1
|
Identification of the cglC, cglD, cglE, and cglF genes and their role in cell contact-dependent gliding motility in Myxococcus xanthus. J Bacteriol 2012; 194:1940-9. [PMID: 22343295 DOI: 10.1128/jb.00055-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Within Myxococcus xanthus biofilms, cells actively move and exchange their outer membrane (OM) lipoproteins and lipids. Between genetically distinct strains, OM exchange can regulate recipient cell behaviors, including gliding motility and development. Although many different proteins are thought to be exchanged, to date, only two endogenous OM lipoproteins, CglB and Tgl, are known to be transferred. Protein exchange requires the TraAB proteins in recipient and donor cells, where they are hypothesized to facilitate OM fusion for transfer. To better understand the types of proteins exchanged, we identified the genes for the remaining set of cgl gliding motility mutants. These mutants are unique because their motility defect can be transiently restored by physical contact with donor cells that encode the corresponding wild-type protein, a process called stimulation. Similar to CglB and Tgl, the cglC and cglD genes encode type II signal sequences, suggesting that they are also lipoproteins. Surprisingly, the cglE and cglF genes instead encode type I signal sequences, suggesting that nonlipoproteins are also exchanged. Consistent with this idea, the addition of exogenous synthetic CglF protein (71 amino acids) to a cglF mutant rescued its motility defect. In contrast to a live donor cell, stimulation with purified CglF protein occurred independently of TraA. These results also indicate that CglF may localize to the cell surface. The implications of our findings on OM exchange are discussed.
Collapse
|
2
|
Sodergren E, Cheng Y, Avery L, Kaiser D. Recombination in the Vicinity of Insertions of Transposon Tn 5 in MYXOCOCCUS XANTHUS. Genetics 2010; 105:281-91. [PMID: 17246160 PMCID: PMC1202157 DOI: 10.1093/genetics/105.2.281] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To test genetic recombination in the vicinity of insertions of the transposon Tn5, crosses were performed by transduction between M. xanthus strains carrying different insertions of Tn5. One member of each pair carried resistance to kanamycin (Tn5-Km); the other carried resistance to tetracycline (Tn5-Tc). The distance between each pair of Tn5 insertions was also measured by restriction mapping. The physical distance corresponding to each recombination frequency was calculated from the transductional linkage and compared with distance on the restriction map. A good correspondence between the two measures of distance was obtained for a pair of Tn5 insertions near the cglB locus and for another pair near the mgl locus. Correspondence between the two measurements of distance, the observed allelic behavior of Tn5-Km and Tn5 -Tc at the same locus and the finding of the same frequencies of recombinants in reciprocal crosses implied that recombination in the vicinity of Tn 5 was normal.
Collapse
Affiliation(s)
- E Sodergren
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | | | | | | |
Collapse
|
3
|
Abstract
Fortunately, I began research in 1950 when the basic concepts of microbial genetics could be explored experimentally. I began with bacteriophage lambda and tried to establish the colinearity of its linkage map with its DNA molecule. My students and I worked out the regulation of lambda repressor synthesis for the establishment and maintenance of lysogeny. We also investigated the proteins responsible for assembly of the phage head. Using cell extracts, we discovered how to package DNA inside the head in vitro. Around 1972, I began to use molecular genetics to understand the developmental biology of Myxococcus xanthus. In particular, I wanted to learn how myxococcus builds its multicellular fruiting body within which it differentiates spores. We identified two cell-to-cell signals used to coordinate development. We have elucidated, in part, the signal transduction pathway for C-signal that directs the morphogenesis of a fruiting body.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
4
|
Thomasson B, Link J, Stassinopoulos AG, Burke N, Plamann L, Hartzell PL. MglA, a small GTPase, interacts with a tyrosine kinase to control type IV pili-mediated motility and development of Myxococcus xanthus. Mol Microbiol 2002; 46:1399-413. [PMID: 12453225 DOI: 10.1046/j.1365-2958.2002.03258.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mglA gene encodes a 22 kDa GTPase that is critical for single-cell (A) gliding, type IV pili-mediated (S) gliding and development of Myxococcus xanthus. To identify components that interact with MglA to control these processes, second-site mutations that restore movement to non-motile mglA mutants were sought. An allele-specific extragenic suppressor of mglA8, named mas815 (mglA8 suppressor 15), was obtained. mas815 does not bypass the requirement for MglA, yet it restores type IV pili-mediated motility and starvation-induced development. Single-cell (A) motility is not restored. The suppressing mutation maps to the 3' end of a gene, masK, in an operon immediately upstream of the mglBA operon. masK encodes a protein of the STY kinase family. When the masK gene was used as bait against a library carrying M. xanthus DNA in the yeast two-hybrid system, eight positive, independent clones containing fusions of mglA to GAL4 were obtained, thus confirming the interaction between MglA and MasK. MasK, expressed in Escherichia coli, was shown to phosphorylate at a tyrosine residue(s). The gain-of-function in the masK815 mutant was correlated with increased production of extracellular fibrils, which are required for adhesion, cell-cell contact and sensing phosphatidylethanolamine chemoattractants. These data suggest that the interaction between MasK and MglA is an essential part of a signal transduction pathway controlling motility and development.
