1
|
Chen SK, Liu J, Van Nynatten A, Tudor-Price BM, Chang BSW. Sampling Strategies for Experimentally Mapping Molecular Fitness Landscapes Using High-Throughput Methods. J Mol Evol 2024:10.1007/s00239-024-10179-8. [PMID: 38886207 DOI: 10.1007/s00239-024-10179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Empirical studies of genotype-phenotype-fitness maps of proteins are fundamental to understanding the evolutionary process, in elucidating the space of possible genotypes accessible through mutations in a landscape of phenotypes and fitness effects. Yet, comprehensively mapping molecular fitness landscapes remains challenging since all possible combinations of amino acid substitutions for even a few protein sites are encoded by an enormous genotype space. High-throughput mapping of genotype space can be achieved using large-scale screening experiments known as multiplexed assays of variant effect (MAVEs). However, to accommodate such multi-mutational studies, the size of MAVEs has grown to the point where a priori determination of sampling requirements is needed. To address this problem, we propose calculations and simulation methods to approximate minimum sampling requirements for multi-mutational MAVEs, which we combine with a new library construction protocol to experimentally validate our approximation approaches. Analysis of our simulated data reveals how sampling trajectories differ between simulations of nucleotide versus amino acid variants and among mutagenesis schemes. For this, we show quantitatively that marginal gains in sampling efficiency demand increasingly greater sampling effort when sampling for nucleotide sequences over their encoded amino acid equivalents. We present a new library construction protocol that efficiently maximizes sequence variation, and demonstrate using ultradeep sequencing that the library encodes virtually all possible combinations of mutations within the experimental design. Insights learned from our analyses together with the methodological advances reported herein are immediately applicable toward pooled experimental screens of arbitrary design, enabling further assay upscaling and expanded testing of genotype space.
Collapse
Affiliation(s)
- Steven K Chen
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jing Liu
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Alexander Van Nynatten
- Department of Biological Science, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Macdonald CB, Nedrud D, Grimes PR, Trinidad D, Fraser JS, Coyote-Maestas W. DIMPLE: deep insertion, deletion, and missense mutation libraries for exploring protein variation in evolution, disease, and biology. Genome Biol 2023; 24:36. [PMID: 36829241 PMCID: PMC9951526 DOI: 10.1186/s13059-023-02880-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Insertions and deletions (indels) enable evolution and cause disease. Due to technical challenges, indels are left out of most mutational scans, limiting our understanding of them in disease, biology, and evolution. We develop a low cost and bias method, DIMPLE, for systematically generating deletions, insertions, and missense mutations in genes, which we test on a range of targets, including Kir2.1. We use DIMPLE to study how indels impact potassium channel structure, disease, and evolution. We find deletions are most disruptive overall, beta sheets are most sensitive to indels, and flexible loops are sensitive to deletions yet tolerate insertions.
Collapse
Affiliation(s)
- Christian B Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA
| | | | | | - Donovan Trinidad
- Department of Medicine, Division of Infectious Disease, University of California, San Francisco, USA
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA.,Quantitative Biosciences Institute, University of California, San Francisco, USA
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, USA. .,Quantitative Biosciences Institute, University of California, San Francisco, USA.
| |
Collapse
|
3
|
OverFlap PCR: A reliable approach for generating plasmid DNA libraries containing random sequences without a template bias. PLoS One 2022; 17:e0262968. [PMID: 35939421 PMCID: PMC9359533 DOI: 10.1371/journal.pone.0262968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022] Open
Abstract
Over the decades, practical biotechnology researchers have aimed to improve naturally occurring proteins and create novel ones. It is widely recognized that coupling protein sequence randomization with various effect screening methodologies is one of the most powerful techniques for quickly, efficiently, and purposefully acquiring these desired improvements. Over the years, considerable advancements have been made in this field. However, developing PCR-based or template-guided methodologies has been hampered by resultant template sequence biases. Here, we present a novel whole plasmid amplification-based approach, which we named OverFlap PCR, for randomizing virtually any region of plasmid DNA without introducing a template sequence bias.
Collapse
|
4
|
Shekhar C, Maeda T. A simple approach for random genomic insertion-deletions using ambiguous sequences in Escherichia coli. J Basic Microbiol 2022; 62:948-962. [PMID: 35739617 DOI: 10.1002/jobm.202100636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/20/2022] [Accepted: 06/11/2022] [Indexed: 11/07/2022]
Abstract
Escherichia coli K-12, being one of the best understood and thoroughly analyzed organisms, is the preferred platform for genetic and biochemical research. Among all genetic engineering approaches applied on E. coli, the homologous recombination approach is versatile and precise, which allows engineering genes or large segments of the chromosome directly by using polymerase chain reaction (PCR) products or synthetic oligonucleotides. The previously explained approaches for random insertion and deletions were reported as technically not easy and laborious. This study, first, finds the minimum length of homology extension that is efficient and accurate for homologous recombination, as 30 nt. Second, proposes an approach utilizing PCR products flanking ambiguous NNN-sequence (30-nt) extensions, which facilitate the homologous recombination to recombine them at multiple regions on the genome and generate insertion-deletion mutations. Further analysis found that these mutations were varying in number, that is, multiple genomic regions were deleted. Moreover, evaluation of the phenotype of all the multiple random insertion-deletion mutants demonstrated no significant changes in the normal metabolism of bacteria. This study not only presents the efficiency of ambiguous sequences in making random deletion mutations, but also demonstrates their further applicability in genomics.
Collapse
Affiliation(s)
- Chandra Shekhar
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
5
|
Gisdon FJ, Kynast JP, Ayyildiz M, Hine AV, Plückthun A, Höcker B. Modular peptide binders - development of a predictive technology as alternative for reagent antibodies. Biol Chem 2022; 403:535-543. [PMID: 35089661 DOI: 10.1515/hsz-2021-0384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
Abstract
Current biomedical research and diagnostics critically depend on detection agents for specific recognition and quantification of protein molecules. Monoclonal antibodies have been used for this purpose over decades and facilitated numerous biological and biomedical investigations. Recently, however, it has become apparent that many commercial reagent antibodies lack specificity or do not recognize their target at all. Thus, synthetic alternatives are needed whose complex designs are facilitated by multidisciplinary approaches incorporating experimental protein engineering with computational modeling. Here, we review the status of such an engineering endeavor based on the modular armadillo repeat protein scaffold and discuss challenges in its implementation.
