the structure–activity relationships of this highly conserved domain, we investigated by electrophoresis and fluorescence approaches the binding and annealing properties of various Tat(44–61) mutants. Our data showed that the Tyr47 and basic residues of the Tat(44–61) domain were instrumental for binding to cTAR through stacking and electrostatic interactions, respectively, and promoting its annealing with dTAR. Furthermore, the annealing efficiency of the mutants clearly correlates with their ability to rapidly associate and dissociate the complementary oligonucleotides and to promote RTion. Thus, transient and dynamic nucleic acid interactions likely constitute a key mechanistic component of annealers and the role of Tat in the late steps of RTion. Finally, our data suggest that Lys50 and Lys51 acetylation regulates Tat activity in RTion.
Collapse
Affiliation(s)
- Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch 67401, France and Laboratoire de Biologie et Pharmacologie Appliquée, UMR-CNRS 8113, Ecole Normale Supérieure de Cachan, Cachan 94235, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pascale L, Azoulay S, Di Giorgio A, Zenacker L, Gaysinski M, Clayette P, Patino N. Thermodynamic studies of a series of homologous HIV-1 TAR RNA ligands reveal that loose binders are stronger Tat competitors than tight ones. Nucleic Acids Res 2013; 41:5851-63. [PMID: 23605042 PMCID: PMC3675469 DOI: 10.1093/nar/gkt237] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
RNA is a major drug target, but the design of small molecules that modulate RNA function remains a great challenge. In this context, a series of structurally homologous 'polyamide amino acids' (PAA) was studied as HIV-1 trans-activating response (TAR) RNA ligands. An extensive thermodynamic study revealed the occurence of an enthalpy-entropy compensation phenomenon resulting in very close TAR affinities for all PAA. However, their binding modes and their ability to compete with the Tat fragment strongly differ according to their structure. Surprisingly, PAA that form loose complexes with TAR were shown to be stronger Tat competitors than those forming tight ones, and thermal denaturation studies demonstrated that loose complexes are more stable than tight ones. This could be correlated to the fact that loose and tight ligands induce distinct RNA conformational changes as revealed by circular dichroism experiments, although nuclear magnetic resonance (NMR) experiments showed that the TAR binding site is the same in all cases. Finally, some loose PAA also display promising inhibitory activities on HIV-infected cells. Altogether, these results lead to a better understanding of RNA interaction modes that could be very useful for devising new ligands of relevant RNA targets.
Collapse
Affiliation(s)
- Lise Pascale
- Institut de Chimie de Nice UMR7272, Université de Nice Sophia Antipolis, 06108 Nice Cedex, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Godet J, Kenfack C, Przybilla F, Richert L, Duportail G, Mély Y. Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer. Nucleic Acids Res 2013; 41:5036-48. [PMID: 23511968 PMCID: PMC3643577 DOI: 10.1093/nar/gkt164] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (−)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11–55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger–dependent binding of NC to the G10 and G50 residues. Sequence comparison further revealed that C•A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G10 and G50 the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
17
|
Strizhak AV, Postupalenko VY, Shvadchak VV, Morellet N, Guittet E, Pivovarenko VG, Klymchenko AS, Mély Y. Two-color fluorescent l-amino acid mimic of tryptophan for probing peptide-nucleic acid complexes. Bioconjug Chem 2012; 23:2434-43. [PMID: 23153224 DOI: 10.1021/bc300464u] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-natural amino acids are important tools for site-selective probing of peptide properties and interactions. Here, for the first time a fluorescent l-amino acid, exhibiting excited-state intramolecular proton transfer (ESIPT) and hydration-sensitive dual emission, was synthesized. It is an analogue of l-tryptophan bearing a slightly larger 2-(2-furyl)-3-hydroxychromone aromatic moiety instead of indole. This new amino acid was incorporated through solid-phase synthesis into NC(11-55), the zinc finger domain of the HIV-1 nucleocapsid protein, that exhibits potent nucleic acid chaperone properties. It was substituted for the Trp37 and Ala30 residues, located in the distal finger motif and the linker between the fingers of NC(11-55), respectively. Though the highly conserved Trp37 residue plays a key role in NC(11-55) structure and activity, its substitution for the new fluorescent analogue preserved the folding, the nucleic acid binding and chaperone activity of the peptide, indicating that the new amino acid can conservatively substitute Trp residues. In the presence of oligonucleotides, the Trp37-substituted peptide, but not the Ala30 variant, showed strong changes of the dual emission corresponding to local dehydration. The results are in line with NMR data, suggesting that the fluorescent amino acid interacts similarly to Trp37 with the nucleobases and is thus screened from water. Due to the exceptional sensitivity of its ESIPT fluorophore to hydration in highly polar environment, the new amino acid appears as a promising tool for substituting Trp residues and site-selectively investigating peptide-nucleic acid complexes.
Collapse
Affiliation(s)
- Aleksandr V Strizhak
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Vercruysse T, Basta B, Dehaen W, Humbert N, Balzarini J, Debaene F, Sanglier-Cianférani S, Pannecouque C, Mély Y, Daelemans D. A phenyl-thiadiazolylidene-amine derivative ejects zinc from retroviral nucleocapsid zinc fingers and inactivates HIV virions. Retrovirology 2012; 9:95. [PMID: 23146561 PMCID: PMC3542062 DOI: 10.1186/1742-4690-9-95] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/24/2012] [Indexed: 11/25/2022] Open
Abstract
Background Sexual acquisition of the human immunodeficiency virus (HIV) through mucosal transmission may be prevented by using topically applied agents that block HIV transmission from one individual to another. Therefore, virucidal agents that inactivate HIV virions may be used as a component in topical microbicides. Results Here, we have identified 2-methyl-3-phenyl-2H-[1,2,4]thiadiazol-5-ylideneamine (WDO-217) as a low-molecular-weight molecule that inactivates HIV particles. Both HIV-1 and HIV-2 virions pretreated with this compound were unable to infect permissive cells. Moreover, WDO-217 was able to inhibit infections of a wide spectrum of wild-type and drug-resistant HIV-1, including clinical isolates, HIV-2 and SIV strains. Whereas the capture of virus by DC-SIGN was unaffected by the compound, it efficiently prevented the transmission of DC-SIGN-captured virus to CD4+ T-lymphocytes. Interestingly, exposure of virions to WDO-217 reduced the amount of virion-associated genomic RNA as measured by real-time RT-qPCR. Further mechanism-of-action studies demonstrated that WDO-217 efficiently ejects zinc from the zinc fingers of the retroviral nucleocapsid protein NCp7 and inhibits the cTAR destabilization properties of this protein. Importantly, WDO-217 was able to eject zinc from both zinc fingers, even when NCp7 was bound to oligonucleotides, while no covalent interaction between NCp7 and WDO-217 could be observed. Conclusion This compound is a new lead structure that can be used for the development of a new series of NCp7 zinc ejectors as candidate topical microbicide agents.
