1
|
Tsagris M, Alenazi A. An investigation of hypothesis testing procedures for circular and spherical mean vectors. COMMUN STAT-SIMUL C 2022. [DOI: 10.1080/03610918.2022.2045499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Michail Tsagris
- Department of Economics, University of Crete, Rethymno, Greece
| | - Abdulaziz Alenazi
- Department of Mathematics, College of Science, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
2
|
Ferreira LM, Sáfadi T, Ferreira JL. Evaluation of genome similarities using a wavelet-domain approach. Rev Soc Bras Med Trop 2020; 53:e20190470. [PMID: 32428175 PMCID: PMC7269520 DOI: 10.1590/0037-8682-0470-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/10/2020] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Tuberculosis is listed among the top 10 causes of deaths worldwide. The resistant strains causing this disease have been considered to be responsible for public health emergencies and health security threats. As stated by the World Health Organization (WHO), around 558,000 different cases coupled with resistance to rifampicin (the most operative first-line drug) have been estimated to date. Therefore, in order to detect the resistant strains using the genomes of Mycobacterium tuberculosis (MTB), we propose a new methodology for the analysis of genomic similarities that associate the different levels of decomposition of the genome (discrete non-decimated wavelet transform) and the Hurst exponent. METHODS The signals corresponding to the ten analyzed sequences were obtained by assessing GC content, and then these signals were decomposed using the discrete non-decimated wavelet transform along with the Daubechies wavelet with four null moments at five levels of decomposition. The Hurst exponent was calculated at each decomposition level using five different methods. The cluster analysis was performed using the results obtained for the Hurst exponent. RESULTS The aggregated variance, differenced aggregated variance, and aggregated absolute value methods presented the formation of three groups, whereas the Peng and R/S methods presented the formation of two groups. The aggregated variance method exhibited the best results with respect to the group formation between similar strains. CONCLUSION The evaluation of Hurst exponent associated with discrete non-decimated wavelet transform can be used as a measure of similarity between genome sequences, thus leading to a refinement in the analysis.
Collapse
Affiliation(s)
- Leila Maria Ferreira
- Programa de Pós-Graduação Stricto Sensu em Estatística e Experimentação Agropecuária, Universidade Federal de Lavras, Lavras, MG, Brasil
| | - Thelma Sáfadi
- Departamento de Estatística, Universidade Federal de Lavras, Lavras, MG, Brasil
| | | |
Collapse
|
3
|
Danchin A, Sekowska A, Noria S. Functional Requirements in the Program and the Cell Chassis for Next-Generation Synthetic Biology. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Antoine Danchin
- Institute of Cardiometabolism and Nutrition; 47 boulevard de l'Hôpital Paris 75013 France
| | - Agnieszka Sekowska
- Institute of Cardiometabolism and Nutrition; 47 boulevard de l'Hôpital Paris 75013 France
| | - Stanislas Noria
- Fondation Fourmentin-Guilbert; 2 avenue du Pavé Neuf Noisy le Grand 93160 France
| |
Collapse
|
4
|
Junier I, Frémont P, Rivoire O. Universal and idiosyncratic characteristic lengths in bacterial genomes. Phys Biol 2018; 15:035001. [PMID: 29512518 DOI: 10.1088/1478-3975/aab4ac] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10-20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, TIMC-IMAG, Grenoble, France. Univ. Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | | | | |
Collapse
|
5
|
Hudek L, Pearson L, Michalczyk AA, Bräu L, Neilan BA, Ackland ML. Characterization of two cation diffusion facilitators NpunF0707 and NpunF1794 in Nostoc punctiforme. J Appl Microbiol 2015; 119:1357-70. [PMID: 26299407 DOI: 10.1111/jam.12942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 11/28/2022]
Abstract
AIMS To characterize genes involved in maintaining homeostatic levels of zinc in the cyanobacterium Nostoc punctiforme. METHODS AND RESULTS Metal efflux transporters play a central role in maintaining homeostatic levels of trace elements such as zinc. Sequence analyses of the N. punctiforme genome identified two potential cation diffusion facilitator (CDF) metal efflux transporters, Npun_F0707 (Cdf31) and Npun_F1794 (Cdf33). Deletion of either Cdf31or Cdf33 resulted in increased zinc retention over 3 h. Interestingly, Cdf31(-) and Cdf33(-) mutants showed no change in sensitivity to zinc exposure in comparison with the wild type, suggesting some compensatory capacity for the loss of each other. Using qRT-PCR, a possible interaction was observed between the two cdf's, where the Cdf31(-) mutant had a more profound effect on cdf33 expression than Cdf33(-) did on cdf31. Over-expression of Cdf31 and Cdf33 in ZntA(-) - and ZitB(-) -deficient Escherichia coli revealed function similarities between the ZntA and ZitB of E. coli and the cyanobacterial transporters. CONCLUSIONS The data presented shed light on the function of two important transporters that regulate zinc homeostasis in N. punctiforme. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows for the first time the functional characterization of two cyanobacterial zinc efflux proteins belonging to the CDF family.
