1
|
Chu CH, Wu CT, Lin MG, Yen CY, Wu YZ, Hsiao CD, Sun YJ. Insights into the molecular mechanism of ParABS system in chromosome partition by HpParA and HpParB. Nucleic Acids Res 2024; 52:7321-7336. [PMID: 38842933 PMCID: PMC11229316 DOI: 10.1093/nar/gkae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively. We determined the crystal structures of the ATP hydrolysis deficient mutant, HpParAD41A, and the HpParAD41A-DNA complex. We assayed the CTPase activity of HpParB and identified two potential DNA binding modes of HpParB regulated by CTP, one is the specific DNA binding by the DNA binding domain and the other is the non-specific DNA binding through the C-terminal domain under the regulation of CTP. We observed an interaction between HpParAD41A and the N-terminus fragment of HpParB (residue 1-10, HpParBN10) and determined the crystal structure of the ternary complex, HpParAD41A-DNA-HpParBN10 complex which mimics the NAC formation. HpParBN10 binds near the HpParAD41A dimer interface and is clamped by flexible loops, L23 and L34, through a specific cation-π interaction between Arg9 of HpParBN10 and Phe52 of HpParAD41A. We propose a molecular mechanism model of the ParABS system providing insight into chromosome partition in bacteria.
Collapse
Affiliation(s)
- Chen-Hsi Chu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Che-Ting Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Min-Guan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Yi Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Zhan Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Basalla JL, Mak CA, Byrne JA, Ghalmi M, Hoang Y, Vecchiarelli AG. Dissecting the phase separation and oligomerization activities of the carboxysome positioning protein McdB. eLife 2023; 12:e81362. [PMID: 37668016 PMCID: PMC10554743 DOI: 10.7554/elife.81362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Across bacteria, protein-based organelles called bacterial microcompartments (BMCs) encapsulate key enzymes to regulate their activities. The model BMC is the carboxysome that encapsulates enzymes for CO2 fixation to increase efficiency and is found in many autotrophic bacteria, such as cyanobacteria. Despite their importance in the global carbon cycle, little is known about how carboxysomes are spatially regulated. We recently identified the two-factor system required for the maintenance of carboxysome distribution (McdAB). McdA drives the equal spacing of carboxysomes via interactions with McdB, which associates with carboxysomes. McdA is a ParA/MinD ATPase, a protein family well studied in positioning diverse cellular structures in bacteria. However, the adaptor proteins like McdB that connect these ATPases to their cargos are extremely diverse. In fact, McdB represents a completely unstudied class of proteins. Despite the diversity, many adaptor proteins undergo phase separation, but functional roles remain unclear. Here, we define the domain architecture of McdB from the model cyanobacterium Synechococcus elongatus PCC 7942, and dissect its mode of biomolecular condensate formation. We identify an N-terminal intrinsically disordered region (IDR) that modulates condensate solubility, a central coiled-coil dimerizing domain that drives condensate formation, and a C-terminal domain that trimerizes McdB dimers and provides increased valency for condensate formation. We then identify critical basic residues in the IDR, which we mutate to glutamines to solubilize condensates. Finally, we find that a condensate-defective mutant of McdB has altered association with carboxysomes and influences carboxysome enzyme content. The results have broad implications for understanding spatial organization of BMCs and the molecular grammar of protein condensates.
Collapse
Affiliation(s)
- Joseph L Basalla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Claudia A Mak
- Department of Biological Chemistry, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jordan A Byrne
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| |
Collapse
|
3
|
Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids. J Mol Biol 2022; 434:167770. [PMID: 35907571 DOI: 10.1016/j.jmb.2022.167770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/23/2022]
Abstract
The segregation of prokaryotic plasmids typically requires a centromere-like site and two proteins, a centromere-binding protein (CBP) and an NTPase. By contrast, a single 245 residue Par protein mediates partition of the prototypical staphylococcal multiresistance plasmid pSK1 in the absence of an identifiable NTPase component. To gain insight into centromere binding by pSK1 Par and its segregation function we performed structural, biochemical and in vivo studies. Here we show that pSK1 Par binds a centromere consisting of seven repeat elements. We demonstrate this Par-centromere interaction also mediates Par autoregulation. To elucidate the Par centromere binding mechanism, we obtained a structure of the Par N-terminal DNA-binding domain bound to centromere DNA to 2.25 Å. The pSK1 Par structure, which harbors a winged-helix-turn-helix (wHTH), is distinct from other plasmid CBP structures but shows homology to the B. subtilis chromosome segregation protein, RacA. Biochemical studies suggest the region C-terminal to the Par wHTH forms coiled coils and mediates oligomerization. Fluorescence microscopy analyses show that pSK1 Par enhances the separation of plasmids from clusters, driving effective segregation upon cell division. Combined the data provide insight into the molecular properties of a single protein partition system.
Collapse
|
4
|
Mishra D, Srinivasan R. Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins. Front Microbiol 2022; 13:856547. [PMID: 35694299 PMCID: PMC9178275 DOI: 10.3389/fmicb.2022.856547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/28/2022] [Indexed: 12/01/2022] Open
Abstract
Partitioning the replicated genetic material is a crucial process in the cell cycle program of any life form. In bacteria, many plasmids utilize cytoskeletal proteins that include ParM and TubZ, the ancestors of the eukaryotic actin and tubulin, respectively, to segregate the plasmids into the daughter cells. Another distinct class of cytoskeletal proteins, known as the Walker A type Cytoskeletal ATPases (WACA), is unique to Bacteria and Archaea. ParA, a WACA family protein, is involved in DNA partitioning and is more widespread. A centromere-like sequence parS, in the DNA is bound by ParB, an adaptor protein with CTPase activity to form the segregation complex. The ParA ATPase, interacts with the segregation complex and partitions the DNA into the daughter cells. Furthermore, the Walker A motif-containing ParA superfamily of proteins is associated with a diverse set of functions ranging from DNA segregation to cell division, cell polarity, chemotaxis cluster assembly, cellulose biosynthesis and carboxysome maintenance. Unifying principles underlying the varied range of cellular roles in which the ParA superfamily of proteins function are outlined. Here, we provide an overview of the recent findings on the structure and function of the ParB adaptor protein and review the current models and mechanisms by which the ParA family of proteins function in the partitioning of the replicated DNA into the newly born daughter cells.
