1
|
Identification of protein structural elements responsible for the diversity of sequence preferences among Mini-III RNases. Sci Rep 2016; 6:38612. [PMID: 27924926 PMCID: PMC5141509 DOI: 10.1038/srep38612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/10/2016] [Indexed: 01/21/2023] Open
Abstract
Many known endoribonucleases select their substrates based on the presence of one or a few specific nucleotides at or near the cleavage site. In some cases, selectivity is also determined by the structural features of the substrate. We recently described the sequence-specific cleavage of double-stranded RNA by Mini-III RNase from Bacillus subtilis in vitro. Here, we characterized the sequence specificity of eight other members of the Mini-III RNase family from different bacterial species. High-throughput analysis of the cleavage products of Φ6 bacteriophage dsRNA indicated subtle differences in sequence preference between these RNases, which were confirmed and characterized by systematic analysis of the cleavage kinetics of a set of short dsRNA substrates. We also showed that the sequence specificities of Mini-III RNases are not reflected by different binding affinities for cognate and non-cognate sequences, suggesting that target selection occurs predominantly at the cleavage step. We were able to identify two structural elements, the α4 helix and α5b-α6 loop that were involved in target selection. Characterization of the sequence specificity of the eight Mini-III RNases may provide a basis for better understanding RNA substrate recognition by Mini-III RNases and adopting these enzymes and their engineered derivatives as tools for RNA research.
Collapse
|
2
|
Matje DM, Coughlin DF, Connolly BA, Dahlquist FW, Reich NO. Determinants of precatalytic conformational transitions in the DNA cytosine methyltransferase M.HhaI. Biochemistry 2011; 50:1465-73. [PMID: 21229971 DOI: 10.1021/bi101446g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA methyltransferase M.HhaI is an excellent model for understanding how recognition of a nucleic acid substrate is translated into site-specific modification. In this study, we utilize direct, real-time monitoring of the catalytic loop position via engineered tryptophan fluorescence reporters to dissect the conformational transitions that occur in both enzyme and DNA substrate prior to methylation of the target cytosine. Using nucleobase analogues in place of the target and orphan bases, the kinetics of the base flipping and catalytic loop closure rates were determined, revealing that base flipping precedes loop closure as the rate-determining step prior to methyl transfer. To determine the mechanism by which individual specific hydrogen bond contacts at the enzyme-DNA interface mediate these conformational transitions, nucleobase analogues lacking hydrogen bonding groups were incorporated into the recognition sequence to disrupt the major groove recognition elements. The consequences of binding, loop closure, and catalysis were determined for four contacts, revealing large differences in the contribution of individual hydrogen bonds to DNA recognition and conformational transitions on the path to catalysis. Our results describe how M.HhaI utilizes direct readout contacts to accelerate extrication of the target base that offer new insights into the evolutionary history of this important class of enzymes.
Collapse
Affiliation(s)
- Douglas M Matje
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | | | | | | | | |
Collapse
|
3
|
Zahran M, Daidone I, Smith JC, Imhof P. Mechanism of DNA Recognition by the Restriction Enzyme EcoRV. J Mol Biol 2010; 401:415-32. [DOI: 10.1016/j.jmb.2010.06.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/11/2010] [Accepted: 06/13/2010] [Indexed: 11/29/2022]
|
4
|
Imhof P, Fischer S, Smith JC. Catalytic Mechanism of DNA Backbone Cleavage by the Restriction Enzyme EcoRV: A Quantum Mechanical/Molecular Mechanical Analysis. Biochemistry 2009; 48:9061-75. [DOI: 10.1021/bi900585m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Petra Imhof
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Stefan Fischer
- Computational Biochemistry, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
| | - Jeremy C. Smith
- Computational Molecular Biophysics, IWR, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
- Oak Ridge National Laboratory, P.O. Box 2008 MS 6309, Oak Ridge, Tennessee 37831-6309
| |
Collapse
|
5
|
Estabrook RA, Nguyen TT, Fera N, Reich NO. Coupling sequence-specific recognition to DNA modification. J Biol Chem 2009; 284:22690-6. [PMID: 19497854 DOI: 10.1074/jbc.m109.015966] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes that modify DNA are faced with significant challenges in specificity for both substrate binding and catalysis. We describe how single hydrogen bonds between M.HhaI, a DNA cytosine methyltransferase, and its DNA substrate regulate the positioning of a peptide loop which is approximately 28 A away. Stopped-flow fluorescence measurements of a tryptophan inserted into the loop provide real-time observations of conformational rearrangements. These long-range interactions that correlate with substrate binding and critically, enzyme turnover, will have broad application to enzyme specificity and drug design for this medically relevant class of enzymes.