Collapse
Affiliation(s)
- Florian J Gisdon
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Josef P Kynast
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Merve Ayyildiz
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Anna V Hine
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
6
|
Chembath A, Wagstaffe BPG, Ashraf M, Amaral MMF, Frigotto L, Hine AV. Nondegenerate Saturation Mutagenesis: Library Construction and Analysis via MAX and ProxiMAX Randomization. Methods Mol Biol 2022; 2461:19-41. [PMID: 35727442 DOI: 10.1007/978-1-0716-2152-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein engineering can enhance desirable features and improve performance outside of the natural context. Several strategies have been adopted over the years for gene diversification, and engineering of modular proteins in particular is most effective when a high-throughput, library-based approach is employed. Nondegenerate saturation mutagenesis plays a dynamic role in engineering proteins by targeting multiple codons to generate massively diverse gene libraries. Herein, we describe the nondegenerate saturation mutagenesis techniques that we have developed for contiguous (ProxiMAX) and noncontiguous (MAX) randomized codon generation to create precisely defined, diverse gene libraries, in the context of other fully nondegenerate strategies. ProxiMAX randomization comprises saturation cycling with repeated cycles of blunt-ended ligation, type IIS restriction, and PCR amplification, and is now a commercially automated process predominantly used for antibody library generation. MAX randomization encompasses a manual process of selective hybridisation between individual custom oligonucleotide mixes and a conventionally randomized template and is principally employed in the research laboratory setting, to engineer alpha helical proteins and active sites of enzymes. DNA libraries generated using either technology create high-throughput amino acid substitutions via codon randomization, to generate genetically diverse clones.
Collapse
Affiliation(s)
- Anupama Chembath
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, UK
| | | | - Mohammed Ashraf
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Marta M Ferreira Amaral
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, UK
- Bicycle Therapeutics, Cambridge, UK
| | | | - Anna V Hine
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, UK.
| |
Collapse
|
7
|
Iqbal Z, Sadaf S. Forty Years of Directed Evolution and its Continuously Evolving Technology Toolbox - A Review of the Patent Landscape. Biotechnol Bioeng 2021; 119:693-724. [PMID: 34923625 DOI: 10.1002/bit.28009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022]
Abstract
Generating functional protein variants with novel or improved characteristics has been a goal of the biotechnology industry and life sciences, for decades. Rational design and directed evolution are two major pathways to achieve the desired ends. Whilst rational protein design approach has made substantial progress, the idea of using a method based on cycles of mutagenesis and natural selection to develop novel binding proteins, enzymes and structures has attracted great attention. Laboratory evolution of proteins/enzymes requires new tools and analytical approaches to create genetic diversity and identifying variants with desired traits. In this pursuit, construction of sufficiently large libraries of target molecules to search for improved variants and the need for new protocols to alter the properties of target molecules has been a continuing challenge in the directed evolution experiments. This review will discuss the in vivo and in vitro gene diversification tools, library screening or selection approaches, and artificial intelligence/machine-learning-based strategies to mutagenesis developed in the last forty years to accelerate the natural process of evolution in creating new functional protein variants, optimization of microbial strains and transformation of enzymes into industrial machines. Analyzing patent position over these techniques and mechanisms also constitutes an integral and distinctive part of this review. The aim is to provide an up-to-date resource/technology toolbox for research-based and pharmaceutical companies to discover the boundaries of competitor's intellectual property (IP) portfolio, their freedom-to-operate in the relevant IP landscape, and the need for patent due diligence analysis to rule out whether use of a particular patented mutagenesis method, library screening/selection technique falls outside the safe harbor of experimental use exemption. While so doing, we have referred to some recent cases that emphasize the significance of selecting a suitable gene diversification strategy in directed evolution experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zarina Iqbal
- PakPat World Intellectual Property Protection Services, Lahore, 54000, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
8
|
Visootsat A, Nakamura A, Wang TW, Iino R. Combined Approach to Engineer a Highly Active Mutant of Processive Chitinase Hydrolyzing Crystalline Chitin. ACS OMEGA 2020; 5:26807-26816. [PMID: 33111007 PMCID: PMC7581260 DOI: 10.1021/acsomega.0c03911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/25/2020] [Indexed: 05/08/2023]
Abstract
Serratia marcescens chitinase A (SmChiA) processively hydrolyzes recalcitrant biomass crystalline chitin under mild conditions. Here, we combined multiple sequence alignment, site-saturation mutagenesis, and automated protein purification and activity measurement with liquid-handling robot to reduce the number of mutation trials and shorten the screening time for hydrolytic activity improvement of SmChiA. The amino acid residues, which are not conserved in the alignment and are close to the aromatic residues along the substrate-binding sites in the crystal structure, were selected for site-saturation mutagenesis. Using the previously identified highly active F232W/F396W mutant as a template, we identified the F232W/F396W/S538V mutant, which shows further improved hydrolytic activity just by trying eight different sites. Importantly, valine was not found in the multiple sequence alignment at Ser538 site of SmChiA. Our combined approach allows engineering of highly active enzyme mutants, which cannot be identified only by the introduction of predominant amino acid residues in the multiple sequence alignment.
Collapse
Affiliation(s)
- Akasit Visootsat
- Department
of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Akihiko Nakamura
- Department
of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | | | - Ryota Iino
- Department
of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
9
|
Lindenburg L, Huovinen T, van de Wiel K, Herger M, Snaith MR, Hollfelder F. Split & mix assembly of DNA libraries for ultrahigh throughput on-bead screening of functional proteins. Nucleic Acids Res 2020; 48:e63. [PMID: 32383757 PMCID: PMC7293038 DOI: 10.1093/nar/gkaa270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Site-saturation libraries reduce protein screening effort in directed evolution campaigns by focusing on a limited number of rationally chosen residues. However, uneven library synthesis efficiency leads to amino acid bias, remedied at high cost by expensive custom synthesis of oligonucleotides, or through use of proprietary library synthesis platforms. To address these shortcomings, we have devised a method where DNA libraries are constructed on the surface of microbeads by ligating dsDNA fragments onto growing, surface-immobilised DNA, in iterative split-and-mix cycles. This method-termed SpliMLiB for Split-and-Mix Library on Beads-was applied towards the directed evolution of an anti-IgE Affibody (ZIgE), generating a 160,000-membered, 4-site, saturation library on the surface of 8 million monoclonal beads. Deep sequencing confirmed excellent library balance (5.1% ± 0.77 per amino acid) and coverage (99.3%). As SpliMLiB beads are monoclonal, they were amenable to direct functional screening in water-in-oil emulsion droplets with cell-free expression. A FACS-based sorting of the library beads allowed recovery of hits improved in Kd over wild-type ZIgE by up to 3.5-fold, while a consensus mutant of the best hits provided a 10-fold improvement. With SpliMLiB, directed evolution workflows are accelerated by integrating high-quality DNA library generation with an ultra-high throughput protein screening platform.