Collapse
Affiliation(s)
- Dipika Mishra
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes, Mumbai, India
| |
Collapse
|
5
|
Boudsocq F, Salhi M, Barbe S, Bouet JY. Three ParA Dimers Cooperatively Assemble on Type Ia Partition Promoters. Genes (Basel) 2021; 12:genes12091345. [PMID: 34573327 PMCID: PMC8465637 DOI: 10.3390/genes12091345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
Accurate DNA segregation is essential for faithful inheritance of genetic material. In bacteria, this process is mainly ensured by partition systems composed of two proteins, ParA and ParB, and a centromere site. Auto-regulation of Par operon expression is important for efficient partitioning and is primarily mediated by ParA for type Ia plasmid partition systems. For the F-plasmid, four ParAF monomers were proposed to bind to four repeated sequences in the promoter region. By contrast, using quantitative surface-plasmon-resonance, we showed that three ParAF dimers bind to this region. We uncovered that one perfect inverted repeat (IR) motif, consisting of two hexamer sequences spaced by 28-bp, constitutes the primary ParAF DNA binding site. A similar but degenerated motif overlaps the former. ParAF binding to these motifs is well supported by biochemical and modeling analyses. Molecular dynamics simulations predict that the winged-HTH domain displays high flexibility, which may favor the cooperative ParA binding to the promoter. We propose that three ParAF dimers bind cooperatively to overlapping motifs, thus covering the promoter region. A similar organization is found on closely related and distant plasmid partition systems, suggesting that such promoter organization for auto-regulated Par operons is widespread and may have evolved from a common ancestor.
Collapse
Affiliation(s)
- François Boudsocq
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31062 Toulouse, France; (M.S.); (J.-Y.B.)
- Correspondence:
| | - Maya Salhi
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31062 Toulouse, France; (M.S.); (J.-Y.B.)
| | - Sophie Barbe
- CNRS, Toulouse Biotechnology Institute (TBI), Université de Toulouse, INRAE, INSA, F-31077 Toulouse, France;
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31062 Toulouse, France; (M.S.); (J.-Y.B.)
| |
Collapse
|
6
|
MacCready JS, Basalla JL, Vecchiarelli AG. Origin and Evolution of Carboxysome Positioning Systems in Cyanobacteria. Mol Biol Evol 2021; 37:1434-1451. [PMID: 31899489 PMCID: PMC7182216 DOI: 10.1093/molbev/msz308] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carboxysomes are protein-based organelles that are essential for allowing cyanobacteria to fix CO2. Previously, we identified a two-component system, McdAB, responsible for equidistantly positioning carboxysomes in the model cyanobacterium Synechococcus elongatus PCC 7942 (MacCready JS, Hakim P, Young EJ, Hu L, Liu J, Osteryoung KW, Vecchiarelli AG, Ducat DC. 2018. Protein gradients on the nucleoid position the carbon-fixing organelles of cyanobacteria. eLife 7:pii:e39723). McdA, a ParA-type ATPase, nonspecifically binds the nucleoid in the presence of ATP. McdB, a novel factor that directly binds carboxysomes, displaces McdA from the nucleoid. Removal of McdA from the nucleoid in the vicinity of carboxysomes by McdB causes a global break in McdA symmetry, and carboxysome motion occurs via a Brownian-ratchet-based mechanism toward the highest concentration of McdA. Despite the importance for cyanobacteria to properly position their carboxysomes, whether the McdAB system is widespread among cyanobacteria remains an open question. Here, we show that the McdAB system is widespread among β-cyanobacteria, often clustering with carboxysome-related components, and is absent in α-cyanobacteria. Moreover, we show that two distinct McdAB systems exist in β-cyanobacteria, with Type 2 systems being the most ancestral and abundant, and Type 1 systems, like that of S. elongatus, possibly being acquired more recently. Lastly, all McdB proteins share the sequence signatures of a protein capable of undergoing liquid–liquid phase separation. Indeed, we find that representatives of both McdB types undergo liquid–liquid phase separation in vitro, the first example of a ParA-type ATPase partner protein to exhibit this behavior. Our results have broader implications for understanding carboxysome evolution, biogenesis, homeostasis, and positioning in cyanobacteria.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Joseph L Basalla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
7
|
Addressing the role of centromere sites in activation of ParB proteins for partition complex assembly. PLoS One 2020; 15:e0226472. [PMID: 32379828 PMCID: PMC7205306 DOI: 10.1371/journal.pone.0226472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/15/2020] [Indexed: 11/19/2022] Open
Abstract
The ParB-parS partition complexes that bacterial replicons use to ensure their faithful inheritance also find employment in visualization of DNA loci, as less intrusive alternatives to fluorescent repressor-operator systems. The ability of ParB molecules to interact via their N-terminal domains and to bind to non-specific DNA enables expansion of the initial complex to a size both functional in partition and, via fusion to fluorescent peptides, visible by light microscopy. We have investigated whether it is possible to dispense with the need to insert parS in the genomic locus of interest, by determining whether ParB fused to proteins that bind specifically to natural DNA sequences can still assemble visible complexes. In yeast cells, coproduction of fusions of ParB to a fluorescent peptide and to a TALE protein targeting an endogenous sequence did not yield visible foci; nor did any of several variants of these components. In E.coli, coproduction of fusions of SopB (F plasmid ParB) to fluorescent peptide, and to dCas9 together with specific guide RNAs, likewise yielded no foci. The result of coproducing analogous fusions of SopB proteins with distinct binding specificities was also negative. Our observations imply that in order to assemble higher order partition complexes, ParB proteins need specific activation through binding to their cognate parS sites.
Collapse
|
8
|
Abstract
Plasmids are ubiquitous in the microbial world and have been identified in almost all species of bacteria that have been examined. Their localization inside the bacterial cell has been examined for about two decades; typically, they are not randomly distributed, and their positioning depends on copy number and their mode of segregation. Low-copy-number plasmids promote their own stable inheritance in their bacterial hosts by encoding active partition systems, which ensure that copies are positioned in both halves of a dividing cell. High-copy plasmids rely on passive diffusion of some copies, but many remain clustered together in the nucleoid-free regions of the cell. Here we review plasmid localization and partition (Par) systems, with particular emphasis on plasmids from Enterobacteriaceae and on recent results describing the in vivo localization properties and molecular mechanisms of each system. Partition systems also cause plasmid incompatibility such that distinct plasmids (with different replicons) with the same Par system cannot be stably maintained in the same cells. We discuss how partition-mediated incompatibility is a consequence of the partition mechanism.
Collapse
|
9
|
Germier T, Audibert S, Kocanova S, Lane D, Bystricky K. Real-time imaging of specific genomic loci in eukaryotic cells using the ANCHOR DNA labelling system. Methods 2018; 142:16-23. [PMID: 29660486 DOI: 10.1016/j.ymeth.2018.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023] Open
Abstract
Spatio-temporal organization of the cell nucleus adapts to and regulates genomic processes. Microscopy approaches that enable direct monitoring of specific chromatin sites in single cells and in real time are needed to better understand the dynamics involved. In this chapter, we describe the principle and development of ANCHOR, a novel tool for DNA labelling in eukaryotic cells. Protocols for use of ANCHOR to visualize a single genomic locus in eukaryotic cells are presented. We describe an approach for live cell imaging of a DNA locus during the entire cell cycle in human breast cancer cells.