Collapse
Affiliation(s)
- Bobbie Thomasson
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | | | | | |
Collapse
|
5
|
Fontes M, Kaiser D. Myxococcus cells respond to elastic forces in their substrate. Proc Natl Acad Sci U S A 1999; 96:8052-7. [PMID: 10393946 PMCID: PMC22186 DOI: 10.1073/pnas.96.14.8052] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elasticotaxis describes the ability of Myxococcus xanthus cells to sense and to respond to elastic forces within an agar gel on which they rest. Within 5 min of the application of stress, each cell begins to reorient its long axis perpendicular to the stress force. The cells then glide in that direction, and the swarm becomes asymmetric. A quantifiable assay for the strength of elasticotaxis is based on the change in swarm shape from circular to elliptic. By using a collection of isogenic motility mutants, it has been found that the ability to respond to stress in agar depends totally on adventurous (A) motility, but not at all on social (S) motility or on the frz genes. In fact, S- mutants (which are moving only by means of A motility) respond to the applied stress more strongly than does the wild type, despite the fact that their spreading rates are slower than that of the wt strain. Based on the swarming and elasticotactic phenotypes of isogenic frizzy strains that were also defective either in A or S motility, frz behaves as if part of the S motility system.
Collapse
Affiliation(s)
- M Fontes
- Departments of Biochemistry and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | |
Collapse
|
6
|
Rodriguez AM, Spormann AM. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J Bacteriol 1999; 181:4381-90. [PMID: 10400597 PMCID: PMC93941 DOI: 10.1128/jb.181.14.4381-4390.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gliding movements of individual isolated Myxococcus xanthus cells depend on the genes of the A-motility system (agl and cgl genes). Mutants carrying defects in those genes are unable to translocate as isolated cells on solid surfaces. The motility defect of cgl mutants can be transiently restored to wild type by extracellular complementation upon mixing mutant cells with wild-type or other motility mutant cells. To develop a molecular understanding of the function of a Cgl protein in gliding motility, we cloned the cglB wild-type allele by genetic complementation of the mutant phenotype. The nucleotide sequence of a 2.85-kb fragment was determined and shown to encode two complete open reading frames. The CglB protein was determined to be a 416-amino-acid putative lipoprotein with an unusually high cysteine content. The CglB antigen localized to the membrane fraction. The swarming and gliding defects of a constructed DeltacglB mutant were fully restored upon complementation with the cglB wild-type allele. Experiments with a cglB allele encoding a CglB protein with a polyhistidine tag at the C terminus showed that this allele also promoted wild-type levels of swarming and single-cell gliding, but was unable to stimulate DeltacglB cells to move. Possible functions of CglB as a mechanical component or as a signal protein in single cell gliding are discussed.
Collapse
Affiliation(s)
- A M Rodriguez
- Environmental Engineering and Science, Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-4020, USA
| | | |
Collapse
|
7
|
Abstract
Myxococcus xanthus tgl mutants lack social motility and type IV pili but can be transiently stimulated to swarm and to make pili by contacting tgl+ cells. The absence of pili in tgl mutants is shown not to be due to the absence of pilin. The rate of pilus elongation after Tgl stimulation is shown to be similar to the rate of pilus elongation in wild-type cells, using a new more rapid assay for stimulation.