Collapse
Affiliation(s)
- Thomas Vercruysse
- Rega Institute for Medical Research, Laboratory for Virology and Chemotherapy, KU Leuven, Minderbroedersstraat 10, Leuven, B-3000, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Godet J, Boudier C, Humbert N, Ivanyi-Nagy R, Darlix JL, Mély Y. Comparative nucleic acid chaperone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res 2012; 169:349-60. [PMID: 22743066 PMCID: PMC7114403 DOI: 10.1016/j.virusres.2012.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
RNA chaperones are proteins able to rearrange nucleic acid structures towards their most stable conformations. In retroviruses, the reverse transcription of the viral RNA requires multiple and complex nucleic acid rearrangements that need to be chaperoned. HIV-1 has evolved different viral-encoded proteins with chaperone activity, notably Tat and the well described nucleocapsid protein NCp7. We propose here an overview of the recent reports that examine and compare the nucleic acid chaperone properties of Tat and NCp7 during reverse transcription to illustrate the variety of mechanisms of action of the nucleic acid chaperone proteins.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
20
|
Batisse J, Guerrero S, Bernacchi S, Sleiman D, Gabus C, Darlix JL, Marquet R, Tisné C, Paillart JC. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication. Virus Res 2012; 169:361-76. [PMID: 22728817 DOI: 10.1016/j.virusres.2012.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 11/28/2022]
Abstract
The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented.
Collapse
Affiliation(s)
- Julien Batisse
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bazzi A, Zargarian L, Chaminade F, De Rocquigny H, René B, Mély Y, Fossé P, Mauffret O. Intrinsic nucleic acid dynamics modulates HIV-1 nucleocapsid protein binding to its targets. PLoS One 2012; 7:e38905. [PMID: 22745685 PMCID: PMC3380039 DOI: 10.1371/journal.pone.0038905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using (13)C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome.
Collapse
Affiliation(s)
- Ali Bazzi
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Loussiné Zargarian
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Françoise Chaminade
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Hugues De Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, Centre National de la Recherche Scientifique Unité mixte de Recherche 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Brigitte René
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, Centre National de la Recherche Scientifique Unité mixte de Recherche 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Philippe Fossé
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| | - Olivier Mauffret
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure de Cachan, Centre National de la Recherche Scientifique, Cachan, France
| |
Collapse
|
22
|
Dziuba D, Postupalenko VY, Spadafora M, Klymchenko AS, Guérineau V, Mély Y, Benhida R, Burger A. A universal nucleoside with strong two-band switchable fluorescence and sensitivity to the environment for investigating DNA interactions. J Am Chem Soc 2012; 134:10209-13. [PMID: 22591455 DOI: 10.1021/ja3030388] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the aim of developing a new tool to investigate DNA interactions, a nucleoside analogue incorporating a 3-hydroxychromone (3HC) fluorophore as a nucleobase mimic was synthesized and incorporated into oligonucleotide chains. In comparison with existing fluorescent nucleoside analogues, this dye features exceptional environmental sensitivity switching between two well-resolved fluorescence bands. In labeled DNA, this nucleoside analogue does not alter the duplex conformation and exhibits a high fluorescence quantum yield. This probe is up to 50-fold brighter than 2-aminopurine, the fluorescent nucleoside standard. Moreover, the dual emission is highly sensitive to the polarity of the environment; thus, a strong shielding effect of the flanking bases from water was observed. With this nucleoside, the effect of a viral chaperone protein on DNA base stacking was site-selectively monitored.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institut de Chimie de Nice, UMR 7272, Université de Nice Sophia Antipolis, CNRS, Parc Valrose, 06108 Nice cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Characterization of the inhibition mechanism of HIV-1 nucleocapsid protein chaperone activities by methylated oligoribonucleotides. Antimicrob Agents Chemother 2011; 56:1010-8. [PMID: 22083480 DOI: 10.1128/aac.05614-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since currently available therapies against HIV/AIDS still show important drawbacks, the development of novel anti-HIV treatments is a key issue. We recently characterized methylated oligoribonucleotides (mONs) that extensively inhibit HIV-1 replication in primary T cells at nanomolar concentrations. The mONs were shown to target both HIV-1 reverse transcriptase (RT) and the nucleocapsid protein (NC), which is an essential partner of RT during viral DNA synthesis. To further understand the mechanism of such mONs, we studied by isothermal titration calorimetry and fluorescence-based techniques their NC binding properties and ability to inhibit the nucleic acid chaperone properties of NC. Notably, we investigated the ability of mONs to inhibit the NC-induced destabilization of the HIV-1 cTAR (complementary DNA sequence to TAR [transactivation response element]) stem-loop and the NC-promoted cTAR annealing to its complementary sequence, required at the early stage of HIV-1 viral DNA synthesis. Moreover, we compared the activity of the mONs to that of a number of modified and nonmodified oligonucleotides. Results show that the mONs inhibit NC by a competitive mechanism whereby the mONs tightly bind the NC peptide, mainly through nonelectrostatic interactions with the hydrophobic platform at the top of the NC zinc fingers. Taken together, these results favor the notion that the mONs impair the process of the RT-directed viral DNA synthesis by sequestering NC molecules, thus preventing the chaperoning of viral DNA synthesis by NC. These findings contribute to the understanding of the molecular basis for NC inhibition by mONs, which could be used for the rational design of antiretroviral compounds targeting HIV-1 NC protein.
Collapse
|
24
|
Flexible nature and specific functions of the HIV-1 nucleocapsid protein. J Mol Biol 2011; 410:565-81. [PMID: 21762801 DOI: 10.1016/j.jmb.2011.03.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/04/2023]
Abstract
One salient feature of reverse transcription in retroviruses, notably in the human immunodeficiency virus type 1, is that it requires the homologous nucleocapsid (NC) protein acting as a chaperoning partner of the genomic RNA template and the reverse transcriptase, from the initiation to the completion of viral DNA synthesis. This short review on the NC protein of human immunodeficiency virus type 1 aims at briefly presenting the flexible nature of NC protein, how it interacts with nucleic acids via its invariant zinc fingers and flanking basic residues, and the possible mechanisms that account for its multiple functions in the early steps of virus replication, notably in the obligatory strand transfer reactions during viral DNA synthesis by the reverse transcriptase enzyme.