Collapse
Affiliation(s)
- L Hudek
- Centre for Regional and Rural Futures, Deakin University, Burwood, Melbourne, Vic., Australia.,Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., Australia
| | - L Pearson
- Australian Centre for Astrobiology and School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW, Australia
| | - A A Michalczyk
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., Australia
| | - L Bräu
- Centre for Regional and Rural Futures, Deakin University, Burwood, Melbourne, Vic., Australia.,Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., Australia
| | - B A Neilan
- Australian Centre for Astrobiology and School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW, Australia
| | - M L Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Vic., Australia
| |
Collapse
|
6
|
Junier I. Conserved patterns in bacterial genomes: a conundrum physically tailored by evolutionary tinkering. Comput Biol Chem 2014; 53 Pt A:125-33. [PMID: 25239779 DOI: 10.1016/j.compbiolchem.2014.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/17/2022]
Abstract
The proper functioning of bacteria is encoded in their genome at multiple levels or scales, each of which is constrained by specific physical forces. At the smallest spatial scales, interatomic forces dictate the folding and function of proteins and nucleic acids. On longer length scales, stochastic forces emerging from the thermal jiggling of proteins and RNAs impose strong constraints on the organization of genes along chromosomes, more particularly in the context of the building of nucleoprotein complexes and the operational mode of regulatory agents. At the cellular level, transcription, replication and cell division activities generate forces that act on both the internal structure and cellular location of chromosomes. The overall result is a complex multi-scale organization of genomes that reflects the evolutionary tinkering of bacteria. The goal of this review is to highlight avenues for deciphering this complexity by focusing on patterns that are conserved among evolutionarily distant bacteria. To this end, I discuss three different organizational scales: the protein structures, the chromosomal organization of genes and the global structure of chromosomes.
Collapse
Affiliation(s)
- Ivan Junier
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
7
|
Weng X, Xiao J. Spatial organization of transcription in bacterial cells. Trends Genet 2014; 30:287-97. [PMID: 24862529 DOI: 10.1016/j.tig.2014.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/27/2022]
Abstract
Prokaryotic transcription has been extensively studied over the past half a century. However, there often exists a gap between the structural, mechanistic description of transcription obtained from in vitro biochemical studies, and the cellular, phenomenological observations from in vivo genetic studies. It is now accepted that a living bacterial cell is a complex entity; the heterogeneous cellular environment is drastically different from the homogenous, well-mixed situation in vitro. Where molecules are inside a cell may be important for their function; hence, the spatial organization of different molecular components may provide a new means of transcription regulation in vivo, possibly bridging this gap. In this review, we survey current evidence for the spatial organization of four major components of transcription [genes, transcription factors, RNA polymerase (RNAP) and RNAs] and critically analyze their biological significance.
Collapse
Affiliation(s)
- Xiaoli Weng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Hudek L, Pearson LA, Michalczyk A, Neilan BA, Ackland ML. Functional characterization of the twin ZIP/SLC39 metal transporters, NpunF3111 and NpunF2202 in Nostoc punctiforme. Appl Microbiol Biotechnol 2013; 97:8649-62. [PMID: 23812332 DOI: 10.1007/s00253-013-5047-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
The ZIP family of metal transporters is involved in the transport of Zn(2+) and other metal cations from the extracellular environment and/or organelles into the cytoplasm of prokaryotes, eukaryotes and archaeotes. In the present study, we identified twin ZIP transporters, Zip11 (Npun_F3111) and Zip63 (Npun_F2202) encoded within the genome of the filamentous cyanobacterium, Nostoc punctiforme PCC73120. Sequence-based analyses and structural predictions confirmed that these cyanobacterial transporters belong to the SLC39 subfamily of metal transporters. Quantitative real-time (QRT)-PCR analyses suggested that the enzymes encoded by zip11 and zip63 have a broad allocrite range that includes zinc as well as cadmium, cobalt, copper, manganese and nickel. Inactivation of either zip11 or zip63 via insertional mutagenesis in N. punctiforme resulted in reduced expression of both genes, highlighting a possible co-regulation mechanism. Uptake experiments using (65)Zn demonstrated that both zip mutants had diminished zinc uptake capacity, with the deletion of zip11 resulting in the greatest overall reduction in (65)Zn uptake. Over-expression of Zip11 and Zip63 in an E. coli mutant strain (ZupT736::kan) restored divalent metal cation uptake, providing further evidence that these transporters are involved in Zn uptake in N. punctiforme. Our findings show the functional role of these twin metal uptake transporters in N. punctiforme, which are independently expressed in the presence of an array of metals. Both Zip11 and Zip63 are required for the maintenance of homeostatic levels of intracellular zinc N. punctiforme, although Zip11 appears to be the primary zinc transporter in this cyanobacterium, both ZIP's may be part of a larger metal uptake system with shared regulatory elements.