Collapse
Affiliation(s)
- Thomas Germier
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Sylvain Audibert
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Silvia Kocanova
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - David Lane
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
10
|
Misra HS, Maurya GK, Chaudhary R, Misra CS. Interdependence of bacterial cell division and genome segregation and its potential in drug development. Microbiol Res 2018; 208:12-24. [DOI: 10.1016/j.micres.2017.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/05/2017] [Accepted: 12/31/2017] [Indexed: 11/28/2022]
|
11
|
Abstract
The lambdoid phage N15 of Escherichia coli is very unusual among temperate phages in that its prophage is not integrated into the chromosome but is a linear plasmid molecule with covalently closed ends (telomeres). Upon infection, the phage DNA circularizes via cohesive ends, and then a special phage enzyme of the tyrosine recombinase family, protelomerase, cuts at another site and joins the ends, forming hairpin telomeres of the linear plasmid prophage. Replication of the N15 prophage is initiated at an internally located ori site and proceeds bidirectionally, resulting in the formation of duplicated telomeres. The N15 protelomerase cuts them, generating two linear plasmid molecules with hairpin telomeres. Stable inheritance of the plasmid prophage is ensured by a partitioning operon similar to the F factor sop operon. Unlike the F centromere, the N15 centromere consists of four inverted repeats dispersed in the genome. The multiplicity and dispersion of centromeres are required for efficient partitioning of a linear plasmid. The centromeres are located in the N15 genome regions involved in phage replication and control of lytic development, and binding of partition proteins at these sites regulates these processes. The family of N15-like linear phage-plasmids includes lambdoid phages ɸKO2 and pY54, as well as Myoviridae phages ΦHAP-1, VHML, VP882, Vp58.5, and vB_VpaM_MAR of marine gamma-proteobacteria. The genomes of these phages contain similar protelomerase genes, lysogeny control modules, and replication genes, suggesting that these phages may belong to a group diverged from a common ancestor.
Collapse
|
12
|
Abstract
The stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the cell. Partition systems are ubiquitous in the microbial world and are encoded by many bacterial chromosomes as well as plasmids. These systems, although different in sequence and mechanism, typically consist of two proteins and a DNA partition site, or prokaryotic centromere, on the plasmid or chromosome. One protein binds site-specifically to the centromere to form a partition complex, and the other protein uses the energy of nucleotide binding and hydrolysis to transport the plasmid, via interactions with this partition complex inside the cell. For plasmids, this minimal cassette is sufficient to direct proper segregation in bacterial cells. There has been significant progress in the last several years in our understanding of partition mechanisms. Two general areas that have developed are (i) the structural biology of partition proteins and their interactions with DNA and (ii) the action and dynamics of the partition ATPases that drive the process. In addition, systems that use tubulin-like GTPases to partition plasmids have recently been identified. In this chapter, we concentrate on these recent developments and the molecular details of plasmid partition mechanisms.
Collapse
|
13
|
Volante A, Alonso JC. Molecular Anatomy of ParA-ParA and ParA-ParB Interactions during Plasmid Partitioning. J Biol Chem 2015; 290:18782-95. [PMID: 26055701 DOI: 10.1074/jbc.m115.649632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
Firmicutes multidrug resistance inc18 plasmids encode parS sites and two small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins to ensure faithful segregation. Protein ω2 binds to parS DNA, forming a short left-handed helix wrapped around the full parS, and interacts with δ2. Protein δ2 interacts with ω2 and, in the ATP-bound form, binds to nonspecific DNA (nsDNA), forming small clusters. Here, we have mapped the ω2·δ2 and δ2·δ2 interacting domains in the δ2 that are adjacent to but distinct from each other. The δ2 nsDNA binding domain is essential for stimulation of ω2·parS-mediated ATP hydrolysis. From the data presented here, we propose that δ2 interacts with ATP, nsDNA, and with ω2 bound to parS at near equimolar concentrations, facilitating a δ2 structural transition. This δ2 "activated" state overcomes its impediment in ATP hydrolysis, with the subsequent release of both of the proteins from nsDNA (plasmid unpairing).
Collapse
Affiliation(s)
- Andrea Volante
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| | - Juan C Alonso
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin Str. 3, 28049 Madrid, Spain
| |
Collapse
|
14
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
15
|
Hanai R, Arai Y. New roles of DNA and SopB in polymerization of SopA of Escherichia coli F plasmid. J Biochem 2015; 157:459-66. [PMID: 25605759 DOI: 10.1093/jb/mvv003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022] Open
Abstract
Active equi-paritioning of the F plasmid is achieved by its sopABC gene. SopA binds to the sopAB promoter region and SopB binds to sopC. SopA also polymerizes in the presence of ATP and Mg(II), which is stimulated by SopB. Non-specific DNA is known to inhibit SopA polymerization and disassemble SopA polymer. This study followed kinetics of polymerization and de-polymerization of SopA by turbidity measurement and found new effects by DNA and SopB. Plasmid DNA, at low concentrations, shortened the lag (nucleation) phase of SopA polymerization and also caused an initial 'burst' of turbidity. Results with two non-specific 20-bp DNAs indicated sequence/length dependence of these effects. sopAB operator DNA only showed inhibition of SopA polymerization. Results of turbidity decrease of pre-formed SopA polymer in the presence of ethylenediaminetetraacetic acid showed that SopB also accelerates disassembly of the SopA polymer. The steady-state level of turbidity in the presence of SopB and plasmid DNA indicated synergy between SopB and DNA in the disassembly. SopB protein showed no effect on SopA polymerization, when SopB was specifically bound to DNA. This result and others with truncation mutants of SopB suggested that a proper configuration of the domains of SopB is important for SopA-SopB interactions.
Collapse
Affiliation(s)
- Ryo Hanai
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yui Arai
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
16
|
Bartosik AA, Glabski K, Jecz P, Lasocki K, Mikosa M, Plochocka D, Thomas CM, Jagura-Burdzy G. Dissection of the region of Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB. MICROBIOLOGY-SGM 2014; 160:2406-2420. [PMID: 25139949 PMCID: PMC4219104 DOI: 10.1099/mic.0.081216-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa ParA belongs to a large subfamily of Walker-type ATPases acting as partitioning proteins in bacteria. ParA has the ability to both self-associate and interact with its partner ParB. Analysis of the deletion mutants defined the part of the protein involved in dimerization and interactions with ParB. Here, a set of ParA alanine substitution mutants in the region between E67 and L85 was created and analysed in vivo and in vitro. All mutants impaired in dimerization (substitutions at positions M74, H79, Y82 and L84) were also defective in interactions with ParB, suggesting that ParA-ParB interactions depend on the ability of ParA to dimerize. Mutants with alanine substitutions at positions E67, C68, L70, E72, F76, Q83 and L85 were not impaired in dimerization, but were defective in interactions with ParB. The dimerization interface partly overlapped the pseudo-hairpin, involved in interactions with ParB. ParA mutant derivatives tested in vitro showed no defects in ATPase activity. Two parA alleles (parA84, whose product can neither self-interact nor interact with ParB, and parA67, whose product is impaired in interactions with ParB, but not in dimerization) were introduced into the P. aeruginosa chromosome by homologous gene exchange. Both mutants showed defective separation of ParB foci, but to different extents. Only PAO1161 parA84 was visibly impaired in terms of chromosome segregation, growth rate and motility, similar to a parA-null mutant.