Collapse
Affiliation(s)
- Laurens Lindenburg
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Tuomas Huovinen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Kayleigh van de Wiel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
- AstraZeneca Medimmune Cambridge, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Michael R Snaith
- AstraZeneca Medimmune Cambridge, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| |
Collapse
|
10
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
11
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
12
|
Xu GC, Wang Y, Tang MH, Zhou JY, Zhao J, Han RZ, Ni Y. Hydroclassified Combinatorial Saturation Mutagenesis: Reshaping Substrate Binding Pockets of KpADH for Enantioselective Reduction of Bulky–Bulky Ketones. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02286] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guo-Chao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yue Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ming-Hui Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jie-Yu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jing Zhao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Rui-Zhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
13
|
Kawai F, Nakamura A, Visootsat A, Iino R. Plasmid-Based One-Pot Saturation Mutagenesis and Robot-Based Automated Screening for Protein Engineering. ACS OMEGA 2018; 3:7715-7726. [PMID: 30221239 PMCID: PMC6130897 DOI: 10.1021/acsomega.8b00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/27/2018] [Indexed: 05/24/2023]
Abstract
We evaluated a method for protein engineering using plasmid-based one-pot saturation mutagenesis and robot-based automated screening. When the biases in nucleotides and amino acids were assessed for a loss-of-function point mutation in green fluorescent protein, the ratios of gain-of-function mutants were not significantly different from the expected values for the primers among the three different suppliers. However, deep sequencing analysis revealed that the ratios of nucleotides in the primers were highly biased among the suppliers. Biases for NNB were less severe than for NNN. We applied this method to screen a fusion protein of two chitinases, ChiA and ChiB (ChiAB). Three NNB codons as well as tyrosine and serine (X1YSX2X3) were inserted to modify the surface structure of ChiAB. We observed significant amino acid bias at the X3 position in water-soluble, active ChiAB-X1YSX2X3 mutants. Examination of the crystal structure of one active mutant, ChiAB-FYSFV, revealed that the X3 residue plays an important role in structure stabilization.
Collapse
Affiliation(s)
- Fumihiro Kawai
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
| | - Akihiko Nakamura
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Akasit Visootsat
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Ryota Iino
- Institute
for Molecular Science, National Institutes
of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
- The
Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
14
|
Abstract
Saturation mutagenesis is conveniently located between the two extremes of protein engineering, namely random mutagenesis, and rational design. It involves mutating a confined number of target residues to other amino acids, and hence requires knowledge regarding the sites for mutagenesis, but not their final identity. There are many different strategies for performing and designing such experiments, ranging from simple single degenerate codons to codon collections that code for distinct sets of amino acids. Here, we provide detailed information on the Dynamic Management for Codon Compression (DYNAMCC) approaches that allow us to precisely define the desired amino acid composition to be introduced to a specific target site. DYNAMCC allows us to set usage thresholds and to eliminate undesirable stop and wild-type codons, thus allowing us to control library size and subsequently downstream screening efforts. The DYNAMCC algorithms are free of charge and are implemented in a website for easy access and usage: www.dynamcc.com .
Collapse
Affiliation(s)
- Gur Pines
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA. .,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
15
|
Li A, Acevedo-Rocha CG, Sun Z, Cox T, Xu JL, Reetz MT. Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction. Chembiochem 2017; 19:221-228. [DOI: 10.1002/cbic.201700540] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Aitao Li
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Department of Chemistry; Philipps-Universität Marburg; 35032 Marburg Germany
- Hubei Collaborative Innovation Center for, Green Transformation of Bio-Resources; Hubei Key Laboratory of Industrial Biotechnology; College of Life Sciences; Hubei University; 368 Youyi Road Wuchang Wuhan 430062 P.R. China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology; Chinese Academy of Sciences; 32 West 7th Avenue Tianjin Airport Economic Area Tianjin 300308 P.R. China
| | - Tony Cox
- Twist Bioscience; 455 Mission Bay Boulevard South San Francisco CA 94158 USA
| | - Jia Lucy Xu
- Twist Bioscience; 455 Mission Bay Boulevard South San Francisco CA 94158 USA
| | - Manfred T. Reetz
- Department of Synthetic Organic Chemistry; Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Muelheim Germany
- Department of Chemistry; Philipps-Universität Marburg; 35032 Marburg Germany
| |
Collapse
|
16
|
Ferreira Amaral MM, Frigotto L, Hine AV. Beyond the Natural Proteome: Nondegenerate Saturation Mutagenesis-Methodologies and Advantages. Methods Enzymol 2017; 585:111-133. [PMID: 28109425 DOI: 10.1016/bs.mie.2016.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Beyond the natural proteome, high-throughput mutagenesis offers the protein engineer an opportunity to "tweak" the wild-type activity of a protein to create a recombinant protein with required attributes. Of the various approaches available, saturation mutagenesis is one of the core techniques employed by protein engineers, and in recent times, nondegenerate saturation mutagenesis is emerging as the approach of choice. This review compares the current methodologies available for conducting nondegenerate saturation mutagenesis with traditional, degenerate saturation and briefly outlines the options available for screening the resulting libraries, to discover a novel protein with the required activity and/or specificity.
Collapse
Affiliation(s)
- M M Ferreira Amaral
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - L Frigotto
- Isogenica Ltd., The Mansion, Chesterford Research Park, Essex, United Kingdom
| | - A V Hine
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom.
| |
Collapse
|
17
|
Mingo J, Erramuzpe A, Luna S, Aurtenetxe O, Amo L, Diez I, Schepens JTG, Hendriks WJAJ, Cortés JM, Pulido R. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections. PLoS One 2016; 11:e0160972. [PMID: 27548698 PMCID: PMC4993582 DOI: 10.1371/journal.pone.0160972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 12/30/2022] Open
Abstract
Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis.