Collapse
|
25
|
Guichard C, Ivanyi-Nagy R, Sharma KK, Gabus C, Marc D, Mély Y, Darlix JL. Analysis of nucleic acid chaperoning by the prion protein and its inhibition by oligonucleotides. Nucleic Acids Res 2011; 39:8544-58. [PMID: 21737432 PMCID: PMC3201874 DOI: 10.1093/nar/gkr554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prion diseases are unique neurodegenerative illnesses associated with the conversion of the cellular prion protein (PrP(C)) into the aggregated misfolded scrapie isoform, named PrP(Sc). Recent studies on the physiological role of PrP(C) revealed that this protein has probably multiple functions, notably in cell-cell adhesion and signal transduction, and in assisting nucleic acid folding. In fact, in vitro findings indicated that the human PrP (huPrP) possesses nucleic acid binding and annealing activities, similarly to nucleic acid chaperone proteins that play essential roles in cellular DNA and RNA metabolism. Here, we show that a peptide, representing the N-terminal domain of huPrP, facilitates nucleic acid annealing by two parallel pathways nucleated through the stem termini. We also show that PrP of human or ovine origin facilitates DNA strand exchange, ribozyme-directed cleavage of an RNA template and RNA trans-splicing in a manner similar to the nucleocapsid protein of HIV-1. In an attempt to characterize inhibitors of PrP-chaperoning in vitro we discovered that the thioaptamer 5'-GACACAAGCCGA-3' was extensively inhibiting the PrP chaperoning activities. At the same time a recently characterized methylated oligoribonucleotide inhibiting the chaperoning activity of the HIV-1 nucleocapsid protein was poorly impairing the PrP chaperoning activities.
Collapse
Affiliation(s)
- Cécile Guichard
- Unité de Virologie Humaine INSERM, ENS, IFR 128, 46 allée d'Italie, 69364 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Kanevsky I, Chaminade F, Chen Y, Godet J, René B, Darlix JL, Mély Y, Mauffret O, Fossé P. Structural determinants of TAR RNA-DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. Nucleic Acids Res 2011; 39:8148-62. [PMID: 21724607 PMCID: PMC3185427 DOI: 10.1093/nar/gkr526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Annealing of the TAR RNA hairpin to the cTAR DNA hairpin is required for the minus-strand transfer step of HIV-1 reverse transcription. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. To gain insight into the mechanism of NC-mediated TAR RNA–DNA annealing, we used structural probes (nucleases and potassium permanganate), gel retardation assays, fluorescence anisotropy and cTAR mutants under conditions allowing strand transfer. In the absence of NC, cTAR DNA-TAR RNA annealing depends on nucleation through the apical loops. We show that the annealing intermediate of the kissing pathway is a loop–loop kissing complex involving six base-pairs and that the apical stems are not destabilized by this loop–loop interaction. Our data support a dynamic structure of the cTAR hairpin in the absence of NC, involving equilibrium between both the closed conformation and the partially open ‘Y’ conformation. This study is the first to show that the apical and internal loops of cTAR are weak and strong binding sites for NC, respectively. NC slightly destabilizes the lower stem that is adjacent to the internal loop and shifts the equilibrium toward the ‘Y’ conformation exhibiting at least 12 unpaired nucleotides in its lower part.
Collapse
Affiliation(s)
- Igor Kanevsky
- LBPA, ENS de Cachan, CNRS, 61 avenue du Président Wilson, 94235 Cachan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Purzycka KJ, Pachulska-Wieczorek K, Adamiak RW. The in vitro loose dimer structure and rearrangements of the HIV-2 leader RNA. Nucleic Acids Res 2011; 39:7234-48. [PMID: 21622659 PMCID: PMC3167612 DOI: 10.1093/nar/gkr385] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
RNA dimerization is an essential step in the retroviral life cycle. Dimerization and encapsidation signals, closely linked in HIV-2, are located in the leader RNA region. The SL1 motif and nucleocapsid protein are considered important for both processes. In this study, we show the structure of the HIV-2 leader RNA (+1–560) captured as a loose dimer. Potential structural rearrangements within the leader RNA were studied. In the loose dimer form, the HIV-2 leader RNA strand exists in vitro as a single global fold. Two kissing loop interfaces within the loose dimer were identified: SL1/SL1 and TAR/TAR. Evidence for these findings is provided by RNA probing using SHAPE, chemical reagents, enzymes, non-denaturing PAGE mobility assays, antisense oligonucleotides hybridization and analysis of an RNA mutant. Both TAR and SL1 as isolated domains are bound by recombinant NCp8 protein with high affinity, contrary to the hairpins downstream of SL1. Foot-printing of the SL1/NCp8 complex indicates that the major binding site maps to the SL1 upper stem. Taken together, these data suggest a model in which TAR hairpin III, the segment of SL1 proximal to the loop and the PAL palindromic sequence play specific roles in the initiation of dimerization.
Collapse
Affiliation(s)
- Katarzyna J Purzycka
- Laboratory of Structural Chemistry of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | | | | |
Collapse
|
28
|
Godet J, Ramalanjaona N, Sharma KK, Richert L, de Rocquigny H, Darlix JL, Duportail G, Mély Y. Specific implications of the HIV-1 nucleocapsid zinc fingers in the annealing of the primer binding site complementary sequences during the obligatory plus strand transfer. Nucleic Acids Res 2011; 39:6633-45. [PMID: 21543454 PMCID: PMC3159456 DOI: 10.1093/nar/gkr274] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Synthesis of the HIV-1 viral DNA by reverse transcriptase involves two obligatory strand transfer reactions. The second strand transfer corresponds to the annealing of the (−) and (+) DNA copies of the primer binding site (PBS) sequence which is chaperoned by the nucleocapsid protein (NCp7). NCp7 modifies the (+)/(−)PBS annealing mechanism by activating a loop–loop kissing pathway that is negligible without NCp7. To characterize in depth the dynamics of the loop in the NCp7/PBS nucleoprotein complexes, we investigated the time-resolved fluorescence parameters of a (−)PBS derivative containing the fluorescent nucleoside analogue 2-aminopurine at positions 6, 8 or 10. The NCp7-directed switch of (+)/(−)PBS annealing towards the loop pathway was associated to a drastic restriction of the local DNA dynamics, indicating that NCp7 can ‘freeze’ PBS conformations competent for annealing via the loops. Moreover, the modifications of the PBS loop structure and dynamics that govern the annealing reaction were found strictly dependent on the integrity of the zinc finger hydrophobic platform. Our data suggest that the two NCp7 zinc fingers are required to ensure the specificity and fidelity of the second strand transfer, further underlining the pivotal role played by NCp7 to control the faithful synthesis of viral HIV-1 DNA.
Collapse
Affiliation(s)
- Julien Godet
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bazzi A, Zargarian L, Chaminade F, Boudier C, De Rocquigny H, René B, Mély Y, Fossé P, Mauffret O. Structural insights into the cTAR DNA recognition by the HIV-1 nucleocapsid protein: role of sugar deoxyriboses in the binding polarity of NC. Nucleic Acids Res 2011; 39:3903-16. [PMID: 21227929 PMCID: PMC3089453 DOI: 10.1093/nar/gkq1290] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An essential step of the reverse transcription of the HIV-1 genome is the first strand transfer that requires the annealing of the TAR RNA hairpin to the cTAR DNA hairpin. HIV-1 nucleocapsid protein (NC) plays a crucial role by facilitating annealing of the complementary hairpins. Using nuclear magnetic resonance and gel retardation assays, we investigated the interaction between NC and the top half of the cTAR DNA (mini-cTAR). We show that NC(11-55) binds the TGG sequence in the lower stem that is destabilized by the adjacent internal loop. The 5′ thymine interacts with residues of the N-terminal zinc knuckle and the 3′ guanine is inserted in the hydrophobic plateau of the C-terminal zinc knuckle. The TGG sequence is preferred relative to the apical and internal loops containing unpaired guanines. Investigation of the DNA–protein contacts shows the major role of hydrophobic interactions involving nucleobases and deoxyribose sugars. A similar network of hydrophobic contacts is observed in the published NC:DNA complexes, whereas NC contacts ribose differently in NC:RNA complexes. We propose that the binding polarity of NC is related to these contacts that could be responsible for the preferential binding to single-stranded nucleic acids.