Collapse
Affiliation(s)
- D Wall
- Department of Biochemistry, Stanford University, California 94305, USA
| | | | | |
Collapse
|
8
|
Hartzell PL. Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. Proc Natl Acad Sci U S A 1997; 94:9881-6. [PMID: 9275220 PMCID: PMC23286 DOI: 10.1073/pnas.94.18.9881] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complex prokaryote, Myxococcus xanthus, undergoes a program of multicellular development when starved for nutrients, culminating in sporulation. M. xanthus makes MglA, a 22-kDa, soluble protein that is required for both multicellular development and gliding motility. MglA is similar in sequence to the Saccharomyces cerevisiae SAR1 protein, a member of the Ras/Rab/Rho superfamily of small eukaryotic GTPases. The SAR1 gene, when integrated into the M. xanthus genome, complements the sporulation defect of a DeltamglA strain. A forward, second-site mutation on the M. xanthus chromosome, rpm, in combination with SAR1, restores fruiting body morphogenesis and gliding motility to a DeltamglA strain. The result that the rpm mutation suppresses the substitution of SAR1 for mglA suggests that Sar1p interacts with other M. xanthus proteins to control the motility-dependent aggregation of cells during development.
Collapse
Affiliation(s)
- P L Hartzell
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA.
| |
Collapse
|
9
|
Abstract
Mutations in the tgl locus inactivate social gliding motility in Myxococcus xanthus and block production of pili. The tgl locus is distinctive among the genes for social motility because social gliding and pili can be restored transiently to tgl mutant cells by mixing them with tgl+ cells, a process known as stimulation. The tgl locus was cloned with a linked insertion of transposon Tn5 by using the kanamycin resistance encoded by that transposon. A 16-kb segment of chromosomal DNA complemented the social motility defect when introduced into tgl mutant cells to form a tandem duplication tgl+/tgl heterozygote. To delimit the autonomous tgl transcription unit, subfragments of this 16-kb piece were integrated at the ectopic Mx8 prophage attachment site. A 1.7-kb DNA fragment was identified which, when integrated at the Mx8 site, simultaneously rescued social motility and pilus production. The ability to stimulate tgl mutants was also rescued by the 1.7-kb fragment. Because rescue of stimulation from an mgl-deficient donor strain which cannot swarm was observed, this demonstrates that a stimulation donor requires a tgl+ allele but does not require the capacity to swarm actively. The nucleotide sequence of the 1.7-kb fragment revealed two protein coding regions, open reading frame A and open reading frame B (ORFB). ORFB is the tgl gene, because a 613-bp DNA fragment which includes 75% of ORFB rescues tgl-1, -2, and -3 mutants and because disruption of ORFB by deletion or insertion of transposon Tn5lac constitutes a tgl mutation.
Collapse
Affiliation(s)
- J P Rodriguez-Soto
- Department of Biochemistry, Stanford University School of Medicine, California 94305-5427, USA
| | | |
Collapse
|
10
|
Rodriguez-Soto JP, Kaiser D. Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility. J Bacteriol 1997; 179:4372-81. [PMID: 9209056 PMCID: PMC179262 DOI: 10.1128/jb.179.13.4372-4381.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tgl protein is required for the production of the type IV pili found at a pole of the Myxococcus xanthus cell. These pili are essential for social motility. Evidence is presented that Tgl is a membrane protein, based on experiments with polyclonal antibody specific for Tgl that was raised against the fusion proteins beta-galactosidase-Tgl and TrpE-Tgl. Immunoaffiity-purified antibody reacted with a protein in M. xanthus having an apparent molecular mass of 27.5 kDa as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sequence of the tgl gene translates into a polypeptide of 27 kDa. Although these numbers are close, it is likely that the primary tgl translation product is processed and modified in M. xanthus. The N terminus has a signal peptidase II recognition sequence, cleavage of which is expected to remove 19 amino acid residues. When the tgl gene is expressed in Escherichia coli, the protein product consistently migrates faster in the gel than mature Tgl expressed in M. xanthus, suggesting a second modification by addition which slows migration of the protein from M. xanthus. Tgl, as detected by its specific antibody, sediments with the membrane fraction of cells. It can be extracted with detergents but not with salt or by the addition of chelators for divalent cations. In an equilibrium gradient, Tgl bands at the buoyant density of membranes and with the NADH-oxidase activity. Intact cells failed to bind anti-Tgl antibody, and less than 2% of the total Tgl is released in soluble form from the periplasm. Yet, cells that had been osmotically shocked and treated with paraformaldehyde were able to react with the specific antibody--a reaction absent from cells with a deletion of the tgl transcription unit. Assuming that osmotic shock disrupts the outer membrane, the fractionation and localization data imply that Tgl is attached to the inner or outer membranes, from which it is exposed to the intermembranous space. Tgl is necessary for synthesis of pili in M. xanthus and is the only pilus protein that can be donated by other cells (stimulation). Tgl contains six tandem copies of the tetratrico peptide repeat structural motif. Its membrane localization, capacity for stimulation, and content of tetratrico structural repeats together suggest that Tgl may be necessary for the assembly of pilin subunits into filaments.
