Abstract
The Gram-negative bacterial outer membrane contains several independent, biochemically distinct transport systems for the acquisition of solutes from the environment. Three or more different classes of membrane proteins exist within the porin superfamily, that facilitate the uptake of sugars, amino acids, nucleotides, vitamins and metals. In spite of crystallographic descriptions of these protein transporters over the past decade, the mechanisms by which porins catalyze solute internalization are controversial, and in some cases still obscure. For many years the research of Maurice Hofnung endeavored to explain the transport of maltose and maltodextrins by LamB, also known as maltoporin. In the shadow of recent crystal structures, his work helped outline a different picture of outer membrane transport physiology, that is a tribute to the powerful genetic approaches Maurice pioneered. These data suggest that the principal determinant of maltodextrin recognition by maltoporin derives from the configuration of aromatic amino acids in its surface loops.
Collapse