Collapse
Affiliation(s)
- Aneta A. Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Krzysztof Glabski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Paulina Jecz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Krzysztof Lasocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Malgorzata Mikosa
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Danuta Plochocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
17
|
Ah-Seng Y, Rech J, Lane D, Bouet JY. Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids. PLoS Genet 2013; 9:e1003956. [PMID: 24367270 PMCID: PMC3868542 DOI: 10.1371/journal.pgen.1003956] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 09/30/2013] [Indexed: 11/21/2022] Open
Abstract
Hydrolysis of ATP by partition ATPases, although considered a key step in the segregation mechanism that assures stable inheritance of plasmids, is intrinsically very weak. The cognate centromere-binding protein (CBP), together with DNA, stimulates the ATPase to hydrolyse ATP and to undertake the relocation that incites plasmid movement, apparently confirming the need for hydrolysis in partition. However, ATP-binding alone changes ATPase conformation and properties, making it difficult to rigorously distinguish the substrate and cofactor roles of ATP in vivo. We had shown that mutation of arginines R36 and R42 in the F plasmid CBP, SopB, reduces stimulation of SopA-catalyzed ATP hydrolysis without changing SopA-SopB affinity, suggesting the role of hydrolysis could be analyzed using SopA with normal conformational responses to ATP. Here, we report that strongly reducing SopB-mediated stimulation of ATP hydrolysis results in only slight destabilization of mini-F, although the instability, as well as an increase in mini-F clustering, is proportional to the ATPase deficit. Unexpectedly, the reduced stimulation also increased the frequency of SopA relocation over the nucleoid. The increase was due to drastic shortening of the period spent by SopA at nucleoid ends; average speed of migration per se was unchanged. Reduced ATP hydrolysis was also associated with pronounced deviations in positioning of mini-F, though time-averaged positions changed only modestly. Thus, by specifically targeting SopB-stimulated ATP hydrolysis our study reveals that even at levels of ATPase which reduce the efficiency of splitting clusters and the constancy of plasmid positioning, SopB still activates SopA mobility and plasmid positioning, and sustains near wild type levels of plasmid stability. Genes enabling bacteria to survive and thrive in challenging environments are very often found on small, non-essential DNA molecules called plasmids. Many plasmids are naturally present in the cell in very few copies and so risk being lost from one of the daughter cells upon division. These plasmids elaborate a partition system, functionally similar to mitosis, which assures their faithful inheritance. Chromosomes also generally possess such systems. We know that partition systems involve two proteins, that one (B) stimulates the other (A) to hydrolyse ATP, and that upon binding to A protein ATP confers properties needed for partition. ATP's double action, as hydrolysis substrate and cofactor, complicates definition of its role in the mechanism. The novelty of our approach lies in use of B protein mutants that do not stimulate hydrolysis. Our results reveal that the major function of ATP hydrolysis is not to displace plasmid molecules to their positions in each cell half, as generally thought, but to split initial sibling plasmid pairs and prevent their reforming. This study is the first to dissect ATPase activity in vivo using normal A-protein ATPase, and so opens a new avenue to exploration of the mechanisms that ensure plasmid and chromosome inheritance.
Collapse
Affiliation(s)
- Yoan Ah-Seng
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France
| | - Jérôme Rech
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France
| | - David Lane
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France
- * E-mail:
| | - Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique et l'Université Paul Sabatier, Toulouse, France
| |
Collapse
|
18
|
Vecchiarelli AG, Funnell BE. Probing the N-terminus of ParB using cysteine-scanning mutagenesis and thiol modification. Plasmid 2013; 70:86-93. [PMID: 23428603 DOI: 10.1016/j.plasmid.2013.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/07/2013] [Accepted: 02/10/2013] [Indexed: 11/18/2022]
Abstract
Plasmid partition systems require site-specific DNA binding proteins to recognize the plasmid partition site, or centromere. When bound to the centromere, these proteins, typically called ParB, interact with the ParA ATPases, which in turn promote the proper positioning of plasmids prior to cell division. P1 ParB is a typical member of a major class of ParB-like proteins that are dimeric helix-turn-helix DNA binding proteins. The N-terminus of ParB contains the region that interacts with ParA and with itself, but it has been difficult to study because this region of the protein is flexible in solution. Here we describe the use of cysteine-scanning mutagenesis and thiol modification of the N-terminus of ParB to create tools to probe the interactions of ParB with itself, with ParA and with DNA. We introduce twelve single-cysteine substitutions across the N-terminus of ParB and show that most do not compromise the function of ParB and that none completely inactivate the protein in vivo. We test three of these ParB variants in vitro and show that they do not alter ParB function, measured by its ability to stimulate ParA ATPase activity and its site-specific DNA binding activity. We discuss that this approach will be generally applicable to the ParB-like proteins in this class of partition systems because of their natural low content of cysteines, and because our evidence suggests that many residues in the N-terminus are amenable to substitution by cysteine.
Collapse
Affiliation(s)
- Anthony G Vecchiarelli
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
19
|
Sanchez A, Rech J, Gasc C, Bouet JY. Insight into centromere-binding properties of ParB proteins: a secondary binding motif is essential for bacterial genome maintenance. Nucleic Acids Res 2013; 41:3094-103. [PMID: 23345617 PMCID: PMC3597684 DOI: 10.1093/nar/gkt018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity.
Collapse
Affiliation(s)
- Aurore Sanchez
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de la Recherche Scientifique, F-31000 Toulouse, France
| | | | | | | |
Collapse
|
20
|
Donovan C, Sieger B, Krämer R, Bramkamp M. A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol 2012; 84:105-16. [DOI: 10.1111/j.1365-2958.2012.08011.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Schumacher MA. Bacterial plasmid partition machinery: a minimalist approach to survival. Curr Opin Struct Biol 2011; 22:72-9. [PMID: 22153351 DOI: 10.1016/j.sbi.2011.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 10/25/2022]
Abstract
The accurate segregation or partition of replicated DNA is essential for ensuring stable genome transmission. Partition of bacterial plasmids requires only three elements: a centromere-like DNA site and two proteins, a partition NTPase, and a centromere-binding protein (CBP). Because of this simplicity, partition systems have served as tractable model systems to study the fundamental molecular mechanisms required for DNA segregation at an atomic level. In the last few years, great progress has been made in this endeavor. Surprisingly, these studies have revealed that although the basic partition components are functionally conserved between three types of plasmid partition systems, these systems employ distinct mechanisms of DNA segregation. This review summarizes the molecular insights into plasmid segregation that have been achieved through these recent structural studies.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Pillet F, Sanchez A, Lane D, Anton Leberre V, Bouet JY. Centromere binding specificity in assembly of the F plasmid partition complex. Nucleic Acids Res 2011; 39:7477-86. [PMID: 21653553 PMCID: PMC3177203 DOI: 10.1093/nar/gkr457] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The segregation of plasmid F of Escherichia coli is highly reliable. The Sop partition locus, responsible for this stable maintenance, is composed of two genes, sopA and sopB and a centromere, sopC, consisting of 12 direct repeats of 43 bp. Each repeat carries a 16-bp inverted repeat motif to which SopB binds to form a nucleoprotein assembly called the partition complex. A database search for sequences closely related to sopC revealed unexpected features that appeared highly conserved. We have investigated the requirements for specific SopB-sopC interactions using a surface plasmon resonance imaging technique. We show that (i) only 10 repeats interact specifically with SopB, (ii) no base outside the 16-bp sopC sites is involved in binding specificity, whereas five bases present in each arm are required for interactions, and (iii) the A-C central bases contribute to binding efficiency by conforming to a need for a purine-pyrimidine dinucleotide. We have refined the SopB-sopC binding pattern by electro-mobility shift assay and found that all 16 bp are necessary for optimal SopB binding. These data and the model we propose, define the basis of the high binding specificity of F partition complex assembly, without which, dispersal of SopB over DNA would result in defective segregation.