Collapse
Affiliation(s)
- J P Rodriguez-Soto
- Department of Biochemistry, Stanford University School of Medicine, California 94305-5427, USA
| | | |
Collapse
|
11
|
Abstract
Carotenogenesis is light-inducible in the non-photosynthetic, Gram-negative, bacterium Myxococcus xanthus. We report the characterization of the carR region which controls this phenomenon. Insertion of transposon Tn5 close to the carR region caused a dominant, carotenoid-constitutive mutation because of the presence of a constitutive, outward-reading promoter in the IS50L component of Tn5. In wild-type cells, a powerful, tightly-regulated, light-inducible promoter directs the transcription of two genetic functions. One of these functions is to activate transcription of the genetically unlinked carB gene, which is involved in carotenoid synthesis. The second function (carR) regulates the light-inducible promoter. We also report the mapping of two carotenoid constitutive mutations to the previously characterized carA locus.
Collapse
Affiliation(s)
- D A Hodgson
- Department of Biological Sciences, University of Warwick, West Midlands, UK
| |
Collapse
|
12
|
Abstract
The genome of Myxococcus xanthus, which is 9,454 kbp, is one of the largest bacterial genomes. The organization of the DNA and the distribution of genes encoding social and developmental behaviors were examined by using pulsed field gel electrophoresis. Intact genomic DNA was digested with AseI into 16 restriction fragments, which were separated by contour-clamped homogeneous electric field electrophoresis, purified, and radiolabeled. Each AseI fragment was hybridized to SpeI-digested DNA and to an M. xanthus genomic library contained in yeast artificial chromosomes. Some SpeI restriction fragments and yeast artificial chromosome clones contained AseI sites and hybridized with two different AseI restriction fragments, providing evidence for the juxtaposition of these AseI restriction fragments in the chromosome. The deduced AseI physical map is circular, suggesting that this bacterium contains a single, circular chromosome. Transposable elements shown by transduction to be in or near genes of interest were located on specific AseI restriction fragments by restriction analysis and Southern hybridization. Most AseI restriction fragments contained genes involved in social and developmental behaviors.
Collapse
Affiliation(s)
- H W Chen
- Department of Microbiology, University of Georgia, Athens 30602
| | | | | | | |
Collapse
|
13
|
|
14
|
Kalos M, Zissler J. Transposon tagging of genes for cell-cell interactions in Myxococcus xanthus. Proc Natl Acad Sci U S A 1990; 87:8316-20. [PMID: 2172982 PMCID: PMC54946 DOI: 10.1073/pnas.87.21.8316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The prokaryote Myxococcus xanthus is a model for cell interactions important in multicellular behavior. We used the transposon TnphoA to specifically identify genes for cell-surface factors involved in cell interactions. From a library of 10,700 insertions of TnphoA, we isolated 36 that produced alkaline phosphatase activity. Three TnphoA insertions tagged cell motility genes, called cgl, which control the adventurous movement of cells. The products of the tagged cgl genes could function in trans upon other cells and were localized primarily in the cell envelope and extracellular space, consistent with TnphoA tagging genes for extracellular factors controlling motility.
Collapse
Affiliation(s)
- M Kalos
- Department of Microbiology, University of Minnesota Medical School, Minneapolis 55455
| | | |
Collapse
|
15
|
Abstract
During development, Myxococcus xanthus cells glide toward foci of aggregation and produce compact multicellular mounds. We studied development in strains with defects in contact-stimulated gliding. Contact stimulation involves a mechanism influenced by contacts between neighboring cells which stimulates the gliding motility of single cells (Hodgkin and Kaiser, Proc. Natl. Acad. Sci. USA 74:2938-2942, 1977; Hodgkin and Kaiser, Mol. Gen. Genet. 171:167-176, 1979). Most mutants containing a mutation in a single gene affecting contact stimulation (cgl gene) were able to form foci of aggregation during development. However, the aggregates were diffuse, suggesting that contact stimulation is important for morphogenetic movements during aggregation. A mutant containing a mutation in the cglF3 gene showed a striking delay in aggregation, suggesting that the cglF3 gene affects a mechanism stimulating cells moving to foci or affects a mechanism for coordinating early cell behavior. Mutants containing the cglF3 mutation in combination with a cglB, cglC, cglE, or cglF1 mutation had severe defects in aggregation and failed to recover from the early delay. The severity of the defects in mutants containing two cgl mutations suggests that cgl genes are critical for development. We propose that cgl genes stimulate cell movement or control specific contacts between cells during aggregation.