Collapse
Affiliation(s)
- R August Estabrook
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
6
|
Little EJ, Babic AC, Horton NC. Early interrogation and recognition of DNA sequence by indirect readout. Structure 2008; 16:1828-37. [PMID: 19081059 PMCID: PMC2637360 DOI: 10.1016/j.str.2008.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/28/2008] [Accepted: 09/21/2008] [Indexed: 01/07/2023]
Abstract
Control of replication, transcription, recombination and repair requires proteins capable of finding particular DNA sequences in a background of a large excess of nonspecific sequences. Such recognition can involve direct readout, with direct contacts to the bases of DNA, or in some cases through the less well-characterized indirect readout mechanisms. In order to measure the relative contributions of direct and indirect readout by a sequence specific endonuclease, HincII, a mutant enzyme deficient in a direct contact, was characterized, and surprisingly showed no loss of sequence specificity. The three dimensional crystal structure shows the loss of most of the direct readout contacts to the DNA, possibly capturing an early stage in target site recognition using predominately indirect readout to prescreen sites before full sequence interrogation.
Collapse
Affiliation(s)
- Elizabeth J Little
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
7
|
Dunten PW, Little EJ, Gregory MT, Manohar VM, Dalton M, Hough D, Bitinaite J, Horton NC. The structure of SgrAI bound to DNA; recognition of an 8 base pair target. Nucleic Acids Res 2008; 36:5405-16. [PMID: 18701646 PMCID: PMC2532715 DOI: 10.1093/nar/gkn510] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 07/19/2008] [Accepted: 07/24/2008] [Indexed: 11/14/2022] Open
Abstract
The three-dimensional X-ray crystal structure of the 'rare cutting' type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca(2+) bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn(2+), with strong binding at the protein-DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI.
Collapse
Affiliation(s)
- Pete W. Dunten
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Elizabeth J. Little
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Mark T. Gregory
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Veena M. Manohar
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Michael Dalton
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - David Hough
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Jurate Bitinaite
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| | - Nancy C. Horton
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025, Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 and New England Biolabs, 240 County Road Ipswich, MA 01938-2723, USA
| |
Collapse
|
8
|
Takahashi S, Matsuno H, Furusawa H, Okahata Y. Kinetic analyses of divalent cation-dependent EcoRV digestions on a DNA-immobilized quartz crystal microbalance. Anal Biochem 2007; 361:210-7. [PMID: 17217909 DOI: 10.1016/j.ab.2006.11.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 11/18/2022]
Abstract
Enzymatic digestion with a type IIP restriction endonuclease EcoRV was investigated on a DNA-immobilized 27-MHz quartz crystal microbalance (QCM). Real-time observations of both the enzyme binding process and the DNA cleavage process of EcoRV were followed by frequency (mass) changes on the QCM, which were dependent on divalent cations such as Ca(2+) or Mg(2+). In the presence of Ca(2+), the site-specific binding of EcoRV to DNA could be observed, without the catalytic process. On the other hand, in the presence of Mg(2+), both the binding of the enzyme to the specific DNA (mass increase) and the site-specific cleavage reaction (mass decrease) could be observed continuously from QCM frequency changes. From time courses of frequency (mass) changes, each kinetic parameter, namely binding rate constants (k(on)), dissociation rate constants (k(off)), dissociation constants (K(d)) of EcoRV to DNA, and catalytic rate constant (k(cat)) of the cleavage reaction, could be determined. The binding kinetic parameters of EcoRV in the presence of Ca(2+) were consistent with those of the binding process followed by the cleavage process in the presence of Mg(2+). The k(cat) value obtained by the QCM method was also consistent with that obtained by other methods. This study is the first to simultaneously determine k(on), k(off), and k(cat) for a type IIP restriction endonuclease on one device.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Department of Biomolecular Engineering, Frontier Collaborative Research Center, Tokyo Institute of Technology and CREST, Japan Science and Technology Corp., 4259 Nagatsuta, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