Collapse
Affiliation(s)
- L Hudek
- Centre for Cellular and Molecular Biology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | | | | | | | | |
Collapse
|
9
|
Audit B, Baker A, Chen CL, Rappailles A, Guilbaud G, Julienne H, Goldar A, d'Aubenton-Carafa Y, Hyrien O, Thermes C, Arneodo A. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nat Protoc 2012; 8:98-110. [PMID: 23237832 DOI: 10.1038/nprot.2012.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.
Collapse
|
10
|
Long-chain N-acyl amino acid synthases are linked to the putative PEP-CTERM/exosortase protein-sorting system in Gram-negative bacteria. J Bacteriol 2011; 193:5707-15. [PMID: 21840974 DOI: 10.1128/jb.05426-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Clones that encode the biosynthesis of long-chain N-acyl amino acids are frequently recovered from activity-based screens of soil metagenomic libraries. Members of a diverse set of enzymes referred to as N-acyl amino acid synthases are responsible for the production of all metagenome-derived N-acyl amino acids characterized to date. Based on the frequency at which N-acyl amino acid synthase genes have been identified from metagenomic samples, related genes are expected to be common throughout the global bacterial metagenome. Homologs of metagenome-derived N-acyl amino acid synthase genes are scarce, however, within the sequenced genomes of cultured bacterial species. Toward the goal of understanding the role(s) played by N-acyl amino acids in environmental bacteria, we looked for conserved genetic features that are positionally linked to metagenome-derived N-acyl amino acid synthase genes. This analysis revealed that N-acyl amino acid synthase genes are frequently found adjacent to genes predicted to encode PEP-CTERM motif-containing proteins and, in some cases, other conserved elements of the PEP-CTERM/exosortase system. Although relatively little is known about the PEP-CTERM/exosortase system, its core components are believed to represent the putative Gram-negative equivalent of the LPXTG/sortase protein-sorting system of Gram-positive bacteria. During the course of this investigation, we were able to provide evidence that an uncharacterized family of hypothetical acyltransferases, which had previously been linked to the PEP-CTERM/exosortase system by bioinformatics, is a new family of N-acyl amino acid synthases that is widely distributed among the PEP-CTERM/exosortase system-containing Proteobacteria.
Collapse
|
11
|
Genomic arrangement of bacterial operons is constrained by biological pathways encoded in the genome. Proc Natl Acad Sci U S A 2010; 107:6310-5. [PMID: 20308592 DOI: 10.1073/pnas.0911237107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is generally known that bacterial genes working in the same biological pathways tend to group into operons, possibly to facilitate cotranscription and to provide stoichiometry. However, very little is understood about what may determine the global arrangement of bacterial genes in a genome beyond the operon level. Here we present evidence that the global arrangement of operons in a bacterial genome is largely influenced by the tendency that a bacterium keeps its operons encoding the same biological pathway in nearby genomic locations, and by the tendency to keep operons involved in multiple pathways in locations close to the other members of their participating pathways. We also observed that the activation frequencies of pathways also influence the genomic locations of their encoding operons, tending to have operons of the more frequently activated pathways more tightly clustered together. We have quantitatively assessed the influences on the global genomic arrangement of operons by different factors. We found that the current arrangements of operons in most of the bacterial genomes we studied tend to minimize the overall distance between consecutive operons of a same pathway across all pathways encoded in the genome.
Collapse
|
12
|
Abstract
Many bacterial cellular processes interact intimately with the chromosome. Such interplay is the major driving force of genome structure or organization. Interactions take place at different scales-local for gene expression, global for replication-and lead to the differentiation of the chromosome into organizational units such as operons, replichores, or macrodomains. These processes are intermingled in the cell and create complex higher-level organizational features that are adaptive because they favor the interplay between the processes. The surprising result of selection for genome organization is that gene repertoires change much more quickly than chromosomal structure. Comparative genomics and experimental genomic manipulations are untangling the different cellular and evolutionary mechanisms causing such resilience to change. Since organization results from cellular processes, a better understanding of chromosome organization will help unravel the underlying cellular processes and their diversity.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, F-75015 Paris, France.
| |
Collapse
|
13
|
Ryan PA, Kirk BW, Euler CW, Schuch R, Fischetti VA. Novel algorithms reveal streptococcal transcriptomes and clues about undefined genes. PLoS Comput Biol 2008; 3:e132. [PMID: 17616984 PMCID: PMC1913099 DOI: 10.1371/journal.pcbi.0030132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/22/2007] [Indexed: 01/22/2023] Open
Abstract
Bacteria-host interactions are dynamic processes, and understanding transcriptional responses that directly or indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor clustering, a new computational method for further analyzing bacterial microarray data that combines two informative characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e., co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible without its application. We assessed the biological significance of two identified genes by assaying deletion mutants for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell adherence.