Collapse
Affiliation(s)
- Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Asier Erramuzpe
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Sandra Luna
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Olaia Aurtenetxe
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Laura Amo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Ibai Diez
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
| | - Jan T. G. Schepens
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Wiljan J. A. J. Hendriks
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jesús M. Cortés
- Quantitative Biomedicine Unit, Biocruces Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- * E-mail: ;
| |
Collapse
|
18
|
Popova B, Schubert S, Bulla I, Buchwald D, Kramer W. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules. PLoS One 2015; 10:e0136778. [PMID: 26355961 PMCID: PMC4565649 DOI: 10.1371/journal.pone.0136778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis.
Collapse
Affiliation(s)
- Blagovesta Popova
- Department Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- * E-mail:
| | - Steffen Schubert
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
- Information Network of Departments of Dermatology (IVDK), Göttingen, Germany
| | - Ingo Bulla
- Theoretical Biology and Biophysics, Group T-6, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Institute for Mathematics and Informatics, Universität Greifswald, Greifswald, Germany
- Department Bioinformatics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Daniela Buchwald
- Department Bioinformatics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Neurobiology Laboratory, German Primate Center GmbH, Göttingen, Germany
| | - Wilfried Kramer
- Department Molecular Genetics and Preparative Molecular Biology, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
- Department Molecular Genetics, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Acevedo-Rocha CG, Reetz MT, Nov Y. Economical analysis of saturation mutagenesis experiments. Sci Rep 2015; 5:10654. [PMID: 26190439 PMCID: PMC4507136 DOI: 10.1038/srep10654] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/20/2015] [Indexed: 11/15/2022] Open
Abstract
Saturation mutagenesis is a powerful technique for engineering proteins, metabolic pathways and genomes. In spite of its numerous applications, creating high-quality saturation mutagenesis libraries remains a challenge, as various experimental parameters influence in a complex manner the resulting diversity. We explore from the economical perspective various aspects of saturation mutagenesis library preparation: We introduce a cheaper and faster control for assessing library quality based on liquid media; analyze the role of primer purity and supplier in libraries with and without redundancy; compare library quality, yield, randomization efficiency, and annealing bias using traditional and emergent randomization schemes based on mixtures of mutagenic primers; and establish a methodology for choosing the most cost-effective randomization scheme given the screening costs and other experimental parameters. We show that by carefully considering these parameters, laboratory expenses can be significantly reduced.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- 1] Department of Organic Synthesis, Max-Planck-Institut für Kohlenforschung, Mulheim, 45470, Germany [2] Department of Chemistry, Philipps-Universität Marburg, 35032, Germany [3] Prokaryotic Small RNA Biology Group, Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, 35043, Germany [4] Landes-Offensive zur Entwicklung Wissenschafltich-ökonomischer Exzellenz (LOEWE) Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, 35032, Germany
| | - Manfred T Reetz
- 1] Department of Organic Synthesis, Max-Planck-Institut für Kohlenforschung, Mulheim, 45470, Germany [2] Department of Chemistry, Philipps-Universität Marburg, 35032, Germany
| | - Yuval Nov
- Department of Statistics, University of Haifa, Haifa, 31905, Israel
| |
Collapse
|
20
|
Sieber T, Hare E, Hofmann H, Trepel M. Biomathematical description of synthetic peptide libraries. PLoS One 2015; 10:e0129200. [PMID: 26042419 PMCID: PMC4456392 DOI: 10.1371/journal.pone.0129200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/07/2015] [Indexed: 12/28/2022] Open
Abstract
Libraries of randomised peptides displayed on phages or viral particles are essential tools in a wide spectrum of applications. However, there is only limited understanding of a library's fundamental dynamics and the influences of encoding schemes and sizes on their quality. Numeric properties of libraries, such as the expected number of different peptides and the library's coverage, have long been in use as measures of a library's quality. Here, we present a graphical framework of these measures together with a library's relative efficiency to help to describe libraries in enough detail for researchers to plan new experiments in a more informed manner. In particular, these values allow us to answer-in a probabilistic fashion-the question of whether a specific library does indeed contain one of the "best" possible peptides. The framework is implemented in a web-interface based on two packages, discreteRV and peptider, to the statistical software environment R. We further provide a user-friendly web-interface called PeLiCa (Peptide Library Calculator, http://www.pelica.org), allowing scientists to plan and analyse their peptide libraries.
Collapse
Affiliation(s)
- Timo Sieber
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eric Hare
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Heike Hofmann
- Department of Statistics, Iowa State University, Ames, IA, USA
- * E-mail:
| | - Martin Trepel
- Department of Hematology and Oncology, Augsburg Medical Center, Interdisciplinary Cancer Center, Augsburg, Germany
| |
Collapse
|
21
|
Pines G, Pines A, Garst AD, Zeitoun RI, Lynch SA, Gill RT. Codon compression algorithms for saturation mutagenesis. ACS Synth Biol 2015; 4:604-14. [PMID: 25303315 DOI: 10.1021/sb500282v] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Saturation mutagenesis is employed in protein engineering and genome-editing efforts to generate libraries that span amino acid design space. Traditionally, this is accomplished by using degenerate/compressed codons such as NNK (N = A/C/G/T, K = G/T), which covers all amino acids and one stop codon. These solutions suffer from two types of redundancy: (a) different codons for the same amino acid lead to bias, and (b) wild type amino acid is included within the library. These redundancies increase library size and downstream screening efforts. Here, we present a dynamic approach to compress codons for any desired list of amino acids, taking into account codon usage. This results in a unique codon collection for every amino acid to be mutated, with the desired redundancy level. Finally, we demonstrate that this approach can be used to design precise oligo libraries amendable to recombineering and CRISPR-based genome editing to obtain a diverse population with high efficiency.