Collapse
Affiliation(s)
- Flavien Pillet
- Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse, France
| | | | | | | | | |
Collapse
|
23
|
Dmowski M, Jagura-Burdzy G. Mapping of the interactions between partition proteins Delta and Omega of plasmid pSM19035 from Streptococcus pyogenes. MICROBIOLOGY-SGM 2011; 157:1009-1020. [PMID: 21252276 DOI: 10.1099/mic.0.045369-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Formation of the segrosome, a nucleoprotein complex crucial for proper functioning of plasmid partition systems, involves interactions between specific partition proteins (ParA-like and ParB-like), ATP and specific DNA sequences (the centromeric sites). Although partition systems have been studied for many years, details of the segrosome formation are not yet clear. Organization of the pSM19035-encoded partition system is unique; in contrast with other known par systems, here, the δ and ω genes do not constitute an operon. Moreover, Omega [a ParB-like protein which has a Ribbon-Helix-Helix (RHH) structure] recognizes multiple centromeric sequences located in the promoters of δ, ω and copS (copy-number control gene). The ParA-like protein Delta is a Walker-type ATPase. In this work, we identify the interaction domains and requirements for dimerization and hetero-interactions of the Delta and Omega proteins of pSM19035 plasmid. The RHH structures are involved in Omega dimerization in vivo and its N-terminal unstructured part is indispensable for association with Delta, both in vivo and in vitro. Omega does not need to form dimers to interact with Delta. ATP binding is not required for Delta dimerization but is important for interaction with Omega in vivo. The in vitro interaction between Delta and Omega depends on ATP but does not require the presence of specific DNA segments (the centromere) recognized by Omega. The C-terminal part of the Delta protein (aa 198-284) is indispensable for interaction with Omega. Delta most probably interacts with Omega as a dimer since two amino acid substitutions in a conserved region between the A' and B motifs abolish both the dimerization of Delta and its interaction with Omega.
Collapse
Affiliation(s)
- Michal Dmowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
24
|
Komai M, Umino M, Hanai R. Mode of DNA binding by SopA protein of Escherichia coli F plasmid. J Biochem 2011; 149:455-61. [PMID: 21217150 DOI: 10.1093/jb/mvq151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The binding of SopA to the promoter region of its own gene, in which four copies of SopA's recognition sequence, 5'-CTTTGC-3', are arrayed asymmetrically, was examined in vitro. Titration using electrophoretic mobility shift assay showed that the stoichiometry of SopA protomers to the promoter-region DNA is 4 and that the binding is highly co-operative. The co-operativity was corroborated by EMSA and DNase I footprinting for a number of mutant DNA fragments in which 5'-CTTTGC-3' was changed to 5'-CTTACG-3'. EMSA in the style of circular permutation showed that SopA bends DNA. Mutation at either outermost binding site had a different effect on DNA bending by SopA, reflecting the asymmetry in the arrangement of the binding sites, for which the results of DNase I footprinting were in agreement. Gel filtration chromatography and analytical ultracentrifugation of free SopA showed that the protein can exist as a monomer and oligomers in the absence of ATP. Hence, the results indicate that the co-operativity in SopA's DNA binding is based on its intrinsic protein-protein interaction modified by DNA interaction.
Collapse
Affiliation(s)
- Masahiko Komai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | | | | |
Collapse
|
25
|
Mardanov AV, Lane D, Ravin NV. Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15. Mol Biol 2010. [DOI: 10.1134/s0026893310020111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Schumacher MA, Piro KM, Xu W. Insight into F plasmid DNA segregation revealed by structures of SopB and SopB-DNA complexes. Nucleic Acids Res 2010; 38:4514-26. [PMID: 20236989 PMCID: PMC2910045 DOI: 10.1093/nar/gkq161] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Accurate DNA segregation is essential for genome transmission. Segregation of the prototypical F plasmid requires the centromere-binding protein SopB, the NTPase SopA and the sopC centromere. SopB displays an intriguing range of DNA-binding properties essential for partition; it binds sopC to form a partition complex, which recruits SopA, and it also coats DNA to prevent non-specific SopA–DNA interactions, which inhibits SopA polymerization. To understand the myriad functions of SopB, we determined a series of SopB–DNA crystal structures. SopB does not distort its DNA site and our data suggest that SopB–sopC forms an extended rather than wrapped partition complex with the SopA-interacting domains aligned on one face. SopB is a multidomain protein, which like P1 ParB contains an all-helical DNA-binding domain that is flexibly attached to a compact (β3–α)2 dimer-domain. Unlike P1 ParB, the SopB dimer-domain does not bind DNA. Moreover, SopB contains a unique secondary dimerization motif that bridges between DNA duplexes. Both specific and non-specific SopB–DNA bridging structures were observed. This DNA-linking function suggests a novel mechanism for in trans DNA spreading by SopB, explaining how it might mask DNA to prevent DNA-mediated inhibition of SopA polymerization.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry and Molecular Biology, University of Texas, M.D. Anderson Cancer Center, Unit 1000, Houston, TX 77030, USA.
| | | | | |
Collapse
|
27
|
Ah-Seng Y, Lopez F, Pasta F, Lane D, Bouet JY. Dual role of DNA in regulating ATP hydrolysis by the SopA partition protein. J Biol Chem 2009; 284:30067-75. [PMID: 19740757 DOI: 10.1074/jbc.m109.044800] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, mitotic stability of plasmids and many chromosomes depends on replicon-specific systems, which comprise a centromere, a centromere-binding protein and an ATPase. Dynamic self-assembly of the ATPase appears to enable active partition of replicon copies into cell-halves, but for Walker-box partition ATPases the molecular mechanism is unknown. ATPase activity appears to be essential for this process. DNA and centromere-binding proteins are known to stimulate the ATPase activity but molecular details of the stimulation mechanism have not been reported. We have investigated the interactions which stimulate ATP hydrolysis by the SopA partition ATPase of plasmid F. By using SopA and SopB proteins deficient in DNA binding, we have found that the intrinsic ability of SopA to hydrolyze ATP requires direct DNA binding by SopA but not by SopB. Our results show that two independent interactions of SopA act in synergy to stimulate its ATPase. SopA must interact with (i) DNA, through its ATP-dependent nonspecific DNA binding domain and (ii) SopB, which we show here to provide an arginine-finger motif. In addition, the latter interaction stimulates ATPase maximally when SopB is part of the partition complex. Hence, our data demonstrate that DNA acts on SopA in two ways, directly as nonspecific DNA and through SopB as centromeric DNA, to fully activate SopA ATP hydrolysis.