Collapse
Affiliation(s)
- Patricia A Ryan
- Department of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA.
| | | | | | | | | |
Collapse
|
14
|
Cozzuto L, Petrillo M, Silvestro G, Di Nocera PP, Paolella G. Systematic identification of stem-loop containing sequence families in bacterial genomes. BMC Genomics 2008; 9:20. [PMID: 18201379 PMCID: PMC2267715 DOI: 10.1186/1471-2164-9-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 01/17/2008] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Analysis of non-coding sequences in several bacterial genomes brought to the identification of families of repeated sequences, able to fold as secondary structures. These sequences have often been claimed to be transcribed and fulfill a functional role. A previous systematic analysis of a representative set of 40 bacterial genomes produced a large collection of sequences, potentially able to fold as stem-loop structures (SLS). Computational analysis of these sequences was carried out by searching for families of repetitive nucleic acid elements sharing a common secondary structure. RESULTS The initial clustering procedure identified clusters of similar sequences in 29 genomes, corresponding to about 1% of the whole population. Sequences selected in this way have a substantially higher aptitude to fold into a stable secondary structure than the initial set. Removal of redundancies and regrouping of the selected sequences resulted in a final set of 92 families, defined by HMM analysis. 25 of them include all well-known SLS containing repeats and others reported in literature, but not analyzed in detail. The remaining 67 families have not been previously described. Two thirds of the families share a common predicted secondary structure and are located within intergenic regions. CONCLUSION Systematic analysis of 40 bacterial genomes revealed a large number of repeated sequence families, including known and novel ones. Their predicted structure and genomic location suggest that, even in compact bacterial genomes, a relatively large fraction of the genome consists of non-protein-coding sequences, possibly functioning at the RNA level.
Collapse
Affiliation(s)
- Luca Cozzuto
- CEINGE Biotecnologie Avanzate scarl, Via Comunale Margherita 482, 80145 Napoli, Italy.
| | | | | | | | | |
Collapse
|
15
|
Viñuelas J, Calevro F, Remond D, Bernillon J, Rahbé Y, Febvay G, Fayard JM, Charles H. Conservation of the links between gene transcription and chromosomal organization in the highly reduced genome of Buchnera aphidicola. BMC Genomics 2007; 8:143. [PMID: 17547756 PMCID: PMC1899503 DOI: 10.1186/1471-2164-8-143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 06/04/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Genomic studies on bacteria have clearly shown the existence of chromosomal organization as regards, for example, to gene localization, order and orientation. Moreover, transcriptomic analyses have demonstrated that, in free-living bacteria, gene transcription levels and chromosomal organization are mutually influenced. We have explored the possible conservation of relationships between mRNA abundances and chromosomal organization in the highly reduced genome of Buchnera aphidicola, the primary endosymbiont of the aphids, and a close relative to Escherichia coli. RESULTS Using an oligonucleotide-based microarray, we normalized the transcriptomic data by genomic DNA signals in order to have access to inter-gene comparison data. Our analysis showed that mRNA abundances, gene organization (operon) and gene essentiality are correlated in Buchnera (i.e., the most expressed genes are essential genes organized in operons) whereas no link between mRNA abundances and gene strand bias was found. The effect of Buchnera genome evolution on gene expression levels has also been analysed in order to assess the constraints imposed by the obligate symbiosis with aphids, underlining the importance of some gene sets for the survival of the two partners. Finally, our results show the existence of spatial periodic transcriptional patterns in the genome of Buchnera. CONCLUSION Despite an important reduction in its genome size and an apparent decay of its capacity for regulating transcription, this work reveals a significant correlation between mRNA abundances and chromosomal organization of the aphid-symbiont Buchnera.