Collapse
Affiliation(s)
- Ali Bazzi
- LBPA, ENS de Cachan, CNRS, Cachan, Faculté de Pharmacie, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 2010; 7:754-74. [PMID: 21160280 DOI: 10.4161/rna.7.6.14115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The HIV-1 nucleocapsid protein (NC) is a nucleic acid chaperone, which remodels nucleic acid structures so that the most thermodynamically stable conformations are formed. This activity is essential for virus replication and has a critical role in mediating highly specific and efficient reverse transcription. NC's function in this process depends upon three properties: (1) ability to aggregate nucleic acids; (2) moderate duplex destabilization activity; and (3) rapid on-off binding kinetics. Here, we present a detailed molecular analysis of the individual events that occur during viral DNA synthesis and show how NC's properties are important for almost every step in the pathway. Finally, we also review biological aspects of reverse transcription during infection and the interplay between NC, reverse transcriptase, and human APOBEC3G, an HIV-1 restriction factor that inhibits reverse transcription and virus replication in the absence of the HIV-1 Vif protein.
Collapse
Affiliation(s)
- Judith G Levin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
31
|
Mirambeau G, Lyonnais S, Gorelick RJ. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol 2010; 7:724-34. [PMID: 21045549 PMCID: PMC3073331 DOI: 10.4161/rna.7.6.13777] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture.
Collapse
|
32
|
Muriaux D, Darlix JL. Properties and functions of the nucleocapsid protein in virus assembly. RNA Biol 2010; 7:744-53. [PMID: 21157181 DOI: 10.4161/rna.7.6.14065] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV-1 nucleocapsid protein (NC) is a small basic protein generated by the cleavage of the Gag structural polyprotein precusor by the viral protease during virus assembly in the infected cell. HIV-1 NC possesses two copies of a highly conserved CCHC zinc finger (ZnF), flanked by basic residues. HIV-1 NC and more generally retroviral NC proteins are nucleic acid binding proteins possessing potent nucleic acid condensing and chaperoning activities. As such NC protein drives critical structural rearrangements of the genomic RNA, notably RNA dimerization in the course of virus assembly and viral nucleic acid annealing required for genomic RNA replication by the viral reverse transcriptase (RT). Here we review the relationships between the 3D structure of HIV-1 NC, notably the central globular domain encompassing the two zinc fingers and the basic linker and NC functions in the early and late phases of virus replication. One of the salient feature of the NC central globular domain is an hydrophobic plateau which appears to orchestrate the NC functions, such as chaperoning the conversion of the genomic RNA into viral DNA by RT during the early phase, and driving the selection and dimerization of the genomic RNA at the initial stage of viral particle assembly. This ensures a bona fide trafficking of early GagNC-genomic RNA complexes to the plasma membrane of the infected cell and ultimately virion formation and budding.
Collapse
|
33
|
Boudier C, Storchak R, Sharma KK, Didier P, Follenius-Wund A, Muller S, Darlix JL, Mély Y. The mechanism of HIV-1 Tat-directed nucleic acid annealing supports its role in reverse transcription. J Mol Biol 2010; 400:487-501. [PMID: 20493881 DOI: 10.1016/j.jmb.2010.05.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/10/2010] [Indexed: 12/17/2022]
Abstract
The main function of the HIV-1 trans-activator of transcription (Tat protein) is to promote the transcription of the proviral DNA by the host RNA polymerase which leads to the synthesis of large quantities of the full length viral RNA. Tat is also thought to be involved in the reverse transcription (RTion) reaction by a still unknown mechanism. The recently reported nucleic acid annealing activity of Tat might explain, at least in part, its role in RTion. To further investigate this possibility, we carried out a fluorescence study on the mechanism by which the full length Tat protein (Tat(1-86)) and the basic peptide (44-61) direct the annealing of complementary viral DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, essential for the early steps of RTion. Though both Tat(1-86) and the Tat(44-61) peptide were unable to melt the lower half of the cTAR stem, they strongly promoted cTAR/dTAR annealing through non-specific attraction between the peptide-bound oligonucleotides. Using cTAR and dTAR mutants, this Tat promoted-annealing was found to be nucleated through the thermally frayed 3'/5' termini, resulting in an intermediate with 12 intermolecular base pairs, which then converts into the final extended duplex. Moreover, we found that Tat(1-86) was as efficient as the nucleocapsid protein NCp7, a major nucleic acid chaperone of HIV-1, in promoting cTAR/dTAR annealing, and could act cooperatively with NCp7 during the annealing reaction. Taken together, our data are consistent with a role of Tat in the stimulation of the obligatory strand transfers during viral DNA synthesis by reverse transcriptase.
Collapse
Affiliation(s)
- C Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Goldschmidt V, Miller Jenkins LM, de Rocquigny H, Darlix JL, Mély Y. The nucleocapsid protein of HIV-1 as a promising therapeutic target for antiviral drugs. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The nucleocapsid protein (NCp7) is a major HIV-1 structural protein that plays key roles in viral replication, mainly through its conserved zinc fingers that direct specific interactions with the viral nucleic acids. Owing to its high degree of conservation and critical functions, NCp7 represents a target of choice for drugs that can potentially complement HAART, thus possibly impairing the circulation of drug-resistant HIV-1 strains. Zinc ejectors showing potent antiretroviral activity were developed, but early generations suffered from limited selectively and significant toxicity. Compounds with improved selectivity have been developed and are being explored as topical microbicide candidates. Several classes of molecules inhibiting the interaction of NCp7 with the viral nucleic acids have also been developed. Although small molecules would be more suited for drug development, most molecules selected by screening showed limited antiretroviral activity. Peptides and RNA aptamers appear to be more promising, but the mechanism of their antiretroviral activity remains elusive. Substantial and more concerted efforts are needed to further develop anti-HIV drugs targeting NCp7 and bring them to the clinic.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Jean-Luc Darlix
- LaboRetro, Unité de Virologie Humaine INSERM 758, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| |
Collapse
|
35
|
Sharma KK, Didier P, Darlix JL, de Rocquigny H, Bensikaddour H, Lavergne JP, Pénin F, Lessinger JM, Mély Y. Kinetic analysis of the nucleic acid chaperone activity of the hepatitis C virus core protein. Nucleic Acids Res 2010; 38:3632-42. [PMID: 20167640 PMCID: PMC2887961 DOI: 10.1093/nar/gkq094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The multifunctional HCV core protein consists of a hydrophilic RNA interacting D1 domain and a hydrophobic D2 domain interacting with membranes and lipid droplets. The core D1 domain was found to possess nucleic acid annealing and strand transfer properties. To further understand these chaperone properties, we investigated how the D1 domain and two peptides encompassing the D1 basic clusters chaperoned the annealing of complementary canonical nucleic acids that correspond to the DNA sequences of the HIV-1 transactivation response element TAR and its complementary cTAR. The core peptides were found to augment cTAR-dTAR annealing kinetics by at least three orders of magnitude. The annealing rate was not affected by modifications of the dTAR loop but was strongly reduced by stabilization of the cTAR stem ends, suggesting that the core-directed annealing reaction is initiated through the terminal bases of cTAR and dTAR. Two kinetic pathways were identified with a fast pre-equilibrium intermediate that then slowly converts into the final extended duplex. The fast and slow pathways differed by the number of base pairs, which should be melted to nucleate the intermediates. The three peptides operate similarly, confirming that the core chaperone properties are mostly supported by its basic clusters.