9
|
Hiller DA, Perona JJ. Positively charged C-terminal subdomains of EcoRV endonuclease: contributions to DNA binding, bending, and cleavage. Biochemistry 2006; 45:11453-63. [PMID: 16981705 PMCID: PMC2515858 DOI: 10.1021/bi0606400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The carboxy-terminal subdomains of the homodimeric EcoRV restriction endonuclease each bear a net charge of +4 and are positioned on the inner concave surface of the 50 degree DNA bend that is induced by the enzyme. A complete kinetic and structural analysis of a truncated EcoRV mutant lacking these domains was performed to assess the importance of this diffuse charge in facilitating DNA binding, bending, and cleavage. At the level of formation of an enzyme-DNA complex, the association rate for the dimeric mutant enzyme was sharply decreased by 10(3)-fold, while the equilibrium dissociation constant was weakened by nearly 10(6)-fold compared with that of wild-type EcoRV. Thus, the C-terminal subdomains strongly stabilize the enzyme-DNA ground-state complex in which the DNA is known to be bent. Further, the extent of DNA bending as observed by fluorescence resonance energy transfer was also significantly decreased. The crystal structure of the truncated enzyme bound to DNA and calcium ions at 2.4 A resolution reveals that the global fold is preserved and suggests that a divalent metal ion crucial to catalysis is destabilized in the active site. This may explain the 100-fold decrease in the rate of metal-dependent phosphoryl transfer observed for the mutant. These results show that diffuse positive charge associated with the C-terminal subdomains of EcoRV plays a key role in DNA association, bending, and cleavage.
Collapse
Affiliation(s)
| | - John J. Perona
- Corresponding author Telephone: 805−893−7389 FAX: 805−893−4120
| |
Collapse
|
10
|
Hiller DA, Rodriguez AM, Perona JJ. Non-cognate Enzyme–DNA Complex: Structural and Kinetic Analysis of EcoRV Endonuclease Bound to the EcoRI Recognition Site GAATTC. J Mol Biol 2005; 354:121-36. [PMID: 16236314 DOI: 10.1016/j.jmb.2005.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/14/2005] [Accepted: 09/15/2005] [Indexed: 11/25/2022]
Abstract
The crystal structure of EcoRV endonuclease bound to non-cognate DNA at 2.0 angstroms resolution shows that very small structural adaptations are sufficient to ensure the extreme sequence specificity characteristic of restriction enzymes. EcoRV bends its specific GATATC site sharply by 50 degrees into the major groove at the center TA step, generating unusual base-base interactions along each individual DNA strand. In the symmetric non-cognate complex bound to GAATTC, the center step bend is relaxed to avoid steric hindrance caused by the different placement of the exocyclic thymine methyl groups. The decreased base-pair unstacking in turn leads to small conformational rearrangements in the sugar-phosphate backbone, sufficient to destabilize binding of crucial divalent metal ions in the active site. A second crystal structure of EcoRV bound to the base-analog GAAUTC site shows that the 50 degrees center-step bend of the DNA is restored. However, while divalent metals bind at high occupancy in this structure, one metal ion shifts away from binding at the scissile DNA phosphate to a position near the 3'-adjacent phosphate group. This may explain why the 10(4)-fold attenuated cleavage efficiency toward GAATTC is reconstituted by less than tenfold toward GAAUTC. Examination of DNA binding and bending by equilibrium and stopped-flow florescence quenching and fluorescence resonance energy transfer (FRET) methods demonstrates that the capacity of EcoRV to bend the GAATTC non-cognate site is severely limited, but that full bending of GAAUTC is achieved at only a threefold reduced rate compared with the cognate complex. Together, the structural and biochemical data demonstrate the existence of distinct mechanisms for ensuring specificity at the bending and catalytic steps, respectively. The limited conformational rearrangements observed in the EcoRV non-cognate complex provide a sharp contrast to the extensive structural changes found in a non-cognate BamHI-DNA crystal structure, thus demonstrating a diversity of mechanisms by which restriction enzymes are able to achieve specificity.
