Saitô H, Naito A. NMR studies on fully hydrated membrane proteins, with emphasis on bacteriorhodopsin as a typical and prototype membrane protein.
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007;
1768:3145-61. [PMID:
17964534 DOI:
10.1016/j.bbamem.2007.08.026]
[Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/24/2007] [Accepted: 08/29/2007] [Indexed: 11/30/2022]
Abstract
The 3D structures or dynamic feature of fully hydrated membrane proteins are very important at ambient temperature, in relation to understanding their biological activities, although their data, especially from the flexible portions such as surface regions, are unavailable from X-ray diffraction or cryoelectron microscope at low temperature. In contrast, high-resolution solid-state NMR spectroscopy has proved to be a very convenient alternative means to be able to reveal their dynamic structures. To clarify this problem, we describe here how we are able to reveal such structures and dynamic features, based on intrinsic probes from high-resolution solid-state NMR studies on bacteriorhodopsin (bR) as a typical membrane protein in 2D crystal, regenerated preparation in lipid bilayer and detergents. It turned out that their dynamic features are substantially altered upon their environments where bR is present. We further review NMR applications to study structure and dynamics of a variety of membrane proteins, including sensory rhodopsin, rhodopsin, photoreaction centers, diacylglycerol kinases, etc.
Collapse