Collapse
Affiliation(s)
- Kamal kant Sharma
- Laboratorie de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, 74, Route du Rhin, 67401, Illkirch, Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Inhibition of HIV-1 replication by a bis-thiadiazolbenzene-1,2-diamine that chelates zinc ions from retroviral nucleocapsid zinc fingers. Antimicrob Agents Chemother 2010; 54:1461-8. [PMID: 20124006 DOI: 10.1128/aac.01671-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid p7 (NCp7) protein holds two highly conserved "CCHC" zinc finger domains that are required for several phases of viral replication. Basic residues flank the zinc fingers, and both determinants are required for high-affinity binding to RNA. Several compounds were previously found to target NCp7 by reacting with the sulfhydryl group of cysteine residues from the zinc fingers. Here, we have identified an N,N'-bis(1,2,3-thiadiazol-5-yl)benzene-1,2-diamine (NV038) that efficiently blocks the replication of a wide spectrum of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) strains. Time-of-addition experiments indicate that NV038 interferes with a step of the viral replication cycle following the viral entry but preceding or coinciding with the early reverse transcription reaction, pointing toward an interaction with the nucleocapsid protein p7. In fact, in vitro, NV038 efficiently depletes zinc from NCp7, which is paralleled by the inhibition of the NCp7-induced destabilization of cTAR (complementary DNA sequence of TAR). A chemical model suggests that the two carbonyl oxygens of the esters in this compound are involved in the chelation of the Zn(2+) ion. This compound thus acts via a different mechanism than the previously reported zinc ejectors, as its structural features do not allow an acyl transfer to Cys or a thiol-disulfide interchange. This new lead and the mechanistic study presented provide insight into the design of a future generation of anti-NCp7 compounds.
Collapse
|
37
|
Zargarian L, Kanevsky I, Bazzi A, Boynard J, Chaminade F, Fossé P, Mauffret O. Structural and dynamic characterization of the upper part of the HIV-1 cTAR DNA hairpin. Nucleic Acids Res 2009; 37:4043-54. [PMID: 19417069 PMCID: PMC2709575 DOI: 10.1093/nar/gkp297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
First strand transfer is essential for HIV-1 reverse transcription. During this step, the TAR RNA hairpin anneals to the cTAR DNA hairpin; this annealing reaction is promoted by the nucleocapsid protein and involves an initial loop–loop interaction between the apical loops of TAR and cTAR. Using NMR and probing methods, we investigated the structural and dynamic properties of the top half of the cTAR DNA (mini-cTAR). We show that the upper stem located between the apical and the internal loops is stable, but that the lower stem of mini-cTAR is unstable. The residues of the internal loop undergo slow motions at the NMR time-scale that are consistent with conformational exchange phenomena. In contrast, residues of the apical loop undergo fast motions. The lower stem is destabilized by the slow interconversion processes in the internal loop, and thus the internal loop is responsible for asymmetric destabilization of mini-cTAR. These findings are consistent with the functions of cTAR in first strand transfer: its apical loop is suitably exposed to interact with the apical loop of TAR RNA and its lower stem is significantly destabilized to facilitate the subsequent action of the nucleocapsid protein which promotes the annealing reaction.
Collapse
Affiliation(s)
- Loussiné Zargarian
- Laboratoire de Biotechnologies et Pharmacologie génétique Appliquée (LBPA), UMR 8113 CNRS, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Identification by high throughput screening of small compounds inhibiting the nucleic acid destabilization activity of the HIV-1 nucleocapsid protein. Biochimie 2009; 91:916-23. [PMID: 19401213 DOI: 10.1016/j.biochi.2009.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/15/2009] [Indexed: 11/22/2022]
Abstract
Due to its highly conserved zinc fingers and its nucleic acid chaperone properties which are critical for HIV-1 replication, the nucleocapsid protein (NC) constitutes a major target in AIDS therapy. Different families of molecules targeting NC zinc fingers and/or inhibiting the binding of NC with its target nucleic acids have been developed. However, their limited specificity and their cellular toxicity prompted us to develop a screening assay to target molecules able to inhibit NC chaperone properties, and more specifically the initial NC-promoted destabilization of the nucleic acid secondary structure. Since this destabilization is critically dependent on the properly folded fingers, the developed assay is thought to be highly specific. The assay was based on the use of cTAR DNA, a stem-loop sequence complementary to the transactivation response element, doubly labelled at its 5' and 3' ends by a rhodamine 6G fluorophore and a fluorescence quencher, respectively. Addition of NC(12-55), a peptide corresponding to the zinc finger domain of NC, to this doubly-labelled cTAR, led to a partial melting of the cTAR stem, which increases the distance between the two labels and thus, restores the rhodamine 6G fluorescence. Thus, positive hits were detected through the decrease of rhodamine 6G fluorescence. An "in-house" chemical library of 4800 molecules was screened and five compounds with IC(50) values in the micromolar range have been selected. The hits were shown by mass spectrometry and fluorescence anisotropy titration to prevent binding of NC(12-55) to cTAR through direct interaction with the NC folded fingers, but without promoting zinc ejection. These non-zinc ejecting NC binders are a new series of anti-NC molecules that could be used to rationally design molecules with potential anti-viral activities.
Collapse
|
39
|
Post K, Kankia B, Gopalakrishnan S, Yang V, Cramer E, Saladores P, Gorelick RJ, Guo J, Musier-Forsyth K, Levin JG. Fidelity of plus-strand priming requires the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res 2009; 37:1755-66. [PMID: 19158189 PMCID: PMC2665208 DOI: 10.1093/nar/gkn1045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During minus-strand DNA synthesis, RNase H degrades viral RNA sequences, generating potential plus-strand DNA primers. However, selection of the 3' polypurine tract (PPT) as the exclusive primer is required for formation of viral DNA with the correct 5'-end and for subsequent integration. Here we show a new function for the nucleic acid chaperone activity of HIV-1 nucleocapsid protein (NC) in reverse transcription: blocking mispriming by non-PPT RNAs. Three representative 20-nt RNAs from the PPT region were tested for primer extension. Each primer had activity in the absence of NC, but less than the PPT. NC reduced priming by these RNAs to essentially base-line level, whereas PPT priming was unaffected. RNase H cleavage and zinc coordination by NC were required for maximal inhibition of mispriming. Biophysical properties, including thermal stability, helical structure and reverse transcriptase (RT) binding affinity, showed significant differences between PPT and non-PPT duplexes and the trends were generally correlated with the biochemical data. Binding studies in reactions with both NC and RT ruled out a competition binding model to explain NC's observed effects on mispriming efficiency. Taken together, these results demonstrate that NC chaperone activity has a major role in ensuring the fidelity of plus-strand priming.