Collapse
Affiliation(s)
- Yoan Ah-Seng
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS, F-31000 Toulouse, France
| | | | | | | | | |
Collapse
|
28
|
Bartosik AA, Mierzejewska J, Thomas CM, Jagura-Burdzy G. ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. MICROBIOLOGY-SGM 2009; 155:1080-1092. [PMID: 19332810 PMCID: PMC2895232 DOI: 10.1099/mic.0.024661-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deletions leading to complete or partial removal of ParB were introduced into the Pseudomonas aeruginosa chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type P. aeruginosa. All parB mutations affected both bacterial growth and swarming and swimming motilities, and increased the production of anucleate cells. Similar effects were observed after inactivation of parA of P. aeruginosa. As complete loss of ParA destabilized its partner ParB it was unclear deficiency of which protein is responsible for the mutant phenotypes. Analysis of four parB mutants showed that complete loss of ParB destabilized ParA whereas three mutants that retained the N-terminal 90 aa of ParB did not. As all four parB mutants demonstrate the same defects it can be concluded that either ParB, or ParA and ParB in combination, plays an important role in nucleoid distribution, growth and motility in P. aeruginosa.
Collapse
Affiliation(s)
- A A Bartosik
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | - J Mierzejewska
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| | - C M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - G Jagura-Burdzy
- Institute of Biochemistry and Biophysics, PAS, 02-106 Warsaw, Pawinskiego 5A, Poland
| |
Collapse
|
29
|
Castaing JP, Bouet JY, Lane D. F plasmid partition depends on interaction of SopA with non-specific DNA. Mol Microbiol 2008; 70:1000-11. [PMID: 18826408 DOI: 10.1111/j.1365-2958.2008.06465.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Bacterial ATPases belonging to the ParA family assure partition of their replicons by forming dynamic assemblies which move replicon copies into the new cell-halves. The mechanism underlying partition is not understood for the Walker-box ATPase class, which includes most plasmid and all chromosomal ParAs. The ATPases studied both polymerize and interact with non-specific DNA in an ATP-dependent manner. Previous work showed that in vitro, polymerization of one such ATPase, SopA of plasmid F, is inhibited by DNA, suggesting that interaction of SopA with the host nucleoid could regulate partition. In an attempt to identify amino acids in SopA that are needed for interaction with non-specific DNA, we have found that mutation of codon 340 (lysine to alanine) reduces ATP-dependent DNA binding > 100-fold and correspondingly diminishes SopA activities that depend on it: inhibition of polymer formation and persistence, stimulation of basal-level ATP hydrolysis and localization over the nucleoid. The K340A mutant retained all other SopA properties tested except plasmid stabilization; substitution of the mutant SopA for wild-type nearly abolished mini-F partition. The behaviour of this mutant indicates a causal link between interaction with the cell's non-specific DNA and promotion of the dynamic behaviour that ensures F plasmid partition.
Collapse
Affiliation(s)
- Jean-Philippe Castaing
- Laboratoire de Microbiologie et Génétique Moléculaires, Université Paul Sabatier, F31000 Toulouse, France
| | | | | |
Collapse
|
30
|
Extended function of plasmid partition genes: the Sop system of linear phage-plasmid N15 facilitates late gene expression. J Bacteriol 2008; 190:3538-45. [PMID: 18359814 DOI: 10.1128/jb.01993-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitotic stability of the linear plasmid-prophage N15 of Escherichia coli depends on a partition system closely related to that of the F plasmid SopABC. The two Sop systems are distinguished mainly by the arrangement of their centromeric SopB-binding sites, clustered in F (sopC) and dispersed in N15 (IR1 to IR4). Because two of the N15 inverted repeat (IR) sites are located close to elements presumed (by analogy with phage lambda) to regulate late gene expression during the lytic growth of N15, we asked whether Sop partition functions play a role in this process. In N15, a putative Q antiterminator gene is located 6 kb upstream of the probable major late promoter and two intrinsic terminator-like sequences, in contrast to lambda, where the Q gene is adjacent to the late promoter. Northern hybridization and lacZ reporter activity confirmed the identity of the N15 late promoter (p52), demonstrated antiterminator activity of the Q analogue, and located terminator sequences between p52 and the first open reading frame. Following prophage induction, N15 mutated in IR2 (downstream from gene Q) or IR3 (upstream of p52) showed a pronounced delay in lysis relative to that for wild-type N15. Expression of ir3(-)-p52::lacZ during N15 wild-type lytic growth was strongly reduced relative to the equivalent ir3(+) fusion. The provision of Q protein and the IR2 and SopAB proteins in trans to ir3(+)-p52::lacZ increased expression beyond that seen in the absence of any one of these factors. These results indicate that the N15 Sop system has a dual role: partition and regulation of late gene transcription during lytic growth.