Collapse
Affiliation(s)
- M Kalos
- Department of Microbiology, University of Minnesota Medical School, Minneapolis 55455
| | | |
Collapse
|
16
|
Abstract
The csgA mutations of Myxococcus xanthus (formerly known as spoC) inhibit sporulation as well as rippling, which involves ridges of cells moving in waves. Sporulating revertants of CsgA cells were isolated by direct selection, since spores are much more resistant to heat and ultrasonic treatment than are vegetative cells. The revertants fell into seven groups on the basis of phenotype and the chromosomal location of the suppressor alleles. Group 1 contained one allele that was a back mutation of the original csgA mutation. Group 2 contained two linked alleles that were unlinked to the csgA locus and restored fruiting-body formation, sporulation, and rippling. Group 3 revertants regained the ability to sporulate in fruiting bodies but not the ability to ripple. Revertants in groups 4 to 7 were able to sporulate but unable to form fruiting bodies or ripples. The suppressors were all found to be bypass suppressors even though they were not selected as such in most cases. The csgA mutation prevented expression of several developmentally regulated promoters, each fused to a lacZ reporter gene and assayed by beta-galactosidase production. In four of five suppressor groups (groups 4 to 7), expression of each of these csgA-dependent fusions was restored, which suggests that bypass suppression restores developmental gene expression near the point at which expression is disrupted in CsgA mutants. Bypass suppression did not restore production of C factor, and morphological manifestations of development such as rippling and fruiting-body formation were usually abnormal. One interpretation of these results is that C factor has multiple functions and few suppressors can compensate for all of them.
Collapse
Affiliation(s)
- H G Rhie
- Department of Microbiology, University of Georgia, Athens 30602
| | | |
Collapse
|
17
|
Kuspa A, Kaiser D. Genes required for developmental signalling in Myxococcus xanthus: three asg loci. J Bacteriol 1989; 171:2762-72. [PMID: 2540156 PMCID: PMC209962 DOI: 10.1128/jb.171.5.2762-2772.1989] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
asg-carrying strains of Myxococcus xanthus arose in a selection for mutants defective in cell-cell signalling during fruiting body development. All 15 asg mutations examined were found to lie in one of three genetic loci, asgA, asgB, or asgC. The loci were defined by linkage to different insertions of transposon Tn5 and molecular cloning of asgA. asg mutants of all three types were deficient in the aggregation of cells into mounds of the sort that normally give rise to fruiting bodies. asg mutants were also deficient in spore formation; sporulation is normally one of the last steps in fruiting body development. Consistent with a requirement for cell-to-cell signalling, at 1 to 2 h asg+-carrying cells release a material called A-factor that can rescue development of asg mutants. asgA, asgB, and asgC mutants released 5% or less of the asg+ level of A-factor, as measured by bioassay. The experimental results are consistent with the hypothesis that a deficiency in A-factor production or release is the primary developmental defect in asg mutants and that aggregation and sporulation depend on A-factor. asg mutations at all three loci also changed the color and morphology of growing colonies, and failure to release A-factor may itself arise from a defect in growing cells.
Collapse
Affiliation(s)
- A Kuspa
- Department of Biochemistry, Stanford University School of Medicine, California 94305
| | | |
Collapse
|
18
|
Stephens K, Hartzell P, Kaiser D. Gliding motility in Myxococcus xanthus: mgl locus, RNA, and predicted protein products. J Bacteriol 1989; 171:819-30. [PMID: 2464581 PMCID: PMC209670 DOI: 10.1128/jb.171.2.819-830.1989] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mutants of Myxococcus xanthus that had lost the ability to glide were examined to elucidate the mechanism of gliding motility. Nonmotile mutants resulting from a single mutational step were all defective at the same locus, mgl, which implied an important role for the mgl product(s) in gliding. Deletion experiments, transposon insertion mutagenesis, and genetic rescue of mgl mutants mapped the locus to a 1.6-kilobase segment of Myxococcus DNA. Two species of RNA that hybridized with mgl DNA were found both during vegetative growth and during the starvation-induced development of fruiting bodies, which also requires cell movement. The two RNA species, of 1.5 and 1.3 kilobases, had the same 5' to 3' orientation and overlapped extensively. The DNA sequences of mgl+ and of seven mgl mutants were determined. Each mutant differed from mgl+ by a single-base-pair change in the sequence. Two adjacent open reading frames were found in the sequence hybridizing to both species of mgl RNA. Six of the single-base-pair changes, each of which would result in a single-amino-acid change, and an insertion-produced mgl mutation were located in the downstream open reading frame. This open reading frame (of 195 amino acids) is therefore an mgl gene, called mglA. The function of the upstream open reading frame is not known with certainty, although it does contain one of the mgl mutant sites and could be a second mgl gene.