Collapse
Affiliation(s)
- Gur Pines
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | | | - Andrew D. Garst
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ramsey I. Zeitoun
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sean A. Lynch
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Biosciences Center,
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Ryan T. Gill
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
23
|
MDC-Analyzer: a novel degenerate primer design tool for the construction of intelligent mutagenesis libraries with contiguous sites. Biotechniques 2014; 56:301-2, 304, 306-8, passim. [PMID: 24924390 DOI: 10.2144/000114177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/03/2014] [Indexed: 11/23/2022] Open
Abstract
Recent computational and bioinformatics advances have enabled the efficient creation of novel biocatalysts by reducing amino acid variability at hot spot regions. To further expand the utility of this strategy, we present here a tool called Multi-site Degenerate Codon Analyzer (MDC-Analyzer) for the automated design of intelligent mutagenesis libraries that can completely cover user-defined randomized sequences, especially when multiple contiguous and/or adjacent sites are targeted. By initially defining an objective function, the possible optimal degenerate PCR primer profiles could be automatically explored using the heuristic approach of Greedy Best-First-Search. Compared to the previously developed DC-Analyzer, MDC-Analyzer allows for the existence of a small amount of undesired sequences as a tradeoff between the number of degenerate primers and the encoded library size while still providing all the benefits of DC-Analyzer with the ability to randomize multiple contiguous sites. MDC-Analyzer was validated using a series of randomly generated mutation schemes and experimental case studies on the evolution of halohydrin dehalogenase, which proved that the MDC methodology is more efficient than other methods and is particularly well-suited to exploring the sequence space of proteins using data-driven protein engineering strategies.
Collapse
|
24
|
ProxiMAX randomization: a new technology for non-degenerate saturation mutagenesis of contiguous codons. Biochem Soc Trans 2014; 41:1189-94. [PMID: 24059507 PMCID: PMC3782830 DOI: 10.1042/bst20130123] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Back in 2003, we published ‘MAX’ randomization, a process of non-degenerate saturation mutagenesis using exactly 20 codons (one for each amino acid) or else any required subset of those 20 codons. ‘MAX’ randomization saturates codons located in isolated positions within a protein, as might be required in enzyme engineering, or else on one face of an α-helix, as in zinc-finger engineering. Since that time, we have been asked for an equivalent process that can saturate multiple contiguous codons in a non-degenerate manner. We have now developed ‘ProxiMAX’ randomization, which does just that: generating DNA cassettes for saturation mutagenesis without degeneracy or bias. Offering an alternative to trinucleotide phosphoramidite chemistry, ProxiMAX randomization uses nothing more sophisticated than unmodified oligonucleotides and standard molecular biology reagents. Thus it requires no specialized chemistry, reagents or equipment, and simply relies on a process of saturation cycling comprising ligation, amplification and digestion for each cycle. The process can encode both unbiased representation of selected amino acids or else encode them in predefined ratios. Each saturated position can be defined independently of the others. We demonstrate accurate saturation of up to 11 contiguous codons. As such, ProxiMAX randomization is particularly relevant to antibody engineering.
Collapse
|
25
|
Probabilistic methods in directed evolution: library size, mutation rate, and diversity. Methods Mol Biol 2014; 1179:261-78. [PMID: 25055784 DOI: 10.1007/978-1-4939-1053-3_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Directed evolution has emerged as an important tool for engineering proteins with improved or novel properties. Because of their inherent reliance on randomness, directed evolution protocols are amenable to probabilistic modeling and analysis. This chapter summarizes and reviews in a nonmathematical way some of the probabilistic works related to directed evolution, with particular focus on three of the most widely used methods: saturation mutagenesis, error-prone PCR, and in vitro recombination. The ultimate aim is to provide the reader with practical information to guide the planning and design of directed evolution studies. Importantly, the applications and locations of freely available computational resources to assist with this process are described in detail.
Collapse
|
26
|
Gaytán P, Roldán-Salgado A. Elimination of redundant and stop codons during the chemical synthesis of degenerate oligonucleotides. Combinatorial testing on the chromophore region of the red fluorescent protein mKate. ACS Synth Biol 2013; 2:453-62. [PMID: 23654278 DOI: 10.1021/sb3001326] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although some strategies have been reported for the elimination of stop and redundant codons during the chemical synthesis of degenerate oligonucleotides, incorporating an expensive cocktail of 20 trimer-phosphoramidites is currently a commonly employed and straightforward approach. As an alternative option, we describe here a cheaper strategy based on standard monomer-phosphoramidites and a simplified resin-splitting procedure. The accurate division of the resin, containing the growing oligonucleotide, into four columns represents the key step in this approach. The synthesis of the degenerate codon NDT in column 1, loaded with 60% of the resin, produces 12 codons, while a degenerate codon VMA in column 2, loaded with 30% of the resin, produces 6 codons. Codons ATG and TGG, independently synthesized in columns 3 and 4, respectively, and loaded with 5% each, completes the 20 different codons. The experimental frequency of each mutant codon in the library was assessed by randomizing 12 contiguous codons that encode for amino acids located in the chromophore region of the enhanced red fluorescent protein mKate-S158A. Furthermore, randomization of three contiguous codons that encode for the amino acids Phe62, Met63, and Tyr64, which are equivalent to Phe64, Ser65, and Tyr66 in GFP, gave rise to some red and golden yellow fluorescent mutants displaying interesting phenotypes and spectroscopic properties. The absorption and emission spectra of two of these mutants also suggested that the complete maturation of the red and golden yellow chromophores in mKate proceeds via the formation of a green-type chromophore and a cyan-type chromophore, respectively.
Collapse
Affiliation(s)
- Paul Gaytán
- Instituto de Biotecnología-Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México.
| | | |
Collapse
|
27
|
Nov Y. Fitness loss and library size determination in saturation mutagenesis. PLoS One 2013; 8:e68069. [PMID: 23844158 PMCID: PMC3700877 DOI: 10.1371/journal.pone.0068069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/24/2013] [Indexed: 01/31/2023] Open
Abstract
Saturation mutagenesis is a widely used directed evolution technique, in which a large number of protein variants, each having random amino acids in certain predetermined positions, are screened in order to discover high-fitness variants among them. Several metrics for determining the library size (the number of variants screened) have been suggested in the literature, but none of them incorporates the actual fitness of the variants discovered in the experiment. We present the results of an extensive simulation study, which is based on probabilistic models for protein fitness landscape, and which investigates how the result of a saturation mutagenesis experiment – the fitness of the best variant discovered – varies as a function of the library size. In particular, we study the loss of fitness in the experiment: the difference between the fitness of the best variant discovered, and the fitness of the best variant in variant space. Our results are that the existing criteria for determining the library size are conservative, so smaller libraries are often satisfactory. Reducing the library size can save labor, time, and expenses in the laboratory.