Collapse
Affiliation(s)
- Klara Post
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shvadchak VV, Klymchenko AS, de Rocquigny H, Mély Y. Sensing peptide-oligonucleotide interactions by a two-color fluorescence label: application to the HIV-1 nucleocapsid protein. Nucleic Acids Res 2009; 37:e25. [PMID: 19151084 PMCID: PMC2647317 DOI: 10.1093/nar/gkn1083] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We present a new methodology for site-specific sensing of peptide–oligonucleotide (ODN) interactions using a solvatochromic fluorescent label based on 3-hydroxychromone (3HC). This label was covalently attached to the N-terminus of a peptide corresponding to the zinc finger domain of the HIV-1 nucleocapsid protein (NC). On interaction with target ODNs, the labeled peptide shows strong changes in the ratio of its two emission bands, indicating an enhanced screening of the 3HC fluorophore from the bulk water by the ODN bases. Remarkably, this two-color response depends on the ODN sequence and correlates with the 3D structure of the corresponding complexes, suggesting that the 3HC label monitors the peptide–ODN interactions site-specifically. By measuring the two-color ratio, we were also able to determine the peptide–ODN-binding parameters and distinguish multiple binding sites in ODNs, which is rather difficult using other fluorescence methods. Moreover, this method was found to be more sensitive than the commonly used steady-state fluorescence anisotropy, especially in the case of small ODNs. The described methodology could become a new universal tool for investigating peptide–ODN interactions.
Collapse
Affiliation(s)
- Volodymyr V Shvadchak
- Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, UMR 7213 du CNRS, Université de Strasbourg, 67401 Illkirch, France
| | | | | | | |
Collapse
|
41
|
Vo MN, Barany G, Rouzina I, Musier-Forsyth K. HIV-1 nucleocapsid protein switches the pathway of transactivation response element RNA/DNA annealing from loop-loop "kissing" to "zipper". J Mol Biol 2009; 386:789-801. [PMID: 19154737 DOI: 10.1016/j.jmb.2008.12.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/20/2008] [Accepted: 12/29/2008] [Indexed: 11/24/2022]
Abstract
The chaperone activity of HIV-1 (human immunodeficiency virus type 1) nucleocapsid protein (NC) facilitates multiple nucleic acid rearrangements that are critical for reverse transcription of the single-stranded RNA genome into double-stranded DNA. Annealing of the transactivation response element (TAR) RNA hairpin to a complementary TAR DNA hairpin is an essential step in the minus-strand transfer step of reverse transcription. Previously, we used truncated 27-nt mini-TAR RNA and DNA constructs to investigate this annealing reaction pathway in the presence and in the absence of HIV-1 NC. In this work, full-length 59-nt TAR RNA and TAR DNA constructs were used to systematically study TAR hairpin annealing kinetics. In the absence of NC, full-length TAR hairpin annealing is approximately 10-fold slower than mini-TAR annealing. Similar to mini-TAR annealing, the reaction pathway for TAR in the absence of NC involves the fast formation of an unstable "kissing" loop intermediate, followed by a slower conversion to an extended duplex. NC facilitates the annealing of TAR by approximately 10(5)-fold by stabilizing the bimolecular intermediate ( approximately 10(4)-fold) and promoting the subsequent exchange reaction ( approximately 10-fold). In contrast to the mini-TAR annealing pathway, wherein NC-mediated annealing can initiate through both loop-loop kissing and a distinct "zipper" pathway involving nucleation at the 3'-/5'-terminal ends, full-length TAR hairpin annealing switches predominantly to the zipper pathway in the presence of saturated NC.
Collapse
Affiliation(s)
- My-Nuong Vo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
42
|
Vo MN, Barany G, Rouzina I, Musier-Forsyth K. Effect of Mg(2+) and Na(+) on the nucleic acid chaperone activity of HIV-1 nucleocapsid protein: implications for reverse transcription. J Mol Biol 2009; 386:773-88. [PMID: 19154740 DOI: 10.1016/j.jmb.2008.12.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Revised: 12/20/2008] [Accepted: 12/29/2008] [Indexed: 11/18/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) is an essential protein for retroviral replication. Among its numerous functions, NC is a nucleic acid (NA) chaperone protein that catalyzes NA rearrangements leading to the formation of thermodynamically more stable conformations. In vitro, NC chaperone activity is typically assayed under conditions of low or no Mg(2+), even though reverse transcription requires the presence of divalent cations. Here, the chaperone activity of HIV-1 NC was studied as a function of varying Na(+) and Mg(2+) concentrations by investigating the annealing of complementary DNA and RNA hairpins derived from the trans-activation response domain of the HIV genome. This reaction mimics the annealing step of the minus-strand transfer process in reverse transcription. Gel-shift annealing and sedimentation assays were used to monitor the annealing kinetics and aggregation activity of NC, respectively. In the absence of protein, a limited ability of Na(+) and Mg(2+) cations to facilitate hairpin annealing was observed, whereas NC stimulated the annealing 10(3)- to 10(5)-fold. The major effect of either NC or the cations is on the rate of bimolecular association of the hairpins. This effect is especially strong under conditions wherein NC induces NA aggregation. Titration with NC and NC/Mg(2+) competition studies showed that the annealing kinetics depends only on the level of NA saturation with NC. NC competes with Mg(2+) or Na(+) for sequence-nonspecific NA binding similar to a simple trivalent cation. Upon saturation, NC induces attraction between NA molecules corresponding to approximately 0.3 kcal/mol/nucleotide, in agreement with an electrostatic mechanism of NC-induced NA aggregation. These data provide insights into the variable effects of NC's chaperone activity observed during in vitro studies of divalent metal-dependent reverse transcription reactions and suggest the feasibility of NC-facilitated proviral DNA synthesis within the mature capsid core.