Collapse
Affiliation(s)
- K Stephens
- Department of Biochemistry, Stanford University, California 94305
| | | | | |
Collapse
|
19
|
Stephens K, Kaiser D. Genetics of gliding motility in Myxococcus xanthus: Molecular cloning of the mgl locus. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00331587] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Abstract
The myxobacteria are Gram-negative soil bacteria that live in large communities known as swarms. The most remarkable characteristic of myxobacteria is their ability to form fruiting bodies that have a species-specific shape and color. Fruiting body formation requires the concerted effort of hundreds of thousands of cells. Development is initiated only when two conditions are satisfied. The cells must be nutritionally deprived (environmental signal) and there must be many other cells in the vicinity (intercellular signal). The development of one species, Myxococcus xanthus, has been studied in the most detail. M. xanthus uses amino acids as its primary carbon, nitrogen, and energy source. Starvation for a single amino acid, or for inorganic phosphate, serves as the environmental signal. A variety of intercellular signals appear to control the initiation of development and the timing of subsequent developmental events.
Collapse
|
21
|
Martínez-Laborda A, Elías M, Ruiz-Vázquez R, Murillo FJ. Insertions of Tn5 linked to mutations affecting carotenoid synthesis inMyxococcus xanthus. ACTA ACUST UNITED AC 1986. [DOI: 10.1007/bf02428039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Abstract
During their complex life cycle, myxobacteria manifest a number of cell interactions. These include contact-mediated interactions as well as those mediated by soluble extracellular signals. Some of these interactions are well-defined; in addition, the tools for molecular and genetic analysis of these interactions in Myxococcus xanthus are now available.
Collapse
|
23
|
Avery L, Kaiser D. Construction of tandem genetic duplications with defined endpoints in Myxococcus xanthus. MOLECULAR & GENERAL GENETICS : MGG 1983; 191:110-7. [PMID: 6310346 DOI: 10.1007/bf00330897] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Avery L, Kaiser D. In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. MOLECULAR & GENERAL GENETICS : MGG 1983; 191:99-109. [PMID: 6310351 DOI: 10.1007/bf00330896] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Using a specialized transducing P1 phage carrying an insertion of Tn5-132, an insertion of Tn5-wt in the chromosome of Myxococcus xanthus, which codes for resistance to kanamycin, can be replaced with one of Tn5-132, which codes for resistance to tetracycline. That Tn5-132 in the daughter is inserted at the same location in the chromosome as Tn5-wt was in the parent was shown by a variety of physical and genetic tests. Southern blot hybridizations of restriction digests of daughter and parent DNAs probed for sequences homologous to Tn5 show that the physical location is the same. When KmR was transduced from the parent to the TcR daughter by the generalized transducing myxophage Mx4 or Mx8, all the transductants were TcS. Likewise, when the daughter was used as donor, TcR transductants of its KmR parent were KmS. Flanking markers that were linked to KmR in the parent were linked to TcR in the daughter. Spontaneous tandem genetic duplications of portions of bacterial chromosomes can be trapped by transducing a selectable marker from a donor to a recipient that has a different selectable marker at the same genetic location and selecting transductants with both markers. Using Tc-replacement, this technique can be applied to any region of the chromosome. We used it to isolate a spontaneous tandem duplication of part of the M. xanthus chromosome. The duplication was characterized by Southern blot hybridizations probed for Tn5-homologous DNA. It was also shown to be unstable by quantitation of loss of drug resistance. Transduction of the novel joint led to reconstruction of the duplication in the recipient strain. All these tests gave results consistent with the proposed structure. The methods described here are applicable to any bacterium into which transposons can be introduced, and for which some means of genetic exchange is available.
Collapse
|