Collapse
Affiliation(s)
- Yuval Nov
- Department of Statistics, University of Haifa, Haifa, Israel.
| |
Collapse
|
28
|
Ruff AJ, Dennig A, Schwaneberg U. To get what we aim for - progress in diversity generation methods. FEBS J 2013; 280:2961-78. [DOI: 10.1111/febs.12325] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Anna J. Ruff
- Lehrstuhl für Biotechnologie; RWTH Aachen University; Germany
| | | | | |
Collapse
|
29
|
Kille S, Acevedo-Rocha CG, Parra LP, Zhang ZG, Opperman DJ, Reetz MT, Acevedo JP. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth Biol 2013; 2:83-92. [PMID: 23656371 DOI: 10.1021/sb300037w] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Saturation mutagenesis probes define sections of the vast protein sequence space. However, even if randomization is limited this way, the combinatorial numbers problem is severe. Because diversity is created at the codon level, codon redundancy is a crucial factor determining the necessary effort for library screening. Additionally, due to the probabilistic nature of the sampling process, oversampling is required to ensure library completeness as well as a high probability to encounter all unique variants. Our trick employs a special mixture of three primers, creating a degeneracy of 22 unique codons coding for the 20 canonical amino acids. Therefore, codon redundancy and subsequent screening effort is significantly reduced, and a balanced distribution of codon per amino acid is achieved, as demonstrated exemplarily for a library of cyclohexanone monooxygenase. We show that this strategy is suitable for any saturation mutagenesis methodology to generate less-redundant libraries.
Collapse
Affiliation(s)
- Sabrina Kille
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße,
35043 Marburg, Germany
| | - Carlos G. Acevedo-Rocha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße,
35043 Marburg, Germany
| | - Loreto P. Parra
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße,
35043 Marburg, Germany
| | - Zhi-Gang Zhang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße,
35043 Marburg, Germany
| | - Diederik J. Opperman
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße,
35043 Marburg, Germany
| | - Juan Pablo Acevedo
- Facultad
de Medicina y Facultad
de Ingeniería de la Universidad de los Andes, Santiago, Chile
| |
Collapse
|
30
|
Construction of "small-intelligent" focused mutagenesis libraries using well-designed combinatorial degenerate primers. Biotechniques 2012; 52:149-58. [PMID: 22401547 DOI: 10.2144/000113820] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/13/2012] [Indexed: 11/23/2022] Open
Abstract
Site-saturation mutagenesis is a powerful tool for protein optimization due to its efficiency and simplicity. A degenerate codon NNN or NNS (K) is often used to encode the 20 standard amino acids, but this will produce redundant codons and cause uneven distribution of amino acids in the constructed library. Here we present a novel "small-intelligent" strategy to construct mutagenesis libraries that have a minimal gene library size without inherent amino acid biases, stop codons, or rare codons of Escherichia coli by coupling well-designed combinatorial degenerate primers with suitable PCR-based mutagenesis methods. The designed primer mixture contains exactly one codon per amino acid and thus allows the construction of small-intelligent mutagenesis libraries with one gene per protein. In addition, the software tool DC-Analyzer was developed to assist in primer design according to the user-defined randomization scheme for library construction. This small-intelligent strategy was successfully applied to the randomization of halohydrin dehalogenases with one or two randomized sites. With the help of DC-Analyzer, the strategy was proven to be as simple as NNS randomization and could serve as a general tool to efficiently randomize target genes at positions of interest.
Collapse
|
31
|
When second best is good enough: another probabilistic look at saturation mutagenesis. Appl Environ Microbiol 2011; 78:258-62. [PMID: 22038607 DOI: 10.1128/aem.06265-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We developed new criteria for determining the library size in a saturation mutagenesis experiment. When the number of all possible distinct variants is large, any of the top-performing variants (e.g., any of the top three) is likely to meet the design requirements, so the probability that the library contains at least one of them is a sensible criterion for determining the library size. By using a criterion of this type, one may significantly reduce the library size and thus save costs and labor while minimally compromising the quality of the best variant discovered. We present the probabilistic tools underlying these criteria and use them to compare the efficiencies of four randomization schemes: NNN, which uses all 64 codons; NNB, which uses 48 codons; NNK, which uses 32 codons; and MAX, which assigns equal probabilities to each of the 20 amino acids. MAX was found to be the most efficient randomization scheme and NNN the least efficient. TopLib, a computer program for carrying out the related calculations, is available through a user-friendly Web server.
Collapse
|
32
|
Reetz MT. Gerichtete Evolution stereoselektiver Enzyme: Eine ergiebige Katalysator‐Quelle für asymmetrische Reaktionen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000826] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Deutschland), Fax: (+49) 208‐306‐2985 http://www.mpi‐muelheim.mpg.de/mpikofo_home.html
| |
Collapse
|
33
|
Reetz MT. Laboratory Evolution of Stereoselective Enzymes: A Prolific Source of Catalysts for Asymmetric Reactions. Angew Chem Int Ed Engl 2010; 50:138-74. [DOI: 10.1002/anie.201000826] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Manfred T. Reetz
- Max‐Planck‐Institut für Kohlenforschung, Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208‐306‐2985 http://www.mpi‐muelheim.mpg.de/mpikofo_home.html
| |
Collapse
|
34
|
Lee SJ, Richardson CC. Molecular basis for recognition of nucleoside triphosphate by gene 4 helicase of bacteriophage T7. J Biol Chem 2010; 285:31462-71. [PMID: 20688917 DOI: 10.1074/jbc.m110.156067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The translocation of DNA helicases on single-stranded DNA and the unwinding of double-stranded DNA are fueled by the hydrolysis of nucleoside triphosphates (NTP). Although most helicases use ATP in these processes, the DNA helicase encoded by gene 4 of bacteriophage T7 uses dTTP most efficiently. To identify the structural requirements of the NTP, we determined the efficiency of DNA unwinding by T7 helicase using a variety of NTPs and their analogs. The 5-methyl group of thymine was critical for the efficient unwinding of DNA, although the presence of a 3'-ribosyl hydroxyl group partially overcame this requirement. The NTP-binding pocket of the protein was examined by randomly substituting amino acids for several amino acid residues (Thr-320, Arg-504, Tyr-535, and Leu-542) that the crystal structure suggests interact with the nucleotide. Although positions 320 and 542 required aliphatic residues of the appropriate size, an aromatic side chain was necessary at position 535 to stabilize NTP for efficient unwinding. A basic side chain of residue 504 was essential to interact with the 4-carbonyl of the thymine base of dTTP. Replacement of this residue with a small aliphatic residue allowed the accommodation of other NTPs, resulting in the preferential use of dATP and the use of dCTP, a nucleotide not normally used. Results from this study suggest that the NTP must be stabilized by specific interactions within the NTP-binding site of the protein to achieve efficient hydrolysis. These interactions dictate NTP specificity.