Collapse
Affiliation(s)
- José Viñuelas
- UMR 203 Biologie Fonctionnelle Insectes et Interactions, IFR41, INRA, INSA-Lyon, F-69621 Villeurbanne, France
| | - Federica Calevro
- UMR 203 Biologie Fonctionnelle Insectes et Interactions, IFR41, INRA, INSA-Lyon, F-69621 Villeurbanne, France
| | - Didier Remond
- Laboratoire de Dynamique des Machines et des Structures, INSA-Lyon, F-69621 Villeurbanne, France
| | - Jacques Bernillon
- DTAMB, Université Claude Bernard Lyon-1, F-69622 Villeurbanne, France
| | - Yvan Rahbé
- UMR 203 Biologie Fonctionnelle Insectes et Interactions, IFR41, INRA, INSA-Lyon, F-69621 Villeurbanne, France
| | - Gérard Febvay
- UMR 203 Biologie Fonctionnelle Insectes et Interactions, IFR41, INRA, INSA-Lyon, F-69621 Villeurbanne, France
| | - Jean-Michel Fayard
- UMR 203 Biologie Fonctionnelle Insectes et Interactions, IFR41, INRA, INSA-Lyon, F-69621 Villeurbanne, France
| | - Hubert Charles
- UMR 203 Biologie Fonctionnelle Insectes et Interactions, IFR41, INRA, INSA-Lyon, F-69621 Villeurbanne, France
| |
Collapse
|
16
|
Dryselius R, Kurokawa K, Iida T. Vibrionaceae, a versatile bacterial family with evolutionarily conserved variability. Res Microbiol 2007; 158:479-86. [PMID: 17590316 DOI: 10.1016/j.resmic.2007.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 11/19/2022]
Abstract
Despite the broad diversity of Vibrionaceae, they display a surprising number of conserved features, most striking of which may be the ubiquitous presence of two chromosomes. Based on complete genome sequences and the findings generated therefrom, we discuss the origin, evolution and stability of this unusual chromosomal arrangement as well as its possible benefits.
Collapse
Affiliation(s)
- Rikard Dryselius
- Laboratory of Genomic Research on Pathogenic Bacteria, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
17
|
Locational distribution of gene functional classes in Arabidopsis thaliana. BMC Bioinformatics 2007; 8:112. [PMID: 17397552 PMCID: PMC1855069 DOI: 10.1186/1471-2105-8-112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 03/30/2007] [Indexed: 11/10/2022] Open
Abstract
Background We are interested in understanding the locational distribution of genes and their functions in genomes, as this distribution has both functional and evolutionary significance. Gene locational distribution is known to be affected by various evolutionary processes, with tandem duplication thought to be the main process producing clustering of homologous sequences. Recent research has found clustering of protein structural families in the human genome, even when genes identified as tandem duplicates have been removed from the data. However, this previous research was hindered as they were unable to analyse small sample sizes. This is a challenge for bioinformatics as more specific functional classes have fewer examples and conventional statistical analyses of these small data sets often produces unsatisfactory results. Results We have developed a novel bioinformatics method based on Monte Carlo methods and Greenwood's spacing statistic for the computational analysis of the distribution of individual functional classes of genes (from GO). We used this to make the first comprehensive statistical analysis of the relationship between gene functional class and location on a genome. Analysis of the distribution of all genes except tandem duplicates on the five chromosomes of A. thaliana reveals that the distribution on chromosomes I, II, IV and V is clustered at P = 0.001. Many functional classes are clustered, with the degree of clustering within an individual class generally consistent across all five chromosomes. A novel and surprising result was that the locational distribution of some functional classes were significantly more evenly spaced than would be expected by chance. Conclusion Analysis of the A. thaliana genome reveals evidence of unexplained order in the locational distribution of genes. The same general analysis method can be applied to any genome, and indeed any sequential data involving classes.
Collapse
|
18
|
Romantsov T, Fishov I, Krichevsky O. Internal structure and dynamics of isolated Escherichia coli nucleoids assessed by fluorescence correlation spectroscopy. Biophys J 2007; 92:2875-84. [PMID: 17259281 PMCID: PMC1831688 DOI: 10.1529/biophysj.106.095729] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The morphology and dynamics of DNA in a bacterial nucleoid affects the kinetics of such major processes as DNA replication, gene expression. and chromosome segregation. In this work, we have applied fluorescence correlation spectroscopy to assess the structure and internal dynamics of isolated Escherichia coli nucleoids. We show that structural information can be extracted from the amplitude of fluorescence correlation spectroscopy correlation functions of randomly labeled nucleoids. Based on the developed formalism we estimate the characteristic size of nucleoid structural units for native, relaxed, and positively supercoiled nucleoids. The degree of supercoiling was varied using the intercalating agent chloroquine and evaluated from fluorescence microscopy images. The relaxation of superhelicity was accompanied by 15-fold decrease in the length of nucleoid units (from approximately 50 kbp to approximately 3 kbp).
Collapse
Affiliation(s)
- Tatyana Romantsov
- Department of Life Sciences, and Physics Department and Ilse Kats Center for Nanoscience, Ben-Gurion University, Beer-Sheva, Israel
| | | | | |
Collapse
|
19
|
Salerno W, Havlak P, Miller J. Scale-invariant structure of strongly conserved sequence in genomic intersections and alignments. Proc Natl Acad Sci U S A 2006; 103:13121-5. [PMID: 16924100 PMCID: PMC1559763 DOI: 10.1073/pnas.0605735103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A power-law distribution of the length of perfectly conserved sequence from mouse/human whole-genome intersection and alignment is exhibited. Spatial correlations of these elements within the mouse genome are studied. It is argued that these power-law distributions and correlations are comprised in part by functional noncoding sequence and ought to be accounted for in estimating the statistical significance of apparent sequence conservation. These inter-genomic correlations of conservation are placed in the context of previously observed intra-genomic correlations, and their possible origins and consequences are discussed.