Collapse
|
31
|
Mardanov AV, Ravin NV. The antirepressor needed for induction of linear plasmid-prophage N15 belongs to the SOS regulon. J Bacteriol 2007; 189:6333-8. [PMID: 17586637 PMCID: PMC1951935 DOI: 10.1128/jb.00599-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physiological conditions and molecular interactions that control phage production have been studied in only a few families of temperate phages. We investigated the mechanisms that regulate activation of lytic development in lysogens of coliphage N15, a prophage that is not integrated into the host chromosome but exists as a linear plasmid with covalently closed ends. We identified the N15 antirepressor gene, antC, and showed that its product binds to and acts against the main phage repressor, CB. LexA binds to and represses the promoter of antC. Mitomycin C-stimulated N15 induction required RecA-dependent autocleavage of LexA and expression of AntC protein. Thus, a cellular repressor whose activity is regulated by DNA damage controls N15 prophage induction.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, Bldg.7-1, Moscow 117312, Russia
| | | |
Collapse
|
32
|
Mardanov AV, Ravin NV. Initiator protein DnaA of Escherichia coli is a negative replication regulator of linear phage-plasmid N15. RUSS J GENET+ 2007. [DOI: 10.1134/s1022795407010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Bouet JY, Bouvier M, Lane D. Concerted action of plasmid maintenance functions: partition complexes create a requirement for dimer resolution. Mol Microbiol 2006; 62:1447-59. [PMID: 17059567 DOI: 10.1111/j.1365-2958.2006.05454.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Partition of prokaryotic DNA requires formation of specific protein-centromere complexes, but an excess of the protein can disrupt segregation. The mechanisms underlying this destabilization are unknown. We have found that destabilization by the F plasmid partition protein, SopB, of plasmids carrying the F centromere, sopC, results from the capacity of the SopB-sopC partition complex to stimulate plasmid multimerization. Mutant SopBs unable to destabilize failed to increase multimerization. Stability of wild-type mini-F, whose ResD/rfsF site-specific recombination system enables it to resolve multimers to monomers, was barely affected by excess SopB. Destabilization of plasmids lacking the rfsF site was suppressed by recF, recO and recR, but not by recB, mutant alleles, indicating that multimerization is initiated from single-strand gaps. SopB did not alter the amounts or distribution of replication intermediates, implying that SopB-DNA complexes do not create single-strand gaps by blocking replication forks. Rather, the results are consistent with SopB-DNA complexes channelling gapped molecules into the RecFOR recombination pathway. We suggest that extended SopB-DNA complexes increase the likelihood of recombination between sibling plasmids by keeping them in close contact prior to SopA-mediated segregation. These results cast plasmid site-specific resolution in a new role - compensation for untoward consequences of partition complex formation.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de Recherche, Scientifique, Faculté Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
34
|
Dubarry N, Pasta F, Lane D. ParABS systems of the four replicons of Burkholderia cenocepacia: new chromosome centromeres confer partition specificity. J Bacteriol 2006; 188:1489-96. [PMID: 16452432 PMCID: PMC1367244 DOI: 10.1128/jb.188.4.1489-1496.2006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most bacterial chromosomes carry an analogue of the parABS systems that govern plasmid partition, but their role in chromosome partition is ambiguous. parABS systems might be particularly important for orderly segregation of multipartite genomes, where their role may thus be easier to evaluate. We have characterized parABS systems in Burkholderia cenocepacia, whose genome comprises three chromosomes and one low-copy-number plasmid. A single parAB locus and a set of ParB-binding (parS) centromere sites are located near the origin of each replicon. ParA and ParB of the longest chromosome are phylogenetically similar to analogues in other multichromosome and monochromosome bacteria but are distinct from those of smaller chromosomes. The latter form subgroups that correspond to the taxa of their hosts, indicating evolution from plasmids. The parS sites on the smaller chromosomes and the plasmid are similar to the "universal" parS of the main chromosome but with a sequence specific to their replicon. In an Escherichia coli plasmid stabilization test, each parAB exhibits partition activity only with the parS of its own replicon. Hence, parABS function is based on the independent partition of individual chromosomes rather than on a single communal system or network of interacting systems. Stabilization by the smaller chromosome and plasmid systems was enhanced by mutation of parS sites and a promoter internal to their parAB operons, suggesting autoregulatory mechanisms. The small chromosome ParBs were found to silence transcription, a property relevant to autoregulation.
Collapse
Affiliation(s)
- Nelly Dubarry
- Laboratoire de Microbiologie et Génétique Moléculaire, Centre National de Recherche Scientifique, 118 route de Narbonne, 31062 Toulouse, France
| | | | | |
Collapse
|
35
|
Hayes F, Barillà D. The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation. Nat Rev Microbiol 2006; 4:133-43. [PMID: 16415929 DOI: 10.1038/nrmicro1342] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of unicellular and multicellular organisms must be partitioned equitably in coordination with cytokinesis to ensure faithful transmission of duplicated genetic material to daughter cells. Bacteria use sophisticated molecular mechanisms to guarantee accurate segregation of both plasmids and chromosomes at cell division. Plasmid segregation is most commonly mediated by a Walker-type ATPase and one of many DNA-binding proteins that assemble on a cis-acting centromere to form a nucleoprotein complex (the segrosome) that mediates intracellular plasmid transport. Bacterial chromosome segregation involves a multipartite strategy in which several discrete protein complexes potentially participate. Shedding light on the basis of genome segregation in bacteria could indicate new strategies aimed at combating pathogenic and antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences, University of Manchester, Jackson's Mill, PO BOX 88, Sackville Street, Manchester M60 1QD, UK.
| | | |
Collapse
|
36
|
Abstract
Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement and localization patterns of plasmid foci and does not require the involvement of plasmid-specific host-encoded factors.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
37
|
Lim GE, Derman AI, Pogliano J. Bacterial DNA segregation by dynamic SopA polymers. Proc Natl Acad Sci U S A 2005; 102:17658-63. [PMID: 16306264 PMCID: PMC1308903 DOI: 10.1073/pnas.0507222102] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacterial plasmids and chromosomes rely on ParA ATPases for proper positioning within the cell and for efficient segregation to daughter cells. Here we demonstrate that the F-plasmid-partitioning protein SopA polymerizes into filaments in an ATP-dependent manner in vitro, and that the filaments elongate at a rate that is similar to that of plasmid separation in vivo. We show that SopA is a dynamic protein within the cell, undergoing cycles of polymerization and depolymerization, and shuttling back and forth between nucleoprotein complexes that are composed of the SopB protein bound to sopC-containing plasmids (SopB/sopC). The dynamic behavior of SopA is critical for Sop-mediated plasmid DNA segregation; mutations that lock SopA into a static polymer in the cell inhibit plasmid segregation. We show that SopA colocalizes with SopB/sopC in the cell and that SopB/sopC nucleates the assembly of SopA and is required for its dynamic behavior. When SopA is polymerized in vitro in the presence of SopB and sopC-containing DNA, SopA filaments emanate from the plasmid DNA in radial asters. We propose a mechanism in which plasmid separation is driven by the polymerization of SopA, and we speculate that the radial assembly of SopA polymers is responsible for positioning plasmids both before and after segregation.
Collapse
Affiliation(s)
- Grace E Lim
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | | | | |
Collapse
|
38
|
Ebersbach G, Sherratt DJ, Gerdes K. Partition-associated incompatibility caused by random assortment of pure plasmid clusters. Mol Microbiol 2005; 56:1430-40. [PMID: 15916596 DOI: 10.1111/j.1365-2958.2005.04643.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Summary Bacterial plasmids and chromosomes encode centromere-like partition loci that actively segregate DNA before cell division. The molecular mechanism behind DNA segregation in bacteria is largely unknown. Here we analyse the mechanism of partition-associated incompatibility for plasmid pB171, a phenotype associated with all known plasmid-encoded centromere loci. An R1 plasmid carrying par2 from plasmid pB171 was destabilized by the presence of an F plasmid carrying parC1, parC2 or the entire par2 locus of pB171. Strikingly, cytological double-labelling experiments revealed no evidence of long-lived pairing of plasmids. Instead, pure R1 and F foci were positioned along the length of the cell, and in a random order. Thus, our results raise the possibility that partition-mediated plasmid incompatibility is not caused by pairing of heterologous plasmids but instead by random positioning of pure plasmid clusters along the long axis of the cell. The strength of the incompatibility was correlated with the capability of the plasmids to compete for the mid-cell position.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230 Odense M, University of Southern Denmark, Denmark
| | | | | |
Collapse
|
39
|
Mardanov AV, Ravin NV. Functional characterization of the repA replication gene of linear plasmid prophage N15. Res Microbiol 2005; 157:176-83. [PMID: 16129583 DOI: 10.1016/j.resmic.2005.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/25/2005] [Accepted: 06/14/2005] [Indexed: 11/20/2022]
Abstract
The prophage of coliphage N15 is not integrated into the chromosome, but exists as a linear plasmid molecule with covalently closed ends. The only phage gene required for replication of circular N15 miniplasmids is repA (gene 37). Here we show that RepA-driven replication of the N15-based circular and linear miniplasmids is independent of host DnaB helicase protein, but requires the host DnaG primase. Replication of phage N15 DNA during lytic growth following infection does not depend on either DnaG or DnaB, but DnaG is required for lytic development after induction of the N15 lysogen. Finally, protein sequence analysis and replication data using different mutant strains suggest that RepA protein combines helicase and primase functions.