Collapse
Affiliation(s)
- Seung-Joo Lee
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
35
|
Enzyme engineering for enantioselectivity: from trial-and-error to rational design? Trends Biotechnol 2009; 28:46-54. [PMID: 19913316 DOI: 10.1016/j.tibtech.2009.10.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/02/2009] [Accepted: 10/05/2009] [Indexed: 11/23/2022]
Abstract
The availability of tailored enzymes is crucial for the implementation of biocatalysis in organic chemistry. Enantioselectivity is one key parameter defining the usefulness of an enzyme and, therefore, the competitiveness of the corresponding industrial process. Hence, identification of enzymes with high enantioselectivity in the desired transformation is important. Currently, this is achieved by screening collections and libraries comprising natural or man-made diversity for the desired trait. Recently, a variety of improved methods have been developed to generate and screen this diversity more efficiently. Here, we present and discuss the most important advances in both library generation and screening. We also evaluate future trends, such as moving from random evolution to more rational.
Collapse
|
36
|
Gaytán P, Contreras-Zambrano C, Ortiz-Alvarado M, Morales-Pablos A, Yáñez J. TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons. Nucleic Acids Res 2009; 37:e125. [PMID: 19783828 PMCID: PMC2764442 DOI: 10.1093/nar/gkp602] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
9-fluorenylmethoxycarbonyl (Fmoc) and 4,4'-dimethoxytrityl (DMTr) are orthogonal hydroxyl protecting groups that have been used in conjunction to assemble oligonucleotide libraries whose variants contain wild-type and mutant codons randomly interspersed throughout a focused DNA region. Fmoc is labile to organic bases and stable to weak acids, whereas DMTr behaves oppositely. Based on these chemical characteristics, we have now devised TrimerDimer, a novel codon-based saturation mutagenesis approach that removes redundant and stop codons during the assembly of degenerate oligonucleotides. In this approach, five DMTr-protected trinucleotide phosphoramidites (dTGG, dATG, dTTT, dTAT and dTGC) and five Fmoc-protected dinucleotide phosphoramidites (dAA, dTT, dAT, dGC and dCG) react simultaneously with a starting oligonucleotide growing on a solid support. The Fmoc group is then removed and the incorporated dimers react with a mixture of three DMTr-protected monomer phosphoramidites (dC, dA and dG) to produce 15 trinucleotides: dCAA, dAAA, dGAA, dCTT, dATT, dGTT, dCAT, dAAT, dGAT, dCGC, dAGC, dGGC, dCCG, dACG and dGCG. After one mutagenic cycle, 20 codons are generated encoding the 20 natural amino acids. TrimerDimer was tested by randomizing the four contiguous codons that encode amino acids L64-G67 of an engineered, nonfluorescent GFP protein. Sequencing of 89 nonfluorescent mutant clones and isolation of two fluorescent mutants confirmed the principle.
Collapse
Affiliation(s)
- Paul Gaytán
- Instituto de Biotecnología-Universidad Nacional Autónoma de México, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México.
| | | | | | | | | |
Collapse
|
37
|
Yin CC, Ren LL, Zhu LL, Wang XB, Zhang Z, Huang HL, Yan XY. Construction of a Fully Synthetic Human scFv Antibody Library with CDR3 Regions Randomized by a Split-Mix-Split Method and Its Application. J Biochem 2008; 144:591-8. [DOI: 10.1093/jb/mvn103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Firth AE, Patrick WM. GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries. Nucleic Acids Res 2008; 36:W281-5. [PMID: 18442989 PMCID: PMC2447733 DOI: 10.1093/nar/gkn226] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There are many methods for introducing random mutations into nucleic acid sequences. Previously, we described a suite of programmes for estimating the completeness and diversity of randomized DNA libraries generated by a number of these protocols. Our programmes suggested some empirical guidelines for library design; however, no information was provided regarding library diversity at the protein (rather than DNA) level. We have now updated our web server, enabling analysis of translated libraries constructed by site-saturation mutagenesis and error-prone PCR (epPCR). We introduce GLUE-Including Translation (GLUE-IT), which finds the expected amino acid completeness of libraries in which up to six codons have been independently varied (according to any user-specified randomization scheme). We provide two tools for assisting with experimental design: CodonCalculator, for assessing amino acids corresponding to given randomized codons; and AA-Calculator, for finding degenerate codons that encode user-specified sets of amino acids. We also present PEDEL-AA, which calculates amino acid statistics for libraries generated by epPCR. Input includes the parent sequence, overall mutation rate, library size, indel rates and a nucleotide mutation matrix. Output includes amino acid completeness and diversity statistics, and the number and length distribution of sequences truncated by premature termination codons. The web interfaces are available at http://guinevere.otago.ac.nz/stats.html.
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland
| | | |
Collapse
|
39
|
Directed Evolution of Enantioselective Enzymes as Catalysts for Organic Synthesis. ADVANCES IN CATALYSIS 2006. [DOI: 10.1016/s0360-0564(05)49001-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Patrick WM, Firth AE. Strategies and computational tools for improving randomized protein libraries. ACTA ACUST UNITED AC 2005; 22:105-12. [PMID: 16095966 DOI: 10.1016/j.bioeng.2005.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/15/2022]
Abstract
In the last decade, directed evolution has become a routine approach for engineering proteins with novel or altered properties. Concurrently, a trend away from purely 'blind' randomization strategies and towards more 'semi-rational' approaches has also become apparent. In this review, we discuss ways in which structural information and predictive computational tools are playing an increasingly important role in guiding the design of randomized libraries: web servers such as ConSurf-HSSP and SCHEMA allow the prediction of sites to target for producing functional variants, while algorithms such as GLUE, PEDEL and DRIVeR are useful for estimating library completeness and diversity. In addition, we review recent methodological developments that facilitate the construction of unbiased libraries, which are inherently more diverse than biased libraries and therefore more likely to yield improved variants.