Collapse
Affiliation(s)
| | - Paul Havlak
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Jonathan Miller
- *Department of Biochemistry and Molecular Biology and
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Petrillo M, Silvestro G, Di Nocera PP, Boccia A, Paolella G. Stem-loop structures in prokaryotic genomes. BMC Genomics 2006; 7:170. [PMID: 16820051 PMCID: PMC1590033 DOI: 10.1186/1471-2164-7-170] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 07/04/2006] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. RESULTS Systematic analysis of the distribution of stem-loop structures (SLSs) in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. CONCLUSION In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or the turnover of cotranscribed mRNAs. Three previously undescribed families of repeated sequences were found in Yersiniae, Bordetellae and Enterococci.
Collapse
Affiliation(s)
- Mauro Petrillo
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giustina Silvestro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Pier Paolo Di Nocera
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
- Dipartimento SAVA Università del Molise Via De Sanctis, 86100 Campobasso, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
21
|
Ouzounis C, Mazière P. Maps, books and other metaphors for systems biology. Biosystems 2006; 85:6-10. [PMID: 16757097 DOI: 10.1016/j.biosystems.2006.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
We briefly review the use of metaphors in science and progressively focus on fields from biology and molecular biology to genomics and bioinformatics. We discuss how metaphors are both a tool for scientific exploration and a medium for public communication of complex subjects, by various short examples. Finally, we propose a metaphor for systems biology that provides an illuminating perspective for the ambitious goals of this field and delimits its current agenda.
Collapse
Affiliation(s)
- Christos Ouzounis
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, UK.
| | | |
Collapse
|
22
|
Couturier E, Rocha EPC. Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol Microbiol 2006; 59:1506-18. [PMID: 16468991 DOI: 10.1111/j.1365-2958.2006.05046.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bidirectional replication of bacterial genomes leads to transient gene dosage effects. Here, we show that such effects shape the chromosome organisation of fast-growing bacteria and that they correlate strongly with maximal growth rate. Surprisingly the predicted maximal number of replication rounds shows little if any phylogenetic inertia, suggesting that it is a very labile trait. Yet, a combination of theoretical and statistical analyses predicts that dozens of replication forks may be simultaneously present in the cells of certain species. This suggests a strikingly efficient management of the replication apparatus, of replication fork arrests and of chromosome segregation in such cells. Gene dosage effects strongly constrain the position of genes involved in translation and transcription, but not other highly expressed genes. The relative proximity of the former genes to the origin of replication follows the regulatory dependencies observed under exponential growth, as the bias is stronger for RNA polymerase, then rDNA, then ribosomal proteins and tDNA. Within tDNAs we find that only the positions of the previously proposed 'ubiquitous' tRNA, which translate the most frequent codons in highly expressed genes, show strong signs of selection for gene dosage effects. Finally, we provide evidence for selection acting upon genome organisation to take advantage of gene dosage effects by identifying a positive correlation between genome stability and the number of simultaneous replication rounds. We also show that gene dosage effects can explain the over-representation of highly expressed genes in the largest replichore of genomes containing more than one chromosome. Together, these results demonstrate that replication-associated gene dosage is an important determinant of chromosome organisation and dynamics, especially among fast-growing bacteria.
Collapse
Affiliation(s)
- Etienne Couturier
- Atelier de Bioinformatique, Université Pierre et Marie Curie, 12, Rue Cuvier, 75005 Paris, France
| | | |
Collapse
|
23
|
Bailly-Bechet M, Danchin A, Iqbal M, Marsili M, Vergassola M. Codon usage domains over bacterial chromosomes. PLoS Comput Biol 2006; 2:e37. [PMID: 16683018 PMCID: PMC1447655 DOI: 10.1371/journal.pcbi.0020037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/13/2006] [Indexed: 11/19/2022] Open
Abstract
The geography of codon bias distributions over prokaryotic genomes and its impact upon chromosomal organization are analyzed. To this aim, we introduce a clustering method based on information theory, specifically designed to cluster genes according to their codon usage and apply it to the coding sequences of Escherichia coli and Bacillus subtilis. One of the clusters identified in each of the organisms is found to be related to expression levels, as expected, but other groups feature an over-representation of genes belonging to different functional groups, namely horizontally transferred genes, motility, and intermediary metabolism. Furthermore, we show that genes with a similar bias tend to be close to each other on the chromosome and organized in coherent domains, more extended than operons, demonstrating a role of translation in structuring bacterial chromosomes. It is argued that a sizeable contribution to this effect comes from the dynamical compartimentalization induced by the recycling of tRNAs, leading to gene expression rates dependent on their genomic and expression context.