Collapse
Affiliation(s)
- My-Nuong Vo
- Department of Chemistry and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
43
|
Grohmann D, Godet J, Mély Y, Darlix JL, Restle T. HIV-1 nucleocapsid traps reverse transcriptase on nucleic acid substrates. Biochemistry 2008; 47:12230-40. [PMID: 18947237 DOI: 10.1021/bi801386r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conversion of the genomic RNA of human immunodeficiency virus (HIV) into full-length viral DNA is a complex multistep reaction catalyzed by the reverse transcriptase (RT). Numerous studies have shown that the viral nucleocapsid (NC) protein has a vital impact on various steps during reverse transcription, which is crucial for virus infection. However, the exact molecular details are poorly defined. Here, we analyzed the effect of NC on RT-catalyzed single-turnover, single-nucleotide incorporation using different nucleic acid substrates. In the presence of NC, we observed an increase in the amplitude of primer extension of up to 3-fold, whereas the transient rate of nucleotide incorporation ( k pol) dropped by up to 50-fold. To unravel the underlying molecular mechanism, we carefully analyzed the effect of NC on RT-nucleic acid substrate dissociation. The studies revealed that NC considerably enhances the stability of RT-substrate complexes by reducing the observed dissociation rate constants, which more than compensates for the observed drop in k pol. In conclusion, our data strongly support the concept that NC not only indirectly assists the reverse transcription process by its nucleic acid chaperoning activity but also positively affects the RT-catalyzed nucleotide incorporation reaction by increasing polymerase processivity presumably via a physical interaction of the two viral proteins.
Collapse
Affiliation(s)
- Dina Grohmann
- Institut Gilbert Laustriat, Photophysique des interactions moleculaires, UMR 7175 CNRS, Faculte de Pharmacie, Universite Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch, France
| | | | | | | | | |
Collapse
|
44
|
Human T-cell lymphotropic virus type 1 nucleocapsid protein-induced structural changes in transactivation response DNA hairpin measured by single-molecule fluorescence resonance energy transfer. J Virol 2008; 82:12164-71. [PMID: 18829758 DOI: 10.1128/jvi.01158-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Time-resolved single-molecule fluorescence spectroscopy was used to study the human T-cell lymphotropic virus type 1 (HTLV-1) nucleocapsid protein (NC) chaperone activity compared to that of the human immunodeficiency virus type 1 (HIV-1) NC protein. HTLV-1 NC contains two zinc fingers, each having a CCHC binding motif similar to HIV-1 NC. HIV-1 NC is required for recognition and packaging of the viral RNA and is also a nucleic acid chaperone protein that facilitates nucleic acid restructuring during reverse transcription. Because of similarities in structures between the two retroviruses, we have used single-molecule fluorescence energy transfer to investigate the chaperoning activity of the HTLV-1 NC protein. The results indicate that the HTLV-1 NC protein induces structural changes by opening the transactivation response (TAR) DNA hairpin to an even greater extent than HIV-1 NC. However, unlike HIV-1 NC, HTLV-1 NC does not chaperone the strand-transfer reaction involving TAR DNA. These results suggest that, despite its effective destabilization capability, HTLV-1 NC is not as effective at overall chaperone function as is its HIV-1 counterpart.
Collapse
|
45
|
Retroviral nucleocapsid proteins display nonequivalent levels of nucleic acid chaperone activity. J Virol 2008; 82:10129-42. [PMID: 18684831 DOI: 10.1128/jvi.01169-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein (NC) is a nucleic acid chaperone that facilitates the remodeling of nucleic acids during various steps of the viral life cycle. Two main features of NC's chaperone activity are its abilities to aggregate and to destabilize nucleic acids. These functions are associated with NC's highly basic character and with its zinc finger domains, respectively. While the chaperone activity of HIV-1 NC has been extensively studied, less is known about the chaperone activities of other retroviral NCs. In this work, complementary experimental approaches were used to characterize and compare the chaperone activities of NC proteins from four different retroviruses: HIV-1, Moloney murine leukemia virus (MLV), Rous sarcoma virus (RSV), and human T-cell lymphotropic virus type 1 (HTLV-1). The different NCs exhibited significant differences in their overall chaperone activities, as demonstrated by gel shift annealing assays, decreasing in the order HIV-1 approximately RSV > MLV >> HTLV-1. In addition, whereas HIV-1, RSV, and MLV NCs are effective aggregating agents, HTLV-1 NC, which exhibits poor overall chaperone activity, is unable to aggregate nucleic acids. Measurements of equilibrium binding to single- and double-stranded oligonucleotides suggested that all four NC proteins have moderate duplex destabilization capabilities. Single-molecule DNA-stretching studies revealed striking differences in the kinetics of nucleic acid dissociation between the NC proteins, showing excellent correlation between nucleic acid dissociation kinetics and overall chaperone activity.
Collapse
|
46
|
Avilov SV, Piemont E, Shvadchak V, de Rocquigny H, Mély Y. Probing dynamics of HIV-1 nucleocapsid protein/target hexanucleotide complexes by 2-aminopurine. Nucleic Acids Res 2007; 36:885-96. [PMID: 18086707 PMCID: PMC2241888 DOI: 10.1093/nar/gkm1109] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The nucleocapsid protein (NC) plays an important role in HIV-1, mainly through interactions with the genomic RNA and its DNA copies. Though the structures of several complexes of NC with oligonucleotides (ODNs) are known, detailed information on the ODN dynamics in the complexes is missing. To address this, we investigated the steady state and time-resolved fluorescence properties of 2-aminopurine (2Ap), a fluorescent adenine analog introduced at positions 2 and 5 of AACGCC and AATGCC sequences. In the absence of NC, 2Ap fluorescence was strongly quenched in the flexible ODNs, mainly through picosecond to nanosecond dynamic quenching by its neighboring bases. NC strongly restricted the ODN flexibility and 2Ap local mobility, impeding the collisions of 2Ap with its neighbors and thus, reducing its dynamic quenching. Phe16→Ala and Trp37→Leu mutations largely decreased the ability of NC to affect the local dynamics of 2Ap at positions 2 and 5, respectively, while a fingerless NC was totally ineffective. The restriction of 2Ap local mobility was thus associated with the NC hydrophobic platform at the top of the folded fingers. Since this platform supports the NC chaperone properties, the restriction of the local mobility of the bases is likely a mechanistic component of these properties.
Collapse
Affiliation(s)
- S V Avilov
- Institut Gilbert-Laustriat, UMR 7175 CNRS/Université Louis Pasteur (Strasbourg I), Dépt. Pharmacologie et Physicochimie, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | | | | | | | | |
Collapse
|
47
|
Egelé C, Piémont E, Didier P, Ficheux D, Roques B, Darlix JL, de Rocquigny H, Mély Y. The single-finger nucleocapsid protein of moloney murine leukemia virus binds and destabilizes the TAR sequences of HIV-1 but does not promote efficiently their annealing. Biochemistry 2007; 46:14650-62. [PMID: 18027912 DOI: 10.1021/bi7012239] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The retroviral nucleocapsid proteins (NCs) are small proteins with either one or two conserved zinc fingers flanked by basic domains. NCs play key roles during reverse transcription by chaperoning the obligatory strand transfers. In HIV-1, the first DNA strand transfer relies on the NCp7-promoted destabilization and subsequent annealing of the transactivation response element, TAR with its complementary cTAR sequence. NCp7 chaperone activity relies mainly on its two folded fingers. Since NCs with a unique zinc finger are encoded by gammaretroviruses such as the canonical Moloney murine leukemia virus (MoMuLV), our objective was to characterize, by fluorescence techniques, the binding and chaperone activities of the NCp10 protein of MoMuLV to the TAR sequences of HIV-1. The unique finger and the flanking 12-25 and 40-48 domains of NCp10 were found to bind and destabilize cTAR stem-loop almost as efficiently as the homologous NCp7 protein. The flanking domains were essential for properly positioning the finger and, notably, the Trp35 residue onto cTAR. Thus, the binding and destabilization determinants scattered on the two NCp7 fingers are encoded by the unique finger of NCp10 and its flanking domains. NCp10 also activates the cTAR/TAR annealing reaction, but less efficiently than NCp7, suggesting that the two NCp7 fingers promote in concert the rate-limiting nucleation of the duplex. Due to its ability to mimic NCp7, the simple structure of NCp10 might be useful to design peptidomimetics aimed at inhibiting HIV replication.