Collapse
Affiliation(s)
- Andrey V Mardanov
- Centre "Bioengineering", Russian Academy of Sciences, Prosp. 60-let Oktiabria, bld. 7-1, Moscow 117312, Russia
| | | |
Collapse
|
40
|
Leonard TA, Møller-Jensen J, Löwe J. Towards understanding the molecular basis of bacterial DNA segregation. Philos Trans R Soc Lond B Biol Sci 2005; 360:523-35. [PMID: 15897178 PMCID: PMC1569471 DOI: 10.1098/rstb.2004.1608] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteria ensure the fidelity of genetic inheritance by the coordinated control of chromosome segregation and cell division. Here, we review the molecules and mechanisms that govern the correct subcellular positioning and rapid separation of newly replicated chromosomes and plasmids towards the cell poles and, significantly, the emergence of mitotic-like machineries capable of segregating plasmid DNA. We further describe surprising similarities between proteins involved in DNA partitioning (ParA/ParB) and control of cell division (MinD/MinE), suggesting a mechanism for intracellular positioning common to the two processes. Finally, we discuss the role that the bacterial cytoskeleton plays in DNA partitioning and the missing link between prokaryotes and eukaryotes that is bacterial mechano-chemical motor proteins.
Collapse
Affiliation(s)
- Thomas A Leonard
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
41
|
Fothergill TJG, Barillà D, Hayes F. Protein diversity confers specificity in plasmid segregation. J Bacteriol 2005; 187:2651-61. [PMID: 15805511 PMCID: PMC1070370 DOI: 10.1128/jb.187.8.2651-2661.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 01/10/2005] [Indexed: 11/20/2022] Open
Abstract
The ParG segregation protein (8.6 kDa) of multidrug resistance plasmid TP228 is a homodimeric DNA-binding factor. The ParG dimer consists of intertwined C-terminal domains that adopt a ribbon-helix-helix architecture and a pair of flexible, unstructured N-terminal tails. A variety of plasmids possess partition loci with similar organizations to that of TP228, but instead of ParG homologs, these plasmids specify a diversity of unrelated, but similarly sized, partition proteins. These include the proteobacterial pTAR, pVT745, and pB171 plasmids. The ParG analogs of these plasmids were characterized in parallel with the ParG homolog encoded by the pseudomonal plasmid pVS1. Like ParG, the four proteins are dimeric. No heterodimerization was detectable in vivo among the proteins nor with the prototypical ParG protein, suggesting that monomer-monomer interactions are specific among the five proteins. Nevertheless, as with ParG, the ParG analogs all possess significant amounts of unordered amino acid residues, potentially highlighting a common structural link among the proteins. Furthermore, the ParG analogs bind specifically to the DNA regions located upstream of their homologous parF-like genes. These nucleoprotein interactions are largely restricted to cognate protein-DNA pairs. The results reveal that the partition complexes of these and related plasmids have recruited disparate DNA-binding factors that provide a layer of specificity to the macromolecular interactions that mediate plasmid segregation.
Collapse
Affiliation(s)
- Timothy J G Fothergill
- Faculty of Life Sciences, University of Manchester, Jackson's Mill, Sackville St., Manchester M60 1QD, England
| | | | | |
Collapse
|
42
|
Leonard TA, Butler PJ, Löwe J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. EMBO J 2005; 24:270-82. [PMID: 15635448 PMCID: PMC545817 DOI: 10.1038/sj.emboj.7600530] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 11/29/2004] [Indexed: 11/08/2022] Open
Abstract
Soj and Spo0J of the Gram-negative hyperthermophile Thermus thermophilus belong to the conserved ParAB family of bacterial proteins implicated in plasmid and chromosome partitioning. Spo0J binds to DNA near the replication origin and localises at the poles following initiation of replication. Soj oscillates in the nucleoid region in an ATP- and Spo0J-dependent fashion. Here, we show that Soj undergoes ATP-dependent dimerisation in solution and forms nucleoprotein filaments with DNA. Crystal structures of Soj in three nucleotide states demonstrate that the empty and ADP-bound states are monomeric, while a hydrolysis-deficient mutant, D44A, is capable of forming a nucleotide 'sandwich' dimer. Soj ATPase activity is stimulated by Spo0J or the N-terminal 20 amino-acid peptide of Spo0J. Our analysis shows that dimerisation and activation involving a peptide containing a Lys/Arg is conserved for Soj, ParA and MinD and their modulators Spo0J, ParB and MinE, respectively. By homology to the nitrogenase iron protein and the GTPases Ffh/FtsY, we suggest that Soj dimerisation and regulation represent a conserved biological switch.
Collapse
|
43
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dorokhov BD, Lane D, Ravin NV. Partition operon expression in the linear plasmid prophage N15 is controlled by both Sop proteins and protelomerase. Mol Microbiol 2003; 50:713-21. [PMID: 14617191 DOI: 10.1046/j.1365-2958.2003.03738.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The temperate coliphage N15, unlike most low copy-number prokaryotic replicons, is maintained as a linear DNA molecule with covalently closed ends. Accurate partitioning of the plasmid prophage is assured by a close homologue of the sop locus of the F plasmid. However, the region upstream of the N15 sopAB genes contains multiple putative promoters, in contrast to F sop whose expression is driven by one negatively autoregulated promoter. In addition, the centromere of N15 is represented by four inverted repeats located at widely separated sites within the region essential for replication and control of lytic functions. We have analysed expression of N15 sop genes. We find that transcription of N15 sop is driven by two major promoters. The first, P1, is similar in sequence and function to the F sop promoter; it is repressed by Sop proteins. The second promoter, P2, is upstream of P1 and is several times stronger. It is insensitive to regulation by Sop proteins but is tightly repressed by protelomerase, the N15 enzyme that completes prophage replication by generating hairpin telomeres. These results establish a regulatory link between the partition system and other processes of N15 maintenance.
Collapse
Affiliation(s)
- Boris D Dorokhov
- Centre Bioengineering, Russian Academy of Sciences, Prosp. 60-let Oktiabria, bld.7-1; Moscow 117312, Russia
| | | | | |
Collapse
|