Collapse
Affiliation(s)
- Marc Bailly-Bechet
- CNRS URA 2171, Institute Pasteur, Unité Génétique in silico, Paris, France
| | - Antoine Danchin
- CNRS URA 2171, Institute Pasteur, Unité Génétique des Génomes Bactériens, Paris, France
| | - Mudassar Iqbal
- Abdus Salam International Center Theoretical Physics, Trieste, Italy
- Computing Laboratory, University of Kent, Canterbury, Kent, United Kingdom
| | - Matteo Marsili
- Abdus Salam International Center Theoretical Physics, Trieste, Italy
| | - Massimo Vergassola
- CNRS URA 2171, Institute Pasteur, Unité Génétique in silico, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
24
|
Allen TE, Price ND, Joyce AR, Palsson BØ. Long-range periodic patterns in microbial genomes indicate significant multi-scale chromosomal organization. PLoS Comput Biol 2006; 2:e2. [PMID: 16410829 PMCID: PMC1326223 DOI: 10.1371/journal.pcbi.0020002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 12/07/2005] [Indexed: 01/02/2023] Open
Abstract
Genome organization can be studied through analysis of chromosome position-dependent patterns in sequence-derived parameters. A comprehensive analysis of such patterns in prokaryotic sequences and genome-scale functional data has yet to be performed. We detected spatial patterns in sequence-derived parameters for 163 chromosomes occurring in 135 bacterial and 16 archaeal organisms using wavelet analysis. Pattern strength was found to correlate with organism-specific features such as genome size, overall GC content, and the occurrence of known motility and chromosomal binding proteins. Given additional functional data for Escherichia coli, we found significant correlations among chromosome position dependent patterns in numerous properties, some of which are consistent with previously experimentally identified chromosome macrodomains. These results demonstrate that the large-scale organization of most sequenced genomes is significantly nonrandom, and, moreover, that this organization is likely linked to genome size, nucleotide composition, and information transfer processes. Constraints on genome evolution and design are thus not solely dependent upon information content, but also upon an intricate multi-parameter, multi-length-scale organization of the chromosome.
Collapse
Affiliation(s)
- Timothy E Allen
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Nathan D Price
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Andrew R Joyce
- Bioinformatics Program, University of California San Diego, La Jolla, California, United States of America
| | - Bernhard Ø Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Abstract
There are clear theoretical reasons and many well-documented examples which show that repetitive, DNA is essential for genome function. Generic repeated signals in the DNA are necessary to format expression of unique coding sequence files and to organise additional functions essential for genome replication and accurate transmission to progeny cells. Repetitive DNA sequence elements are also fundamental to the cooperative molecular interactions forming nucleoprotein complexes. Here, we review the surprising abundance of repetitive DNA in many genomes, describe its structural diversity, and discuss dozens of cases where the functional importance of repetitive elements has been studied in molecular detail. In particular, the fact that repeat elements serve either as initiators or boundaries for heterochromatin domains and provide a significant fraction of scaffolding/matrix attachment regions (S/MARs) suggests that the repetitive component of the genome plays a major architectonic role in higher order physical structuring. Employing an information science model, the 'functionalist' perspective on repetitive DNA leads to new ways of thinking about the systemic organisation of cellular genomes and provides several novel possibilities involving repeat elements in evolutionarily significant genome reorganisation. These ideas may facilitate the interpretation of comparisons between sequenced genomes, where the repetitive DNA component is often greater than the coding sequence component.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
26
|
Carpentier AS, Torrésani B, Grossmann A, Hénaut A. Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data. BMC Genomics 2005; 6:84. [PMID: 15938745 PMCID: PMC1177944 DOI: 10.1186/1471-2164-6-84] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 06/06/2005] [Indexed: 11/25/2022] Open
Abstract
Background Although the organisation of the bacterial chromosome is an area of active research, little is known yet on that subject. The difficulty lies in the fact that the system is dynamic and difficult to observe directly. The advent of massive hybridisation techniques opens the way to further studies of the chromosomal structure because the genes that are co-expressed, as identified by microarray experiments, probably share some spatial relationship. The use of several independent sets of gene expression data should make it possible to obtain an exhaustive view of the genes co-expression and thus a more accurate image of the structure of the chromosome. Results For both Bacillus subtilis and Escherichia coli the co-expression of genes varies as a function of the distance between the genes along the chromosome. The long-range correlations are surprising: the changes in the level of expression of any gene are correlated (positively or negatively) to the changes in the expression level of other genes located at well-defined long-range distances. This property is true for all the genes, regardless of their localisation on the chromosome. We also found short-range correlations, which suggest that the location of these co-expressed genes corresponds to DNA turns on the nucleoid surface (14–16 genes). Conclusion The long-range correlations do not correspond to the domains so far identified in the nucleoid. We explain our results by a model of the nucleoid solenoid structure based on two types of spirals (short and long). The long spirals are uncoiled expressed DNA while the short ones correspond to coiled unexpressed DNA.