Collapse
Affiliation(s)
- Wayne M Patrick
- Center for Fundamental and Applied Molecular Evolution, Emory University, 1510 Clifton Road, Atlanta GA 30322, USA.
| | | |
Collapse
|
41
|
Funke SA, Otte N, Eggert T, Bocola M, Jaeger KE, Thiel W. Combination of computational prescreening and experimental library construction can accelerate enzyme optimization by directed evolution. Protein Eng Des Sel 2005; 18:509-14. [PMID: 16203748 DOI: 10.1093/protein/gzi062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chiral compounds can be produced efficiently by using biocatalysts. However, wild-type enzymes often do not meet the requirements of a production process, making optimization by rational design or directed evolution necessary. Here, we studied the lipase-catalyzed hydrolysis of the model substrate 1-(2-naphthyl)ethyl acetate both theoretically and experimentally. We found that a computational equivalent of alanine scanning mutagenesis based on QM/MM methodology can be applied to identify amino acid positions important for the activity of the enzyme. The theoretical results are consistent with concomitant experimental work using complete saturation mutagenesis and high-throughput screening of the target biocatalyst, a lipase from Bacillus subtilis. Both QM/MM-based calculations and molecular biology experiments identify histidine 76 as a residue that strongly affects the catalytic activity. The experiments demonstrate its important influence on enantioselectivity.
Collapse
Affiliation(s)
- Susanne Aileen Funke
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Hughes MD, Zhang ZR, Sutherland AJ, Santos AF, Hine AV. Discovery of active proteins directly from combinatorial randomized protein libraries without display, purification or sequencing: identification of novel zinc finger proteins. Nucleic Acids Res 2005; 33:e32. [PMID: 15722478 PMCID: PMC549430 DOI: 10.1093/nar/gni031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have successfully linked protein library screening directly with the identification of active proteins, without the need for individual purification, display technologies or physical linkage between the protein and its encoding sequence. By using 'MAX' randomization we have rapidly constructed 60 overlapping gene libraries that encode zinc finger proteins, randomized variously at the three principal DNA-contacting residues. Expression and screening of the libraries against five possible target DNA sequences generated data points covering a potential 40,000 individual interactions. Comparative analysis of the resulting data enabled direct identification of active proteins. Accuracy of this library analysis methodology was confirmed by both in vitro and in vivo analyses of identified proteins to yield novel zinc finger proteins that bind to their target sequences with high affinity, as indicated by low nanomolar apparent dissociation constants.
Collapse
Affiliation(s)
- Marcus D. Hughes
- School of Life and Health Sciences, Aston UniversityAston Triangle, Birmingham B4 7ET, UK
- ProtaMAX Ltd55 Colmore Row, Birmingham B3 2AS, UK
| | - Zhan-Ren Zhang
- School of Life and Health Sciences, Aston UniversityAston Triangle, Birmingham B4 7ET, UK
| | - Andrew J. Sutherland
- Chemical Engineering and Applied Chemistry, School of Engineering & Applied Science, Aston UniversityAston Triangle, Birmingham B4 7ET, UK
| | - Albert F. Santos
- GE Healthcare, Cardiff LaboratoriesForest Farm, Whitchurch, Cardiff CF14 7YT, UK
| | - Anna V. Hine
- School of Life and Health Sciences, Aston UniversityAston Triangle, Birmingham B4 7ET, UK
- ProtaMAX Ltd55 Colmore Row, Birmingham B3 2AS, UK
- To whom correspondence should be addressed. Tel: +44 121 204 3961; Fax: +44 121 359 0733;
| |
Collapse
|
43
|
Yáñez J, Argüello M, Osuna J, Soberón X, Gaytán P. Combinatorial codon-based amino acid substitutions. Nucleic Acids Res 2004; 32:e158. [PMID: 15537836 PMCID: PMC534637 DOI: 10.1093/nar/gnh156] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 10/22/2004] [Accepted: 10/22/2004] [Indexed: 11/14/2022] Open
Abstract
Twenty Fmoc-protected trinucleotide phosphoramidites representing a complete set of codons for the natural amino acids were chemically synthesized for the first time. A pool of these reagents was incorporated into oligonucleotides at substoichiometric levels to generate two libraries of variants that randomly carry either few or many codon replacements on a region encoding nine amino acids of the bacterial enzyme TEM-1 beta-lactamase. Assembly of the libraries was performed in a completely automated mode through a simple modification of ordinary protocols. This technology eliminates codon redundancy, stop codons and enables complete exploration of sequence space for single, double and triple mutations throughout a protein region spanning several residues. Sequence analysis of many non-selected clones revealed a good incorporation of the trinucleotides, producing combinations of mutations quite different from those obtained using conventional degenerate oligonucleotides. Ceftazidime-selection experiments yielded several never before reported variants containing novel amino acid combinations in the beta-lactamase omega loop region.
Collapse
Affiliation(s)
- Jorge Yáñez
- Instituto de Biotecnología/UNAM, Ap. Postal 510-3 Cuernavaca, Morelos 62250, México
| | | | | | | | | |
Collapse
|
44
|
Neylon C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 2004; 32:1448-59. [PMID: 14990750 PMCID: PMC390300 DOI: 10.1093/nar/gkh315] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/06/2004] [Accepted: 02/06/2004] [Indexed: 11/14/2022] Open
Abstract
Directed molecular evolution and combinatorial methodologies are playing an increasingly important role in the field of protein engineering. The general approach of generating a library of partially randomized genes, expressing the gene library to generate the proteins the library encodes and then screening the proteins for improved or modified characteristics has successfully been applied in the areas of protein-ligand binding, improving protein stability and modifying enzyme selectivity. A wide range of techniques are now available for generating gene libraries with different characteristics. This review will discuss these different methodologies, their accessibility and applicability to non-expert laboratories and the characteristics of the libraries they produce. The aim is to provide an up to date resource to allow groups interested in using directed evolution to identify the most appropriate methods for their purposes and to guide those moving on from initial experiments to more ambitious targets in the selection of library construction techniques. References are provided to original methodology papers and other recent examples from the primary literature that provide details of experimental methods.
Collapse
Affiliation(s)
- Cameron Neylon
- School of Chemistry, University of Southampton, Highfield SO17 1BJ, UK.
| |
Collapse
|