Collapse
Affiliation(s)
- Caroline Egelé
- Département de Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR 7175 CNRS, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ramalanjaona N, de Rocquigny H, Millet A, Ficheux D, Darlix JL, Mély Y. Investigating the mechanism of the nucleocapsid protein chaperoning of the second strand transfer during HIV-1 DNA synthesis. J Mol Biol 2007; 374:1041-53. [PMID: 18028945 DOI: 10.1016/j.jmb.2007.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/26/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Conversion of the human immunodeficiency virus type 1 (HIV-1) genomic RNA into the proviral DNA by reverse transcriptase involves two obligatory strand transfers that are chaperoned by the nucleocapsid protein (NC). The second strand transfer relies on the annealing of the (-) and (+) copies of the primer binding site, (-)PBS and (+) PBS, which fold into complementary stem-loops (SLs) with terminal single-stranded overhangs. To understand how NC chaperones their hybridization, we investigated the annealing kinetics of fluorescently labelled (+)PBS with various (-)PBS derivatives. In the absence of NC, the (+)/(-)PBS annealing was governed by a second-order pathway nucleated mainly by the single-stranded overhangs of the two PBS SLs. The annealing reaction appeared to be rate-limited by the melting of the stable G.C-rich stem subsequent to the formation of the partially annealed intermediate. A second pathway nucleated through the loops could be detected, but was very minor. NC(11-55), which consists primarily of the zinc finger domain, increased the (-)/(+) PBS annealing kinetics by about sixfold, by strongly activating the interaction between the PBS loops. NC(11-55) also activated (-)/(+) PBS annealing through the single-strand overhangs, but by a factor of only 2. Full-length NC(1-55) further increased the (-)/(+)PBS annealing kinetics by tenfold. The NC-promoted (-)/(+)PBS mechanism proved to be similar with extended (-)DNA molecules, suggesting that it is relevant in the context of proviral DNA synthesis. These findings favour the notion that the ubiquitous role of NC in the viral life-cycle probably relies on the ability of NC to chaperone nucleic acid hybridization via different mechanisms.
Collapse
Affiliation(s)
- Nick Ramalanjaona
- Photophysique des interactions biomoléculaires, UMR 7175 CNRS, Institut Gilbert Laustriat, Faculté de Pharmacie, Université Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Landes CF, Zeng Y, Liu HW, Musier-Forsyth K, Barbara PF. Single-Molecule Study of the Inhibition of HIV-1 Transactivation Response Region DNA/DNA Annealing by Argininamide. J Am Chem Soc 2007; 129:10181-8. [PMID: 17658799 DOI: 10.1021/ja071491r] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-molecule spectroscopy was used to examine how a model inhibitor of HIV-1, argininamide, modulates the nucleic acid chaperone activity of the nucleocapsid protein (NC) in the minus-strand transfer step of HIV-1 reverse transcription, in vitro. In minus-strand transfer, the transactivation response region (TAR) RNA of the genome is annealed to the complementary "TAR DNA" generated during minus-strand strong-stop DNA synthesis. Argininamide and its analogs are known to bind to the hairpin bulge region of TAR RNA as well as to various DNA loop structures, but its ability to inhibit the strand transfer process has only been implied. Here, we explore how argininamide modulates the annealing kinetics and secondary structure of TAR DNA. The studies reveal that the argininamide inhibitory mechanism involves a shift of the secondary structure of TAR, away from the NC-induced "Y" form, an intermediate in reverse transcription, and toward the free closed or "C" form. In addition, more potent inhibition of the loop-mediated annealing pathway than stem-mediated annealing is observed. Taken together, these data suggest a molecular mechanism wherein argininamide inhibits NC-facilitated TAR RNA/DNA annealing in vitro by interfering with the formation of key annealing intermediates.
Collapse
Affiliation(s)
- Christy F Landes
- Department of Chemistry and Biochemistry, Center for Nano and Molecular Science and Technology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
50
|
Ali MB, Chaminade F, Kanevsky I, Ennifar E, Josset L, Ficheux D, Darlix JL, Fossé P. Structural requirements for nucleocapsid protein-mediated dimerization of avian leukosis virus RNA. J Mol Biol 2007; 372:1082-1096. [PMID: 17706668 DOI: 10.1016/j.jmb.2007.07.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
The avian leukosis virus (ALV) belongs to the alpha group of retroviruses that are widespread in nature. The 5'-untranslated region of ALV genome contains the L3 element that is important for virus infectivity and the formation of an unstable RNA dimer in vitro. The L3 sequence is predicted to fold into a long stem-loop structure with two internal loops and an apical one. Phylogenetic analysis predicts that the L3 stem-loop is conserved in alpharetroviruses. Furthermore, a significant selection mechanism maintains a palindrome in the apical loop. The nucleocapsid protein of the alpharetroviruses (NCp12) is required for RNA dimer formation and replication in vivo. It is not known whether L3 can be an NCp12-mediated RNA dimerization site able to bind NCp12 with high affinity. Here, we report that NCp12 chaperones formation of a stable ALV RNA dimer through L3. To investigate the NCp12-mediated L3 dimerization reaction, we performed site-directed mutagenesis, gel retardation and heterodimerization assays and analysis of thermostability of dimeric RNAs. We show that the affinity of NCp12 for L3 is lower than its affinity for the microPsi RNA packaging signal. Results show that conservation of a long stem-loop structure and a loop-loop interaction are not required for NCp12-mediated L3 dimerization. We show that the L3 apical stem-loop is sufficient to form an extended duplex and the whole stem-loop L3 cannot be converted by NCp12 into a duplex extending throughout L3. Three-dimensional modelling of the stable L3 dimer supports the notion that the extended duplex may represent the minimal dimer linkage structure found in the genomic RNA.
Collapse
Affiliation(s)
- Moez Ben Ali
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Françoise Chaminade
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Igor Kanevsky
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Eric Ennifar
- CNRS UPR9002, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg cedex, France
| | - Laurence Josset
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | - Damien Ficheux
- CNRS UMR5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon cedex 07, France
| | - Jean-Luc Darlix
- Laboretro Unité de Virologie Humaine INSERM #758, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Philippe Fossé
- CNRS UMR8113, LBPA, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France.
| |
Collapse
|