Collapse
Affiliation(s)
- David A Hiller
- Department of Chemistry and Biochemistry, and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | | | | |
Collapse
|
11
|
Elliott SL, Brazier J, Cosstick R, Connolly BA. Mechanism of the Escherichia coli DNA T:G-mismatch endonuclease (Vsr protein) probed with thiophosphate-containing oligodeoxynucleotides. J Mol Biol 2005; 353:692-703. [PMID: 16188275 DOI: 10.1016/j.jmb.2005.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
The mechanism of the Escherichia coli DNA T:G mismatch endonuclease (Vsr) has been investigated using oligodeoxynucleotides substituted, at the scissile phosphate, with isomeric phosphorothioates and a 3'-phosphorothiolate. Binding and kinetic data with the phosphorothioates/phosphorothiolate indicate that the two magnesium ions, which constitute essential co-factors, are required to stabilise the extra negative charge developed on the phosphate as the transition state is formed. Additionally one of the magnesium ions serves to activate the leaving group (the non-bridging 3'-oxygen atom of the scissile phosphate) during the hydrolysis reaction. Stereochemical analysis, using the R(p) phosphorothioate isomer, indicates that Vsr carries out a hydrolytic reaction with inversion of stereochemistry at phosphorus, compatible with an in-line attack of water and a pentacovalent transition state with trigonal bipyramidal geometry. In conjunction with structures of Vsr bound to its products, these data allow the reconstruction of the enzyme-substrate complex and a comprehensive description of the hydrolysis mechanism.
Collapse
Affiliation(s)
- Sarah L Elliott
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
12
|
|
13
|
Hiller DA, Fogg JM, Martin AM, Beechem JM, Reich NO, Perona JJ. Simultaneous DNA Binding and Bending by EcoRV Endonuclease Observed by Real-Time Fluorescence†. Biochemistry 2003; 42:14375-85. [PMID: 14661948 DOI: 10.1021/bi035520w] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complete catalytic cycle of EcoRV endonuclease has been observed by combining fluorescence anisotropy with fluorescence resonance energy transfer (FRET) measurements. Binding, bending, and cleavage of substrate oligonucleotides were monitored in real time by rhodamine-x anisotropy and by FRET between rhodamine and fluorescein dyes attached to opposite ends of a 14-mer DNA duplex. For the cognate GATATC site binding and bending are found to be nearly simultaneous, with association and bending rate constants of (1.45-1.6) x 10(8) M(-1) s(-1). On the basis of the measurement of k(off) by a substrate-trapping approach, the equilibrium dissociation constant of the enzyme-DNA complex in the presence of inhibitory calcium ions was calculated as 3.7 x 10(-12) M from the kinetic constants. Further, the entire DNA cleavage reaction can be observed in the presence of catalytic Mg(2+) ions. These measurements reveal that the binding and bending steps occur at equivalent rates in the presence of either Mg(2+) or Ca(2+), while a slow decrease in fluorescence intensity following bending corresponds to k(cat), which is limited by the cleavage and product dissociation steps. Measurement of k(on) and k(off) in the absence of divalent metals shows that the DNA binding affinity is decreased by 5000-fold to 1.4 x 10(-8) M, and no bending could be detected in this case. Together with crystallographic studies, these data suggest a model for the induced-fit conformational change in which the role of divalent metal ions is to stabilize the sharply bent DNA in an orientation suitable for accessing the catalytic transition state.
Collapse
Affiliation(s)
- David A Hiller
- Department of Chemistry and Biochemistry and Interdepartmental Program in Biomolecular Science and Engineering, University of California at Santa Barbara, 93106-9510, USA
| | | | | | | | | | | |
Collapse
|