Collapse
Affiliation(s)
- Anne-Sophie Carpentier
- Laboratoire Génome et Informatique, CNRS UMR 8116, Tour Evry2, 523 Place des Terrasses, 91034 Evry Cedex, France
| | - Bruno Torrésani
- CMI, Université de Provence, 39 rue Joliot-Curie, 13453 Marseille cedex 13, France
| | - Alex Grossmann
- Laboratoire Génome et Informatique, CNRS UMR 8116, Tour Evry2, 523 Place des Terrasses, 91034 Evry Cedex, France
| | - Alain Hénaut
- Laboratoire Génome et Informatique, CNRS UMR 8116, Tour Evry2, 523 Place des Terrasses, 91034 Evry Cedex, France
| |
Collapse
|
27
|
Li W, Holste D. Universal 1/f noise, crossovers of scaling exponents, and chromosome-specific patterns of guanine-cytosine content in DNA sequences of the human genome. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:041910. [PMID: 15903704 DOI: 10.1103/physreve.71.041910] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 10/28/2004] [Indexed: 05/02/2023]
Abstract
Spatial fluctuations of guanine and cytosine base content (GC%) are studied by spectral analysis for the complete set of human genomic DNA sequences. We find that (i) 1/ f(alpha) decay is universally observed in the power spectra of all 24 chromosomes, and (ii) the exponent alpha approximately 1 extends to about 10(7) bases, one order of magnitude longer than has previously been observed. We further find that (iii) almost all human chromosomes exhibit a crossover from alpha(1) approximately 1 (1/ f (alpha(1))) at lower frequency to alpha(2) <1 (1/ f (alpha(2))) at higher frequency, typically occurring at around 30,000-100,000 bases, while (iv) the crossover in this frequency range is virtually absent in human chromosome 22. In addition to the universal 1/ f(alpha) noise in power spectra, we find (v) several lines of evidence for chromosome-specific correlation structures, including a 500,000 base long oscillation in human chromosome 21. The universal 1/ f(alpha) spectrum in the human genome is further substantiated by a resistance to reduction in variance of guanine and cytosine content when the window size is increased.
Collapse
Affiliation(s)
- Wentian Li
- The Robert S. Boas Center for Genomics and Human Genetics, North Shore LIJ Institute for Medical Research, 350 Community Drive, Manhasset, New York 10030, USA.
| | | |
Collapse
|
28
|
Warren PB, ten Wolde PR. Statistical Analysis of the Spatial Distribution of Operons in the Transcriptional Regulation Network of Escherichia coli. J Mol Biol 2004; 342:1379-90. [PMID: 15364567 DOI: 10.1016/j.jmb.2004.07.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 07/08/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
We have performed a statistical analysis of the spatial distribution of operons along the DNA in the transcriptional regulation network of Escherichia coli. The analysis reveals that pairs of operons that regulate each other and those that are co-regulated tend to lie much closer to one another than would be expected for a random network. Moreover, these pairs of operons tend to be transcribed in diverging directions. This spatial arrangement of operons allows the upstream regulatory domains to overlap and interfere with each other and our analysis also demonstrates the statistical significance of this motif of overlapping operons. Overlapping operons afford additional regulatory control, such as the correlated or anticorrelated expression of operons. We show by a mean-field analysis of a feed-forward loop that overlapping operons can drastically enhance the performance of gene regulatory networks. Our results suggest that regulatory control can provide a selective pressure that drives operons together in the course of evolution.
Collapse
Affiliation(s)
- P B Warren
- FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
| | | |
Collapse
|
29
|
Képès F. Periodic Transcriptional Organization of the E.coli Genome. J Mol Biol 2004; 340:957-64. [PMID: 15236959 DOI: 10.1016/j.jmb.2004.05.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 04/22/2004] [Accepted: 05/07/2004] [Indexed: 11/26/2022]
Abstract
The organization of transcription within the prokaryotic nucleoid may be expected to both depend on and determine the structure of the chromosome. Indeed, immunofluorescence localization of transcriptional regulators has revealed foci in actively transcribing Escherichia coli cells. Furthermore, structural and biochemical approaches suggest that there are approximately 50 independent loop domains per genome. Here I show that in four E.coli strains, genes that are controlled by a sequence-specific transcriptional regulator tend to locate next to the gene encoding this regulator, or at regular distances that are multiples of 1/50th of the chromosome length. This periodicity is consistent with a solenoidal epi-organization of the chromosome, which would gather into foci the interacting partners; the regulator molecules and their DNA binding sites. Binding at genuine regulatory sites on DNA would thus be optimized by co-transcriptionally translating regulators in their vicinity.
Collapse
Affiliation(s)
- François Képès
- ATelier de Génomique Cognitive, CNRS UMR8071/genopole, Evry, France.
| |
Collapse
|